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Abstract—We consider the problem of communicating effi-
ciently over anN -block Rayleigh-fading channel with aK-sparse
L-length discrete-time impulse response (with0<K <L<N ),
where both the channel’s coefficients and support areunknown
to both the transmitter and receiver. For this, we propose to use
bit-interleaved coded orthogonal frequency division multiplexing
(OFDM) in conjunction with a novel belief-propagation (BP)
based demodulation scheme. Unlike the conventional “decoupled”
approach, where pilots are used to estimate the sparse channel,
and the resulting channel estimate is used for data decoding,
we perform joint sparse-channel estimation and data decoding.
Simulations suggest that the proposed scheme performs remark-
ably well at both low and high-SNR—achieving, e.g., the channel
capacity prelog factor—with reasonable complexity:O(NL).1

I. I NTRODUCTION

We consider the problem of communicating efficiently over
anN -block Rayleigh-fading channel with aK-sparse discrete-
time impulse response of lengthL (with 0 < K < L < N ),
when both channel coefficients and support areunknownto
the transmitter and receiver. It was recently shown that, at
high SNR, the ergodic capacity of this channel obeys [1]

C(SNR) = N−K
N log2(SNR) +O(1), (1)

where SNR denotes received signal-to-noise ratio. Interest-
ingly, the prelog factorN−KN depends on the channel sparsity
K and not the channel lengthL, even though the locations of
the non-zero channel coefficients are unknown.

Pilot-aided transmission has emerged as a practical means
of communicating over unknown channels, and a large body of
work (see, e.g., the bibliography in [2]) has grown around the
idea of leveraging sparsity to reduce the number of pilots, with
the end goal of increasing spectral efficiency. The conventional
approach to demodulation, which we refer to as “compressed
channel sensing” (CSS) after [2], is adecoupledone: pilot
knowledge is exploited for sparse-channel estimation, andthe
resulting channel estimate is used for data decoding. Based
on provable performance guarantees from the theory of com-
pressed sensing, it is widely accepted thatO

(

K polylog(L)
)

pilots are both necessary and sufficient for CCS [2].
From the capacity expression (1), we can see that any

scheme allocating more thanK degrees of freedom (per
fading block) to pilots will be spectrally inefficient in the
high-SNR regime. Thus, the CCS approach, which requires
O
(

K polylog(L)
)

> K pilots, falls short of its goal. The key

1This work has been supported in part by NSF grant CCF-1018368.

question, then, is whether there exists a practical2 scheme that
achieves the capacity prelog factor in (1). In this paper, we
propose a scheme that, empirically, appears to meet this goal.

The transmission scheme that we assume is a conventional
one: bit-interleaved coded modulation (BICM) is combined
with orthogonal frequency division multiplexing (OFDM) and
a few carefully placed training bits. The proposed demodula-
tion scheme is, to our knowledge, novel: we performjoint
sparse-channel estimation and data decoding usingbelief-
propagation(BP), exploiting recent advances in approximate
BP [3], [4]. Simulations, usingN = 1021 subcarriers with
channels of lengthL=256 and average sparsityE{K}=64,
suggest that our scheme behaves near-optimally in both low-
and high-SNR regimes—significantly outperforming CCS—
with reasonable complexity:O(NL).

II. SYSTEM MODEL

We assume a total ofN OFDM subcarriers, each modulated
by a QAM symbol from a2M -ary unit-energy constellation
S. Of these subcarriers,Np are dedicated as pilots,3 and the
remainingNd ,N − Np are used to transmit a total ofMt

training bits andMd,NdM−Mt coded/interleaved data bits.
To generate the latter, we encodeMi information bits using a
rate-R coder, interleave them, and partition the resultingMc,

Mi/R bits among an integer numberT ,Mc/Md of OFDM
symbols. The resulting scheme has a spectral efficiency of
η,MdR/N information bits per channel use (bpcu).

In the sequel, we uses(k) ∈ S for k ∈ {1, . . . , 2M}
to denote thekth element of the QAM constellation, and
c(k) , (c

(k)
1 , . . . , c

(k)
M )T to denote the corresponding bits as

defined by the symbol mapping. Likewise, we usesi[t] ∈ S

for the QAM symbol transmitted on theith subcarrier of the
tth OFDM symbol andci[t] , (ci,1[t], . . . , ci,M [t])T for the
coded/interleaved bits corresponding to that symbol. We use
c[t] , (c0[t], . . . , cN−1[t])T to denote the coded/interleaved
bits in the tth OFDM symbol andc , (c[1], . . . , c[T ])T to
denote the entire (interleaved) codeword. The elements of
c that are apriori known as pilot or training bits will be
referred to ascpt. The remainder ofc is determined from the
information bitsb=(b1, . . . , bMi)

T by coding/interleaving.
We assume the standard model for the received value on

subcarrieri of OFDM symbolt:

yi[t] = si[t]zi[t] + vi[t], (2)

2In [1], a scheme that achieves the prelog factor in (1) was proposed, but
its complexity grows exponentially with the fading-block lengthN .

