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Abstract—We consider the problem of communicating effi- question, then, is whether there exists a pra&isaheme that
ciently over an N-block Rayleigh-fading channel with aK-sparse  achieves the capacity prelog factor in (1). In this paper, we
where both the channel's cosflicients and support arainknowt;  PTOPOSE @ scheme that, empirically, appears to meet this goa
to both the transmitter and receiver. For this, we propose to us The .tl'?.:msmISSIOn scheme that We, assume Is ,a conventlonal
bit-interleaved coded orthogonal frequency division multiplexing ©One: bit-interleaved coded modulation (BICM) is combined
(OFDM) in conjunction with a novel belief-propagation (BP) with orthogonal frequency division multiplexing (OFDM) é&n
based demodulation scheme. Unlike the conventional “decoupled” a few carefully placed training bits. The proposed demodula
approach, where pilots are used to estimate the sparse channel,tign scheme is. to our knowledge, novel: we perfojomt

and the resulting channel estimate is used for data decoding, . . . .
we perform joint sparse-channel estimation and data decoding. sparse-channel estimation and data decoding ubeigef-

Simulations suggest that the proposed scheme performs remark- propagation(B_P), ex.ploiting recent advances in a_pproxi_mate
ably well at both low and high-SNR—achieving, e.g., the channel BP [3], [4]. Simulations, usingV = 1021 subcarriers with

capacity prelog factor—with reasonable complexity:O(NL).! channels of length. =256 and average sparsify{ K} =64,
suggest that our scheme behaves near-optimally in both low-
|. INTRODUCTION and high-SNR regimes—significantly outperforming CCS—

We consider the problem of communicating efficiently ovef/ith reasonable complexiyO (N L).

an N-block Rayleigh-fading channel with &-sparse discrete- Il. SYSTEM MODEL

time impulse response of length (with 0 < K <L <N), e assume a total df OFDM subcarriers, each modulated
when both channel coefficients and support anknownto  py a QAM symbol from a2*-ary unit-energy constellation
the transmitter and receiver. It was recently shown that, @t Of these subcarriersy, are dedicated as pilofsand the
high SNR, the ergodic capacity of this channel obeys [1] remainingNy 2 N — N, are used to transmit a total off,
_ training bits andMy = NqM — M, coded/interleaved data bits.
_ N-K
C(SNR) = “5~1og,(SNR) + O(1), @ 15 generate the latter, we encodl information bits using a

. - N
where SNR denotes received signal-to-noise ratio. Interesigte? coder, interleave them, and partA|t|on the resultiig=
ingly, the prelog factor” % depends on the channel sparsity"/i/ [t bits among an integer numbgf= Ac/Mq of OFDM

K and not the channel length, even though the locations 0fsyAmbols. The resulting scheme has a spectral efficiency of

the non-zero channel coefficients are unknown. n=MgqR/N information bits per channel use (bpcu).

Pilot-aided transmission has emerged as a practical meankn the sequetl;l we use®) € § for k € {1""_’2M}
of communicating over unknown channels, and a large bodyt((.%ljc)dimt(ek)thek (ke)IeTment of the QAM constellz_atlon,_ and
work (see, e.g., the bibliography in [2]) has grown arourel tf = — (ci”,...,cpr) to denote the corresponding bits as
idea of leveraging sparsity to reduce the number of piloit w defined by the symbol mapping. leev_whse, we U_s{?t] €S
the end goal of increasing spectral efficiency. The coneeati for the QAM symbol transmitted on the" subcarrier of the

approach to demodulation, which we refer to asrhpressed t" OFDM symbol ande;[t] £ (i [t],.., cim[t])" for the
channel sensirig(CSS) after [2], is adecoupledone: pilot codeAd/mterIeaved bits coTrrespondlng to that symbol. We us
knowledge is exploited for sparse-channel estimation,taad clt] = (CO[t];};' - en-1t])” to denoteA the coded/mterTIeaved
resulting channel estimate is used for data decoding. Baif "N the ¢ OFDM symbol ande = (cl[l},.... c[T])" to

on provable performance guarantees from the theory of coflgnote the entire (interleaved) codeword. The elements of

pressed sensing, it is widely accepted tBH{K polylog(L)) c that are apriori known as pilot or trainin_g bits will be
pilots are both necessary and sufficient for CCS [2]. referred to as:y. The remainder ot is determined from the

mormation bitsb= (b1, ...,ba;)" by coding/interleaving.

