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/Setup: \

e Single-antenna downlink with K users

e OFDMA with N subchannels

e Channels are Markov time-varying with L taps

e ACK/NAK feedback from previously scheduled users

B subchannel 1
B subchannel 2
B subchannel 3
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Kl'he Basic Resource Allocation Problem: \

e At each time ¢, we want to schedule the "best" users (multiuser
diversity) to their "best” subchannels (frequency diversity).

e \We also want to optimize the powers and data-rates of assigned users.
e To make informed choices, we need channel state information (CSl).

e Feedback of each user's CSI about each subchannel is very costly!

Is it possible to do near-optimal resource allocation using only ACK/NAK
feedback from previously scheduled users?

Can we learn enough about the CSI from such limited feedback?
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/Detailed Objective: \
At each time ¢t and subchannel n, choose each user k’s next...
e rate r 5141 € {1,..., M},
® power ppji+1 > 0,

based on ACK/NAK feedback F* to maximize the total future utility

t—|—1 _ Z ZE ZU( 1_€rnkT(7nkTapnkT)) nk:T) Ft

T=t+1 k=1

goodput from konnatr

subject to the power constraint an kr < Phax, VT,
n,k
and subject to a one-user-per-subchannel constraint.

Here, €.(7, p) is packet error rate and U(+) is a concave utility function.
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/Optimal ACK/NAK-based Resource Allocation: \

e Notice that the current resource allocation affects not only the
immediate utility, but also the subsequent ACK/NAK feedback, and
hence the future utilities.

e Intuitions:
— if we assign transmission params that are very likely to yield ACKs,

we will learn very little about the changing CSI! (~ “exploitation™)

— if we assign transmission params to best inform us of CSI, the

expected utility will be low. (~ “exploration™)

Classic tradeoff: exploration vs exploitation.

e The optimal allocator is a partially observable Markov decision process
(POMDP), at least in the simpler case of a finite set of powers.
POMDP complexity is impractically high, however, forcing us to

consider a suboptimal approach.
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N

/Greedy Resource Allocation:

e For ACK/NAK-based rate adaptation in the single-user single-channel
case, we previously found that greedy adaptation is nearly optimal (at

practical fading rates):
R. Aggarwal, P. Schniter, and C. E. Koksal, “Rate Adaptation via Link-Layer

Feedback for Goodput Maximization over a Time-Varying Channel,” IEEE
Transactions on Wireless Communications, Aug. 2009.

e Thus, we propose to use greedy resource allocation for our multi-user

multi-channel problem.
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Kl'he Greedy Resource-Allocation Problem: \

Using the indicator I, ,,, 1+ € {0,1} to denote time-t assignment of
subchannel n to user £ at MCS index m, the time-t problem becomes

—b n m n t
max E E{ E U<In,k,m,t—|—1(1 — @, e bmPnkmii1Y ,k:,t+1)’r'm) |F1}

Inkmis1€{0,1} K n,m
Pn,k,m,t+1=>0

SUbjeCt to Z In,k,m,t Pn.km.t S Pmaxa Vt;

n,k,m

and Z[n,k,m,t <1, Vn, Vt,

k.m
where
® V%t 1S SNR of user £ at subchannel n at time ¢,

e (ap, by, ) determine data rate and error rate for MCS index m

\\ o F' collects all ACK/NAK feedbacks collected from times 1 to ¢. /
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/Greedy Allocation — Practical Approximation: \

Say that we relax the binary indicators to fnm,k,t e [0,1].
Then the KKT conditions become (suppressing the time-t notation):

Vn,k,m, [ = QnbnTm E{%,ke_bmp”7"“””7"c | F'} (1)
Vn,k,m, X\, = r, E{1 — Q,, € mPrkmin k | F'} — upnkm (2)

where {\,}_, and pu are Lagrange multipliers. A practical alg is then:

1. Initialize v at a small value.
2. For each subchannel n,

e For each (k,m)...
— calculate py, km from (1) with I, ., = 1, forcing py k.m > 0.

— plug pn k.m into (2) and calculate the corresponding A, (k, m).
e Find (k*,m*) = arg maxj, n,) An(k, m).

e Set [n,k*,m* =1 and In,k,m‘(k,’m)#(k*,m*) = 0.

\\3. If > Dnk*m* > Pmax, increase i and repeat, else stop. /
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/Example Performance of Greedy Approximation: \
N K M | greedy goodput | approximation
1 3 9 5.9884 5.988
1 5 9 6.3501 6.3499
2 3 9 10.3251 10.3249
2 5 9 10.9778 10.9774
3 3 9 14.0573 14.0571
3 5 9 14.9653 14.9651
The practical approximation yields 99.99% of the goodput attained
by the true greedy scheme.

. /
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Kl'racking the SNR distribution: \
The greedy allocator tracks the SNR by updating the SNR distributions

P(Vnkt+1 | F’i), Y users k and subchannels n.