3For our relaxed-BP decoder, we recommendNp =0; see Section IV.
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Fig. 1. Factor graph of the joint estimation/decoding problem for a toy
example withMi = 3 information bits,Np = 1 pilot subcarrier (at subcarrier
index i = 3), Mt = 2 training bits,M = 2 bits per QAM symbol,N = 4
OFDM subcarriers, and channel impulse response lengthL = 3.

where zi[t] ∈ C is the ith subcarrier’s gain and{vi[t]} is
circular white Gaussian noise with varianceµv. The subcarrier
gainsz[t] , (z0[t], . . . , zN−1[t])T are related to the channel
impulse responsex[t] , (x0[t], . . . , xL−1[t])T via zi[t] =
∑L−1

j=0 Φijxj [t], whereΦij = e−
√
−1 2π

N
ij can be recognized

as the(i, j)th element of theN -DFT matrixΦ. We assume a
block fading channel, so that{x[t]}Tt=1 are i.i.d. To simplify
the development, we assume thatT = 1 in the sequel (but not
in the simulations) and drop the “[t]” notation for brevity.

We assume that the impulse response{xi}
L−1
i=0 is sparse and

we model sparsity using an i.i.d Bernoulli-Gaussian prior:

pXj
(x) = λjCN (x; 0, µj) + (1− λj)δ(x), (3)

where CN (x; a, b) , (πb)−1 exp(−b−1|x − a|2) denotes
the complex-Gaussian pdf,δ(·) the Dirac delta, andλj ,

Pr{Xj 6=0} andµj,var{Xj} denote apriori sparsity-rate and
variance, respectively. Assuming that the channel is energy-
preserving with an exponential delay-power profile, we have
µj = 2−j/Lhpd/(

∑L−1
r=0 λr2

−r/Lhpd), whereLhpd denotes the
half-power delay.

III. JOINT ESTIMATION /DECODING VIA RELAXED BP

Our goal is to infer the information bitsb, given the OFDM
observationsy , (y0, . . . , yN−1)T and the pilot/training bits
cpt, but in the absence of channel state information. In partic-
ular, we aim to maximize the posterior pmfp(bm |y, cpt) of
each bit. Given the model of Section II, this posterior can be
decomposed into a product of factors as follows:

p(bm |y, cpt) =
∑

b−m

p(b |y, cpt) ∝
∑

b−m

p(y | b, cpt)p(b) (4)

=

∫

x

∑

c

∑

s

∑

b−m

p(y | s,x)p(x)p(s | c)p(c | b, cpt)p(b)

=

∫

x

L−1
∏

j=0

p(xj)
∑

s

N−1
∏

i=0

p(yi|si,x)
∑

c

p(si|ci)
∑

b−m

× p(c|b, cpt)

Mi
∏

m=1

p(bm), (5)

where “∝” denotes equality up to a scaling andb−m ,

(b1, . . . , bm−1, bm+1, . . . , bMi)
T. The factorization (5) is illus-

trated by thefactor graph in Fig. 1, where the round nodes
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Fig. 2. Examples of belief propagation among nodes of a factor graph.

represent random variables and the square nodes represent the
factors of the posterior identified in (5).

A. Background on Belief Propagation

Although exact evaluation of the posteriors{p(bm |y, cpt)}
is computationally impractical for the problem sizes of interest,
these posteriors can be approximately evaluated usingbelief
propagation(BP) [5] on the loopy factor graph in Fig. 1. In BP,
beliefs take the form of pdfs/pmfs that are propagated among
nodes of the factor graph via thesum/product algorithm:

1) If factor nodef(v1, . . . , vA) is connected to variable
nodes{va}Aa=1, then the belief passed fromf to vb is
pf→vb

(vb) ∝
∫

{va}a 6=b
f(v1, . . . , vA)

∏

a 6=b pva→f (va),
given the beliefs{pva→f (·)}a 6=b previously passed tof .