From the capacity expression (1), we can see that a. ;
scheme allocating more thak degrees of freedom (per We a_ssgme the standard model for the received value on
subcarrier; of OFDM symbolt:

fading block) to pilots will be spectrally inefficient in the
high-SNR regime. Thus, the CCS approach, which requires yilt] = silt]z:t] + vilt], @)
O(K polylog(L)) > K pilots, falls short of its goal. The key

2In [1], a scheme that achieves the prelog factor in (1) wasqseg, but
its complexity grows exponentially with the fading-bloclnggh N.
1This work has been supported in part by NSF grant CCF-1018368 3For our relaxed-BP decoder, we recomme¥igl=0; see Section V.
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represent random variables and the square nodes reprhsent t
factors of the posterior identified in (5).

A. Background on Belief Propagation

Fig. 1. Factor graph of the joint estimation/decoding probl®er a toy . AIthoth.exaCt ?Valuatlpn of the pOSteans(b.m | Y c.pt)}
example withM; = 3 information bits,Np = 1 pilot subcarrier (at subcarrier IS CompUtat'Ona”y |mpractlcal for the prObIem sizes oenest,
index i = 3), My = 2 training bits, M = 2 bits per QAM symbol,N = 4  these posteriors can be approximately evaluated usaligf
OFDM subcarriers, and channel impulse response lefigth 3. propagation(BP) [5] on the Ioopy factor graph in Fig. 1.In BP,
where z;[t] € C is the i*" subcarrier's gain andv;[t]} is beliefs take the form of pdfs_/pmfs that are propagated among
circular white Gaussian noise with variancg The subcarrier nodes of the factor graph via ttseim/product algorithm

gainsz[t] £ (zo[t],...,zn—1[t])T are related to the channel 1) If factor node f(vy,...,v4) iS connected to variable

impulse responsec[t] £ (xo[t],...,zr_1[t])T via z[t] = nodes{v,}/.,, then the belief passed frorh to v, is

Zf:_ol ®;;2;]t], where®;; = e~V~T%% can be recognized Df—up, (V) O f{va}a# flor, s va) [y Poa— £ (Va),

as the(i, j)!"* element of theV-DFT matrix ®. We assume a given the beliefp,, _, #(-) }o» Previously passed t@.

block fading channel, so thdte[t]} ; are i.i.d. To simplify ~ 2) If variable node v is connected to factor nodes

the development, we assume tliat 1 in the sequel (but not {f1,..., fB}, then the belief passed from to f,

in the simulations) and drop thét}” notation for brevity. IS pusr,(v) o [l,zaPp—0(v), given the beliefs

We assume that the impulse respofisg}—' is sparse and {Pf,—v(-) }o£a Previously passed to.

we model sparsity using an i.i.d Bernoulli-Gaussian prior:  3) If variable node v is connected to factor nodes

oy ) 4 Y {f1,..., B}, then the posterior om is the product of
P, (@) = MCN(:0.p5) + (1 =A)0(@), (3) all arriving beliefs, i.e.p(v) oc [T2_, pfy—o(v).
where CA'(z3a,b) = (wb)~"exp(=b~"[z — af?) denotes Figure 2 helps to illustrate the first two rules.
the complex-Gaussian pdfy(-) the Dirac delta, and\; =  \hen the factor graph contains no loops, BP yields exact

Pr{X;#0} andu; = var{X;} denote apriori sparsity-rate andposteriors after only two rounds of message passing (i.e.,
variance, respectively. Assuming that the channel is gRerggnward and backward). With loops, however, convergence
preserving with argixponential delay-power profile, we hayg the exact posteriors is not guaranteed. That said, there
puj = 279 res J(35 775 277/ Tre), where Linpg denotes the eyist many problems to which loopy BP has been successfully
half-power delay. applied, including LDPC decoding [6] and compressed sensin

I1l. JOINT ESTIMATION/DECODING VIA RELAXED BP [4], [7]. Our work not only leverages these past successés, b
Our goal is to infer the information bits, given the OFDM unites them through the framework of turbo equalization [8]

observationsy < (yo. ..., y~—1)" and the pilot/training bits B. Background on Relaxed Belief Propagation
cpt, but in the absence of channel state information. In partic- , sub-problem of particular interest to us is the estimation

ular, we aim to maximize the posterior pmfbs. |y, cot) of of a non-Gaussian vectaor that is linearly mixed to form

each bit. lee_n the model of Section II, this posterior can bze: &2 and subsequently observed through componentwise
decomposed into a product of factors as follows:

non-Gaussian “measurement channéjs, | ;, (yilz:) 1t In
Pbm |y, o) = > p(bly,cor) o > p(y|b,cp)p(b) (4) our case (3) specifies the non-Gaussian priaeamd (2), with
b_ b, uncertainty ins;, yields the non-Gaussian channel. This sub-
problem yields the factor graph shown within the right dakshe
= [ 20> wlyls.xp(@)p(s|ep(e|b,ep)p(d)  box in Fig. 1, where the nodes;” represent the measurement