The SNR evolves as follows:

e Markov evolution of time-domain channel taps:
higirr = (1 —aQ)hype + 0w, wigs ~CN(0,1),

e subchannel gains as a function of time-domain channel taps:

Hppe = E thtG_jN

e subchannel SNRs as a function of subchannel gains:

Tnkt — K‘Hn,k,t|2-

. /
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KI'racking the SNR distribution (cont.): \
SNR tracking can be done as follows:
pOnsers | B = [ plmsoss | ha)plbngss | F) )
Pt (approx of;rDirac delta
plhness | FY) = [ plhwss | B ol | FY) (1)
Ry o ~

Markov prediction

h hy, | Fi!
p(hyy | F!) = p(fk’t [ P )p(hee | By ) (Bayes rule) (5)

h fh;@tp(fk,t ‘ h;f,t>p(h;<;,t | Fi_l)

N
p(fk,t | hk:,t) = Hp(fn,k;,t | ’Yn,k,t(hk,t)) (6)

( Z [n k.m tame_bmpn,k,m,t?’n,k,t

m »”Y ’
p(fn,k,t — f | /Yn,k:,t) = < Zm [n,k,m,t(l — a,me_bmpn’kam,tﬂ)/n,k,t)
\ 1 - Zm In,k,m,t

R
|
= = O
S

.
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KI'racking the SNR distribution (cont.): \

Thus, for each user k,
1. measure feedbacks f, , across all subchannels,
compute p(f, x| Ynk:(Fr:)) on h-lattice using error-rate rules (6)-(7),

compute p(hy | F*) on h-lattice by updating previous posterior via (5),

A

(
compute p(hy 41 | F%) on h-lattice via Markov-prediction step (4),
(

compute p(7y;.1 | F1) on ~-lattice via h-to-y conversion step (3).

This costs O(KNQE + KLQ; ' + KNQ,QF), where
(25, = number of grid points used per dimension of h-lattice,

() = number of grid points used per dimension of ~-lattice.

. /
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N

/Numerical Experiments:

Setup: K =2 users
N =2 subchannels
L =2 time-domain channel taps
E{Vnkt} = 25dB= 330 mean subchannel SNR
a € {0.01,0.001,0.0001} channel fading rate

p = 0.33 subchannel correlation

Plots show (versus packet index t):

e goodput of
— approximate-greedy with genie-aided CSI
— approximate-greedy with tracked CSI
— approximate-greedy with prior CSI (and round robin)

\\ e power/rate/user of approximate-greedy with tracked CSI /
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Total goodput in all subcarriers

/Goodput for o = 0.0001:

2 users, 2 subcarrier, a = 1le—-4, 200 packets

genie—aided CSI
''''' tracked CSI
------- prior CSI

genie-CSl avg =11.494
tracked—-CSl avg = 11.3354
prior—CSl avg = 6.6481
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/Allocations for a = 0.0001: \

User 1 after ACK
2 users, 2 subcarriers, a = 1e—-4, 200 | . User 2 after ACK
. 1 S A | Ay—— T O  User 1 after NACK
5 O  User 2 after NACK
= £ A  Rate change up or down
g g 05 y — o e G hange up :
53
55 i
O | | | v | vv | | | | | V; V
0 20 40 60 80 100 120Q 140 1680 120 200
User 1
L o 2000 ' - ' ' ' User 2
g o) _ Actual SNR for corresponding users
g § 1000 -
O | | | | | | | | |
20 40 60 80 100 120 140 160 180 200
1 AN A A A S N— , — , A
N
. 'g L eeeed D CELI— B O gL
og 05 1
0
S S
0 X L L <7 | 4 | | | | o L7 7
0 20 40 60 80 100 120 140 160 180 200
2000 I I I I I I I I I
% N
EQS
g § 1000 _—‘F .
s |
w 0 LE= | | | | | l l l |
20 40 60 80 100 120 140 160 180 200

\ Packet Number /

15




Phil Schniter The Ohio State University

/Goodput for o = 0.001: \

2 users, 2 subcarrier, a = 1e-3, 200 packets

genie—aided CSI
''''' tracked CSI

Total goodput in all subcarriers

------- prior CSI ‘ R
genie-CSl avg = 11.0324
tracked-CSl avg = 10.574 L :
21~ [prior-CSl avg = 7.3398 : L : 7
O | | | | | | | | |
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\\ Packet Number /
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/Allocations for a = 0.001: \
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/Goodput for a = 0.01:

N
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/Allocations for « = 0.01: \
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/Summary: \

Goal: Allocation of {user schedule, powers, rate} to maximize
finite-horizon expected goodput under an instantaneous total-power
constraint and a one-user-per-subcarrier constraint.

The optimal resource allocator is a POMDP, which is computationally
impractical.

We settle for greedy resource allocation, thought to be near-optimal for
practical fading rates.

The greedy allocator itself is computationally impractical, and so we
settle for a practical approximation (99.99% exact).

To maintain CSI, we track the SNR distribution of each user at each
subcarrier (conditioned on past ACK/NAK feedback).

Preliminary experiments for 2 users and 2 subchannels indicates that our
practical algorithm does a decent job of SNR tracking and goodput

maximization. /
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