2) If variable node v is connected to factor nodes
{f1, . . . , fB}, then the belief passed fromv to fa
is pv→fa(v) ∝

∏

b 6=a pfb→v(v), given the beliefs
{pfb→v(·)}b 6=a previously passed tov.

3) If variable node v is connected to factor nodes
{f1, . . . , fB}, then the posterior onv is the product of
all arriving beliefs, i.e.,p(v) ∝

∏B
b=1 pfb→v(v).

Figure 2 helps to illustrate the first two rules.
When the factor graph contains no loops, BP yields exact

posteriors after only two rounds of message passing (i.e.,
forward and backward). With loops, however, convergence
to the exact posteriors is not guaranteed. That said, there
exist many problems to which loopy BP has been successfully
applied, including LDPC decoding [6] and compressed sensing
[4], [7]. Our work not only leverages these past successes, but
unites them through the framework of turbo equalization [8].

B. Background on Relaxed Belief Propagation

A sub-problem of particular interest to us is the estimation
of a non-Gaussian vectorx that is linearly mixed to form
z = Φx and subsequently observed through componentwise
non-Gaussian “measurement channels”{pYi|Zi

(yi|zi)}
N−1
i=0 . In

our case (3) specifies the non-Gaussian prior onx and (2), with
uncertainty insi, yields the non-Gaussian channel. This sub-
problem yields the factor graph shown within the right dashed
box in Fig. 1, where the nodes “yi” represent the measurement
channels and the rightmost nodes represent prior onx.

Building on prior multiuser detection work by Guo and
Wang [3], Rangan recently proposed a so-calledrelaxed BP
scheme [4] that yields asymptotically exact posteriors as
N,L → ∞ [7]. The main ideas behind relaxed BP are the
following. First, although the beliefs flowing leftward from the
nodes{xj} are clearly non-Gaussian, the corresponding belief
about zi =

∑L−1
j=0 Φijxj can be accurately approximated as

Gaussian, whenL is large, using the central limit theorem.
Moreover, to calculate the parameters of this distribution(i.e.,



definitions:
pZi|Yi

(z|y; ẑ, µz) =
pYi|Zi

(y|z) CN (z;ẑ,µz)
∫
z′ pYi|Zi

(y|z′) CN (z′;ẑ,µz)
(D1)

Fout,i(y, ẑ, µ
z) =

∫

z
z pZi|Yi

(z|y; ẑ, µz) (D2)
Eout,i(y, ẑ, µ

z) =
∫

z
|z − Fout,i(y, ẑ, µ

z)|2 pZi|Yi
(z|y; ẑ, µz) (D3)

pQj
(q; q̂, µq) =

pXj
(q) CN (q;q̂,µq)

∫
q′ pXj

(q′) CN (q′;q̂,µq)
(D4)

Fin,j(q̂, µ
q) =

∫

q
q pQj

(q; q̂, µq) (D5)
Ein,j(q̂, µ

q) =
∫

q
|q − Fin,j(q̂, µ

q)|2 pQj
(q; q̂, µq) (D6)

initialize:
∀i, j : x̂ij(1) = x̂j(1) =

∫

x
x pXj

(x) (I1)
∀j : µx

j (1) =
∫

x
|x− x̂j(1)|

2pXj
(x) (I2)

for n = 1, 2, 3, . . .

∀i : µz
i [n] =

∑L−1
j=0 |Φij |

2µx
j [n] (R1)

∀i : ẑi[n] =
∑L−1

j=0 Φij x̂ij [n] (R2)
∀i, j : ẑij [n] = ẑi[n]− Φij x̂ij [n] (R3)

∀i : µe
i [n] = Eout,i(yi, ẑi[n], µ

z
i [n]) (R4)

∀i, j : êij [n] = Fout,i(yi, ẑi[n], µ
z
i [n])

− Φij x̂ij [n]µ
e
i [n]/µ

z
i [n]− ẑij [n] (R5)

∀i : µu
i [n] =

(

1− µe
i [n]/µ

z
i [n]

)−1
µz
i [n] (R6)

∀i, j : ûij [n] =
(

1− µe
i [n]/µ

z
i [n]

)−1
êij [n] (R7)

∀j : µq
j [n] =

(
∑N−1

i=0 |Φij |
2/µu

i [n]
)−1 (R8)

∀j : q̂j [n] = µq
j [n]

∑N−1
i=0

(

Φ∗
ij ûij [n]/µ

u
i [n]