T ¢ s b_, channels and the rightmost nodes represent priat.on
L1 N1 Building on prior multiuser detection work by Guo and
= / [T > T1 pwilsi ) > plsile) > Wang [3], Rangan recently proposed a so-calieidxed BP
=0 s =0 c bom scheme [4] that yields asymptotically exact posteriors as
M; N,L — oo [7]. The main ideas behind relaxed BP are the
x p(elb, cpr) [] plbm), (5)  following. First, although the beliefs flowing leftward frothe
m=1

nodes{x;} are clearly non-Gaussian, the corresponding belief
where ‘“x” denotes equality up to a scaling arid,, £ aboutz; = Zf;ol ®,;x; can be accurately approximated as
(b1, .. wbm,l,bmﬂ,...,bM‘)T. The factorization (5) is illus- Gaussian, wherL is large, using the central limit theorem.
trated by thefactor graphin Fig. 1, where the round nodesMoreover, to calculate the parameters of this distribution,



definitions: ) N e Meanwhile, we know the pilot/training bits perfectly, anal s
Pz, v, (2ly; 2, 07) = _fz/pzzlél,rzg.l(!y\z/)CNéz;f;,uz) (D1)| we setp, ,, s, (c) for those (i,m) equal to either0 or 1,
Foui(y2,1%) = [. 20z, 1y, (2ly; 2, 1%) (02)| depending on the assigned value of the pilot/training bits.
Eout,i(y, 2,17) = [ |z — Fou,i (v, 2, 17)|? bz, v, (2ly; 2, u*) (D3) Next we propagate the coded-bit beliefs rightward into the
Pa,(@d:n) = 1 pfﬁ?ﬁfﬁéffn (b4)| symbol mapping nodes. The symbol mapping is deterministic,
Fn 3 (6, %) = qupé (¢: 3, 1) (os)|  With factors of the formp(s™*) | ) = §,_;, using Kronecker
Einj (6, 19) = f lg — n Fin (6, 1) po,(a; 4, %) (0e)| delta notation. From the sum/product algorithm, the messag
initialize: passed rightward from symbol mapping nodet;” is
Vi, j: irg(l) = #;(1) = fwﬂfng (z) (11)
o — 1v,j2,;] (1) fy |z — &;(1)] DX () (12) p./\/li%sl S(k) H Pes m%./\/l )) (6)
Vi:pEn] = 2SI @i 2utn] (R1)
Vi 3[n] = zf;ol ®;;d45(n] (R2)| which is then copied forward as the message passed rightward
Vi,j ¢ Zijln] = Zin] — @i [n] (R3) from nodes; (i.€., pa1, s, (58F)) = ps, sy, (sH))). For brevity,
Vi pgln] = Eowilyi, Ziln], pi [n]) (R4) k) & )Y i
Vi, j: eiginl = Fouti(yir 2inl, p2[n) we uses;”’ = ps, .y, (s'%)) in the sequel.
— Pijdij[n]pug [ﬂ}/ul [n] — Zi5[n] (R5) The belief {5“”},;”1 that propagates rightward into the
Vil = (1= pilnl/uf [n]) ™ Ml (R6)  OFDM observation nodey;” determines thei’” “measure-
Vi s glnl = (1= pg el /i lnl) Yeijlnl R7 ment channel’py, |z, (y|2) used in relaxed BP. In particular,
Vi s uslnl = (25 |<D”| /”ZA["D ®R8) " 2) implies a Gaussian-mixture channel of the form
Vj:giln] = piln }Z - (<I>* aizln]/p [n]) (R9)
Vj:pfnt1] = En;(d50n], #J 9In]) (R10) 2
V) d;ln+1] = Finj(d5[n], uln)) (R11) pyiz ) = 3 B CN (y; sV 2 i), @)
Vi, g @ijlntl] = &5ln+1] — (9F;045[n]/pf [n]) pf[n+1]  (R12) P
end From (7), it can be shown (after a bit of algebra) that the
THE RELAXTE'E?'E‘”E, IALGORITHM guantities in (D2)-(D3) of Table | become
its mean and variance), only the mean and variance of each Fowily, 2,1%) = 2+ &(y, 2,1%) (8)

are needed. Thus, it suffices to pass only means and variances 2

) pass : . O PN e L s
leftward from eachz; node. It is similarly desirable to pass outi(y; %, 1") = > & A n )(|s<k)|2 SO207 +
only means and variances rightward from each measurement k=1 pra
node. Although the exact rightward flowing beliefs would be + !éi(:% 2, 17) — é(k)(% 3, ,f)f) 9)
non-Gaussian (due to the non-Gaussian assumption on the
measurement channels; | z,), relaxed-BP approximates themfor
as Gaussian using a 2nd-order Taylor series, and passes on)g o 51,("’)(3/\[(% sz |s0)|2 % 4 pu?) ,
the resulting means and variances. A further Srmplrfrcatror‘f (v, 2,0%) = BEVCN (y: s 5, |52 17 4 v (10)
employed by relaxed BP is to approximate tHiferences 2w B (y,(i) ) 2 [P ps )
among the outgoing means/variances of each left node, apd)(, 5 %) 2 (L _ ) [0 (12)
the incoming means/variances of each right node, usingfay! s(k) s®)2p7 + pv
series. The relaxed-BP algoritfins summarized in Table I.
Assuming (D1)-(D6) can be calculated efficiently (as we show &(y, 2, u*) £ 8y, 2, 17) e® (y, 2, 17), (12)
below), the complexity of relaxed-BP §(NL).

>

C. Joint Estimation/Decoding via Relaxed BP Wheref (k) (yl,é 1) can be interpreted as the posterior gn

Here we detail our application of relaxed-BP to joint esinder the channel mode] ~ CN'(2, u*). Likewise, from (3),
timation/decoding, frequently referring to the factor gain 't ¢an be shown that the quantities (D5)-(D6) take the form

Fig. 1. Note that, since our factor graph is loopy, theretexis (G, 1) = v; (4, n?) (13)
considerable freedom in the belief propagation scheduke. W = ™7 bR = (g, pa)

choose to propagate beliefs from the left to the right andbac A a; (g, pt) — 1 v; (1)
again, several times, stopping as soon as the beliefs gmver &in,j (4, n*) = |7 (qp Dl , (14)

q
Below, we detail each step of the process. s (@ e (d 1)

At the very start, we know nothing about the info- bitdor
(ie., Pr{b, = 1} = § Vm). Thus, we take the initial bit
beliefs flowing rightward out of the coding/interleavingpbk
to be uniform (i.e.p., ,, s, (c) = % Ve for the info (i, m)).
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4To be precise, the relaxed BP algorithm in Table | is an eitensf
that proposed in [4]. Table | handlesmplexGaussian distributions armbn- ,/_(Mq)
identically distributedsignal and measurement channels. J
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Using (8)-(17), we iterate the relaxed-BP algorithm in

Table I until it converges. In doing so, we generate (a clgse a -5~ LMMSE
proximation to) the conditional-mean (i.e., nonlinear ME)S -5 :;Aesso I
estimates of the sparse-channel impulse-response cesffici -e-BP-1
{z;}, as well as their conditional variancelg:?}, given H_m’ o BP-2
the observationgy;} and the soft symbol estimate{ﬁl(k)}. 5 -15¢ +EE§C I
Conveniently, relaxed-BP also returns (a close approxanat 7 —-—_
” . S -20f /
to) the conditional-mean estimatgs;} of the subchannel z
gains{z;}, as well as their conditional variancég? }. -25f ]
After several rounds of message passing within the relaxed- 0 ¢

BP sub-graph, beliefs are passed leftward out of that sub- a—n
graph. The sum/product algorithm implies that the belief _35 ‘ ‘ ‘ ‘ |
propagating leftward from thg; node takes the form 1 3Np/K4

Doy (8) o /CN(yi; sz, u")CN (252, 147)  (18)  Fig.3. Channel estimation NMSE versus pilot ralig/ K, for SNR = 20dB,
z M;=0, n=23 bpcu, and 64-QAM.
= CN(yi; 82, |s|* i + 1), (19)

where the relaxed-BP outputs;, 4?) play the role of “soft
channel estimates.” Likewis@uq, s, (s) = Ps;y, (S)-

Next, the belief passed leftward from the symbol-mappi
nodeM; to the bit noder; ,, takes the form

[ [t] = ||2[t] — z[t]||3/N. From this “soft” channel estimate,
we computed soft coded-bit estimates using the procedure de
scribed for BP and fed them to the SISO deinterleaver/decode
9 yield info-bit estimates. Due to the genie-aided stebs, t
performance attained by CCS may be somewhat optimistic.