)

(R9)
∀j : µx

j [n+1] = Ein,j(q̂j [n], µ
q
j [n]) (R10)

∀j : x̂j [n+1] = Fin,j(q̂j [n], µ
q
j [n]) (R11)

∀i, j : x̂ij [n+1] = x̂j [n+1]−
(

Φ∗
ij ûij [n]/µ

u
i [n]

)

µx
j [n+1] (R12)

end

TABLE I
THE RELAXED-BP ALGORITHM

its mean and variance), only the mean and variance of eachxj

are needed. Thus, it suffices to pass only means and variances
leftward from eachxj node. It is similarly desirable to pass
only means and variances rightward from each measurement
node. Although the exact rightward flowing beliefs would be
non-Gaussian (due to the non-Gaussian assumption on the
measurement channelspYi|Zi

), relaxed-BP approximates them
as Gaussian using a 2nd-order Taylor series, and passes only
the resulting means and variances. A further simplification
employed by relaxed BP is to approximate thedifferences
among the outgoing means/variances of each left node, and
the incoming means/variances of each right node, using Taylor
series. The relaxed-BP algorithm4 is summarized in Table I.
Assuming (D1)-(D6) can be calculated efficiently (as we show
below), the complexity of relaxed-BP isO(NL).

C. Joint Estimation/Decoding via Relaxed BP

Here we detail our application of relaxed-BP to joint es-
timation/decoding, frequently referring to the factor graph in
Fig. 1. Note that, since our factor graph is loopy, there exists
considerable freedom in the belief propagation schedule. We
choose to propagate beliefs from the left to the right and back
again, several times, stopping as soon as the beliefs converge.
Below, we detail each step of the process.

At the very start, we know nothing about the info-bits
(i.e., Pr{bm = 1} = 1

2 ∀m). Thus, we take the initial bit
beliefs flowing rightward out of the coding/interleaving block
to be uniform (i.e.,pci,m→δi(c) =

1
2 ∀c for the info (i,m)).

4To be precise, the relaxed BP algorithm in Table I is an extension of
that proposed in [4]. Table I handlescomplexGaussian distributions andnon-
identically distributedsignal and measurement channels.

Meanwhile, we know the pilot/training bits perfectly, and so
we setpci,m→δi(c) for those (i,m) equal to either0 or 1,
depending on the assigned value of the pilot/training bits.

Next we propagate the coded-bit beliefs rightward into the
symbol mapping nodes. The symbol mapping is deterministic,
with factors of the formp(s(k) | c(l)) = δk−l, using Kronecker
delta notation. From the sum/product algorithm, the message
passed rightward from symbol mapping node “Mi” is

pMi→si(s
(k)) =

M
∏

m=1

pci,m→Mi
(c(k)m ), (6)

which is then copied forward as the message passed rightward
from nodesi (i.e.,pMi→si(s

(k)) = psi→yi
(s(k))). For brevity,

we useβ(k)
i , psi→yi

(s(k)) in the sequel.
The belief {β(k)

i }2
M

k=1 that propagates rightward into the
OFDM observation node “yi” determines theith “measure-
ment channel”pYi|Zi

(y|z) used in relaxed BP. In particular,
(2) implies a Gaussian-mixture channel of the form

pYi|Zi
(y|z) =

2M
∑

k=1

β
(k)
i CN (y; s(k)z;µv), (7)

From (7), it can be shown (after a bit of algebra) that the
quantities in (D2)-(D3) of Table I become

Fout,i(y, ẑ, µ
z) = ẑ + êi(y, ẑ, µ

z) (8)

Eout,i(y, ẑ, µ
z) =

2M
∑

k=1

ξ
(k)
i (y, ẑ, µz)

( µv

|s(k)|2
|s(k)|2µz

|s(k)|2µz + µv

+
∣

∣êi(y, ẑ, µ
z)− ê(k)(y, ẑ, µz)

∣

∣

2
)

(9)

for

ξ
(k)
i (y, ẑ, µz) ,

β
(k)
i CN (y; s(k)ẑ, |s(k)|2µz+µv)

∑

k′ β
(k′)
i CN (y; s(k′)ẑ, |s(k′)|2µz+µv)

(10)

ê(k)(y, ẑ, µz) ,

( y

s(k)
− ẑ

) |s(k)|2µz

|s(k)|2µz + µv
(11)

êi(y, ẑ, µ
z) ,

2M
∑

k=1

ξ
(k)
i (y, ẑ, µz) ê(k)(y, ẑ, µz), (12)

whereξ(k)i (yi, ẑ, µ
z) can be interpreted as the posterior onsi

under the channel modelzi ∼ CN (ẑ, µz). Likewise, from (3),
it can be shown that the quantities (D5)-(D6) take the form

Fin,j(q̂, µ
q) =

γj(q̂, µ
q)

αj(q̂, µq)
(13)

Ein,j(q̂, µ
q) = |γj(q̂, µ

q)|2
αj(q̂, µ

q)− 1

[αj(q̂, µq)]2
+

νj(µ
q)

αj(q̂, µq)
, (14)

for

αj(q̂, µ
q) , 1 +

1− λj

λj

µj

νj(µq)
exp

(

−
|γj(q̂, µ

q)|2

νj(µq)

)

(15)

γj(q̂, µ
q) ,

νj(µ
q)

µq
q̂ (16)

νj(µ
q) ,

µqµj

µq + µj
. (17)



Using (8)-(17), we iterate the relaxed-BP algorithm in
Table I until it converges. In doing so, we generate (a close ap-
proximation to) the conditional-mean (i.e., nonlinear MMSE)
estimates of the sparse-channel impulse-response coefficients
{xj}, as well as their conditional variances{µx

j }, given

the observations{yi} and the soft symbol estimates{β(k)
i }.

Conveniently, relaxed-BP also returns (a close approximation
to) the conditional-mean estimates{ẑi} of the subchannel
gains{zi}, as well as their conditional variances{µz

i }.
After several rounds of message passing within the relaxed-

BP sub-graph, beliefs are passed leftward out of that sub-
graph. The sum/product algorithm implies that the belief
propagating leftward from theyi node takes the form

psi←yi
(s) ∝

∫

z

CN (yi; sz, µ
v) CN (z; ẑi, µ

z
i ) (18)

= CN (yi; sẑi, |s|
2µz

i + µv), (19)

where the relaxed-BP outputs(ẑi, µz
i ) play the role of “soft

channel estimates.” Likewise,pMi←si(s) = psi←yi
(s).

Next, the belief passed leftward from the symbol-mapping
nodeMi to the bit nodeci,m takes the form

pci,m←Mi
(c)

∝
2M
∑

k=1

∑

c:cm=c

p(s(k) | c) pMi←si(s
(k))

∏

m′ 6=m

pci,m′→Mi
(cm′)

=
∑

k:c
(k)
m =c

pMi←si(s
(k))

∏M
m′=1 pci,m′→Mi

(c
(k)
m′ )

pci,m→Mi
(c)

(20)

=
1

pci,m→Mi
(c)

∑

k:c
(k)
m =c

pMi←si(s
(k))pMi→si(s

(k)). (21)

Of course,pci,m←Mi
(c) does not need to be evaluated for any

pair (i,m) corresponding to a pilot or training bit.
Finally, we pass messages leftward into the code/interleave

block. In doing so, we are essentially feeding extrinsic
soft bit estimates to a soft-input/soft-output (SISO) de-
coder/deinterleaver, where they are treated as priors. Since
SISO decoding is by now a mature topic, we refer the reader
elsewhere for details (e.g., [9]). The extrinsic outputs ofthe
SISO decoder are then re-interleaved and passed rightward
from the code/interleave block to begin another round of belief
propagation on the overall factor graph in Fig. 1. These outer
(“turbo”) iterations continue until either the decoder detects no
bit errors, the soft bit estimates have converged, or a maximum
number of iterations has elapsed.

IV. N UMERICAL RESULTS

In this section, we present numerical results that compare
our proposed BP-based joint estimator/decoder to the CCS
approach as well as to several reference schemes.

We used the following procedure for CCS. First, we gen-
erated a LASSO channel estimatex̂[t] using pilot-subcarriers.
To implement LASSO, we used SPGL1 [10] with a genie-
optimized tuning parameter. We then computedẑ[t]=Φx̂[t],
from which we calculated the (genie-aided empirical) variance
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Fig. 3. Channel estimation NMSE versus pilot ratioNp/K, for SNR=20dB,
Mt =0, η=3 bpcu, and 64-QAM.

µ̂z
i [t] , ‖ẑ[t]− z[t]‖22/N . From this “soft” channel estimate,

we computed soft coded-bit estimates using the procedure de-
scribed for BP and fed them to the SISO deinterleaver/decoder
to yield info-bit estimates. Due to the genie-aided steps, the
performance attained by CCS may be somewhat optimistic.