Des M (€) We now describe several reference schemes, all of which
oM use the CCS procedure described above but with different
x Z Z (5™ [ €) par, s, (s™) H e, s mt; (Cmr) channel estimators. The first uses traditional linear MMSE
h—1 ciom—c mtm (LMMSE) estimation. Since LMMSE does not exploit channel
M (k) sparsity, we expect it to be outperformed by LASSO. We
— Z pMﬂ_Si(S(k))Hm’:lpcifm’_)Mf(Cm’) (20) also consider MMSE-optimal estimation under tha@pport-
e, Pesm—M; (€) aware genie(SG), which yields a CCS performance upper-
o 1 bound. Finally, we consider MMSE-optimal estimation under
- Z Paties, (8F)pag, s, (7)), (21)  a bit- and support-aware geniéBSG). Here, in addition to
Pes =i (€) ke ¢ the channel support being known, &l symbols are known

during the channel estimation step. Clearly, this refezenc
}ﬂpper-bounds the performancearfy implementable decoder.

Finally, we pass messages leftward into the code/intezleav For all of our results, we used irregular _LDPC codes with
block. In doing so, we are essentially feeding extrinsi ngth ~ 10000 and average column weigh}, generated

soft bit estimates to a soft-input/soft-output (SISO) d and decoded) using the .software [11]. In. converting bits
coder/deinterleaver, where they are treated as priorsr:eSiﬁO symbols, we used muItllleveI Gray-m_appmg. For OFDM,
SISO decoding is by now a mature topic, we refer the read®f usedV = 1021 _subcarner;, since priméy ensures.that
elsewhere for details (e.g., [9]). The extrinsic outputstied square/_tall submatrices @b will be fuII-ra_nk. The N, pilot
SISO decoder are then re-interleaved and passed rightwaygcaMers: when used, were spaced uniformly and modtlate
from the code/interleave block to begin another round okbel with QAM symbols chosen uniformly at random. THd

propagation on the overall factor graph in Fig. 1. Theseroutt@"ng _b|ts, when used, were _chosep umformly at random
(“turbo”) iterations continue until either the decoderetgs no and assigned to the most significant bits of uniformly spaced

bit errors, the soft bit estimates have converged, or a maxim data subcarriers.

Of coursep,, ., (c) does not need to be evaluated for an
pair (i,m) corresponding to a pilot or training bit.

number of iterations has elapsed. For all Qf our results, we used a length=256 channel with
A=1/4, yielding A\N =64=E{K} non-zero taps on average.
IV. NUMERICAL RESULTS All results are averaged ovf=100 OFDM symbols.

In this section, we present numerical results that compareFigure 3 plots channel estimation NMSE ||&[t] —
our proposed BP-based joint estimator/decoder to the C@8]|3/|lx[t]||3 versus the pilot ratiaV,/K at SNR = 20dB.
approach as well as to several reference schemes. As expected, LASSO’s NMSE falls between that of LMMSE

We used the following procedure for CCS. First, we gerand SG, and all three decrease monotonically vNth Even
erated a LASSO channel estimaitg] using pilot-subcarriers. after a single turbo iteration, BP significantly outperferm
To implement LASSO, we used SPGL1 [10] with a genietkASSO, and—perhaps surprisingly—the SG (wh¥p/ K >
optimized tuning parameter. We then compuggtl = ®x[t], 3). The reason for the latter is that, while the SG uses dryy
from which we calculated the (genie-aided empirical) vac& subcarriers, BP makes use of all subcarriers, although the
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Fig. 4. BER versus pilot ratid\/p/K, for SNR=20dB, M;{=0,n=3 Fig. 6. BER versusEb/No(: SNR/n), for Np/K =4, My=0,7=05

bpcu, and 64-QAM. bpcu, and 4-QAM.
A ! ! ! ! ] NI_VN" log,(SNR) + O(1), differing only in the O(1) term.
o Although, for this setup, BP performs on par with BSG,
3.5¢ /,/' 1 neither attains the desired channel-capacity prelogfact
3l ','%"_'/%"’, A5 = 3¢ It turns out that this shortcoming is due to the
&VBP 5S4 choice (Np, M;) = (L,0), which was chosen with CCS in
§2'5’ peRs 56;/ B mind. In fact, experiments not shown here confirmed that, at
< 2 > A high SNR, BP performs best withN,, M;)= (0, M K). This
® / . o RN )
15 P 52/ - | latter configuration, in conjunction with 256-QAM, yieldset
' /@sq"i«‘?’? P /’ dashedng o01-vS-SNR in Fig. 5, which—remarkably—does
1.5 N ] attain the optimal prelog-factoR =%
0_526P‘i/ ] Figure 6 plots BER versu&;/N,(=SNR/n) over a much
10 > 12 6 18 20 lower range of SNR. Experiments (not shown) confirmed that
SNR [dB] CCS favors(Np, My)=(L,0) in this SNR range as well, and

so this configuration was used to keep CCS competitive, while
Fig. 5. BER=0.001-achieving spectral efficiencyy.oo1 versusSNR. The ; ; ; R
solid traces usedVp/K =4, M; =0, and 64-QAM, while the dashed trace being SUbOptlm_al for_ BP. Still, we see from Fig. 6 that BPeaft_
usedNp, =0, My=MK, and 256-QAM. only two turbo iterations, beats LASSO by 1.8dB and remains

only 0.8dB away from the BSG.
Ng= N — N, data subcarriers are extremely “noisy” at first,
due to complete lack of symbol knowledge. After only 2 turbo _ o
iterations, BP learns the data subcarriers well enoughitiat [H A P Kannu and P. Schniter, *On communication over unknown
. . . . sparse frequency-selective block-fading channetsXiv:1006.1548
NMSE is only slightly higher than that of the BSG (which  june 2010.
knows all data subcarriers perfectly). The fact that theBe B[2] W. U. Bajwa, J. Haupt, A. M. Sayeed, and R. Nowak, “Compeess
: ) ~ ; channel sensing: A new approach to estimating sparse multghetn-
estimates are nearly as good as BS_G S sqpport aware essimat nels,” Proc. IEEE vol. 98, pp. 1058-1076, June 2010.
attests to the near-optimal estimation ability of relaxé®dl B [3] . Guo and C.-C. Wang, “Random sparse linear systems véser
Figure 4 plots BER versus the pilot ratig, /K at SNR= \éia afbit_raWIthanneTli: ch\ilecoulgling F;””Cip'geia igrgg- JIEEEZgg-?

- - . ymposium Intorm. eqryNice, France), pp. —. , June .
20dB and a fixed spectral efficiency @f:_?’ prU. The curves [4] S. Rangan, “Estimation with random linear mixing, beliebpagation
have a “notched” shape because, §g increases, the code and compressed sensingiXiv:1001.2228v2May 2010.
rate R must decrease to maintain a fixed valuenofThus [5] J. PearlProbabilistic Reasoning in Intelligent Systengan Mateo, CA:

hil . N ke ch | estimati iy Morgan Kaufman, 1988.
while an |r'1cregse InVp can make ¢ anne es 'ma_ I(_)n easlelye p. J. c. MacKay, Information Theory, Inference, and Learning Algo-
the reduction inR makes data decoding more difficult. For — rithms New York: Cambridge University Press, 2003.
CCS, Fig. 4 indicates tthp —4K=1is optimal, which is [71 S. rI:Qangé:\n, "IGeneraIized approximate message passingsfionation
. . . . with random linear mixing,"arXiv:1010.5141 Oct. 2010.
interesting because, thﬁp > L, the channel sensing is nOt [8] R. Koetter, A. C. Singer, and M. Uichler, “Turbo equalization,1EEE
actually “compressed.” The SG and BP curves show a similar  Signal Process. Magvol. 21, pp. 67—80, Jan. 2004.

notch-like shape, although their notches are much wider. [9] T.J. Richardson and R. L. Urbankilodern coding theoryNew York:
. . Cambridge University Press, 2009.
Figure 5 plotsno.o1 versus SNR, where 7o.001 iS the [10] E. van den Berg and M. P. Friedlander, “Probing the Rafeantier

spectral efficiency (in bpcu) that yielded BER0.001. The for basis pursuit solutionsSIAM J. Scientific Compytvol. 31, no. 2,
L _ _ ; pp. 890-912, 2008.

solid-line tlja(.:es qorrespond th 4K L pllOtS ar_]d z{ll] I. Kozintsev, “Matlab programs for encoding and decadiof LDPC

M = 0 training bits and 64-QAM, as suggested by Fig. 4. codes over GR(™)." http:/www.kozintsev.net/soft.html.

These traces all display the anticipated high-SNR scakimg |
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