We now describe several reference schemes, all of which
use the CCS procedure described above but with different
channel estimators. The first uses traditional linear MMSE
(LMMSE) estimation. Since LMMSE does not exploit channel
sparsity, we expect it to be outperformed by LASSO. We
also consider MMSE-optimal estimation under thesupport-
aware genie(SG), which yields a CCS performance upper-
bound. Finally, we consider MMSE-optimal estimation under
a bit- and support-aware genie(BSG). Here, in addition to
the channel support being known, allN symbols are known
during the channel estimation step. Clearly, this reference
upper-bounds the performance ofany implementable decoder.

For all of our results, we used irregular LDPC codes with
length ≈ 10000 and average column weight3, generated
(and decoded) using the software [11]. In converting bits
to symbols, we used multilevel Gray-mapping. For OFDM,
we usedN = 1021 subcarriers, since primeN ensures that
square/tall submatrices ofΦ will be full-rank. TheNp pilot
subcarriers, when used, were spaced uniformly and modulated
with QAM symbols chosen uniformly at random. TheMt

training bits, when used, were chosen uniformly at random
and assigned to the most significant bits of uniformly spaced
data subcarriers.

For all of our results, we used a lengthL=256 channel with
λ=1/4, yielding λN=64=E{K} non-zero taps on average.
All results are averaged overT =100 OFDM symbols.

Figure 3 plots channel estimation NMSE, ‖x̂[t] −
x[t]‖22/‖x[t]‖

2
2 versus the pilot ratioNp/K at SNR=20dB.

As expected, LASSO’s NMSE falls between that of LMMSE
and SG, and all three decrease monotonically withNp. Even
after a single turbo iteration, BP significantly outperforms
LASSO, and—perhaps surprisingly—the SG (whenNp/K≥
3). The reason for the latter is that, while the SG uses onlyNp

subcarriers, BP makes use of allN subcarriers, although the
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Nd =N−Np data subcarriers are extremely “noisy” at first,
due to complete lack of symbol knowledge. After only 2 turbo
iterations, BP learns the data subcarriers well enough thatits
NMSE is only slightly higher than that of the BSG (which
knows all data subcarriers perfectly). The fact that these BP
estimates are nearly as good as BSG’s support-aware estimates
attests to the near-optimal estimation ability of relaxed BP.

Figure 4 plots BER versus the pilot ratioNp/K at SNR=
20dB and a fixed spectral efficiency ofη=3 bpcu. The curves
have a “notched” shape because, asNp increases, the code
rate R must decrease to maintain a fixed value ofη. Thus,
while an increase inNp can make channel estimation easier,
the reduction inR makes data decoding more difficult. For
CCS, Fig. 4 indicates thatNp =4K=L is optimal, which is
interesting because, whenNp ≥L, the channel sensing is not
actually “compressed.” The SG and BP curves show a similar
notch-like shape, although their notches are much wider.

Figure 5 plotsη0.001 versus SNR, where η0.001 is the
spectral efficiency (in bpcu) that yielded BER= 0.001. The
solid-line traces correspond toNp = 4K = L pilots and
Mt = 0 training bits and 64-QAM, as suggested by Fig. 4.
These traces all display the anticipated high-SNR scaling law
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Fig. 6. BER versusEb/No(= SNR/η), for Np/K =4, Mt =0, η=0.5
bpcu, and 4-QAM.

N−Np

N log2(SNR) + O(1), differing only in theO(1) term.
Although, for this setup, BP performs on par with BSG,
neither attains the desired channel-capacity prelog-factor of
N−K
N = 15

16 . It turns out that this shortcoming is due to the
choice (Np,Mt) = (L, 0), which was chosen with CCS in
mind. In fact, experiments not shown here confirmed that, at
high SNR, BP performs best with(Np,Mt)=(0,MK). This
latter configuration, in conjunction with 256-QAM, yields the
dashedη0.001-vs-SNR in Fig. 5, which—remarkably—does
attain the optimal prelog-factor,N−KN .

Figure 6 plots BER versusEb/No(=SNR/η) over a much
lower range of SNR. Experiments (not shown) confirmed that
CCS favors(Np,Mt)=(L, 0) in this SNR range as well, and
so this configuration was used to keep CCS competitive, while
being suboptimal for BP. Still, we see from Fig. 6 that BP, after
only two turbo iterations, beats LASSO by 1.8dB and remains
only 0.8dB away from the BSG.
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