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Abstract—In OFDMA downlink resource allocation, the base the favorable channel conditions due to channel variations
station exploits knowledge of the users’ channel realizations in jn OFDMA resource allocation, the BS must have adequate
order to opportunistically assign users to appropriate subchan- ,q\yjedge of the current channel states. It is very difficult

nels, as well as to optimize the rates and powers across thos . . .
subchannels. Because reverse-link bandwidth is scarce, the bas?owever’ to supply the BS with full channel state informatio

station’s channel knowledge must be obtained via some form of (CSI), i.e., the exact channel gains of all users at all sub-
limited feedback. While the typical assumption for this feedback channels, since the bandwidth of reverse channels is scarce
is that it comes in the form of heavily quantized SNR estimates Hence, practical resource allocation schemes must use some
computed at the user terminals, we propose to use ACK/INAK 4m of |imited feedback. In conventional resource allimat
feedback that is already provided by higher-layer ARQ. Towards h the limited feedback in the f fh i
this aim, we propose a greedy resource allocation scheme, based® emes' e 'm'? eedback comes In the form 0. eavily
on distributional (rather than point) estimates of SNR. We also guantized SNR estimates computed at the user terminals, and
show how these SNR distributions can be updated recursively this feedback might come intermittently from only a subset
for Markov time-varying channels.* of the previously scheduled users [8]-[10]. In [8], channel
prediction was used to overcome the effect of outdated aiann

I. INTRODUCTION ! : !
. . . .._information on the performance of adaptive OFDM systems.
In the downlink of a wireless orthogonal frequency dIVISIOIC]-he effect of channel estimation error, as well as that of

(rjnul_ltiple daccess (OFDlM'Af‘) system,hthe ba;e staltion (BS,) 'E%tdated channel state information, on the performance of
eliver ata to a POO! OF USErs whose channels vary in Ozyaaptive OFDM for the variable bit rate case was studied
t'lm'e and frequency. Slr}ce bandwidth and POWET reSources ﬁ'ﬁQ]. In [10], a power allocation algorithm for OFDM rate
"m'te‘?‘-_ the BS WOL_"d like to use them most efﬂmen_tly,_ ©€-9maximization was developed based on average and outage
by pairing users with strong subchannels and by d'Str'QUt'r&aéJacity criteria. It was shown that the outage probability

powerhacrozs users m_the_ most effective lman?er. A_t the Safy y be significantly reduced due to CSI errors. These works
time, the BS must maintain per-user quality-0f-service 20, ,sed on single-user OFDM scenarios. For multiple users

constraints, such as a minimum rehab[e rate for each u?’@fnploying OFDMA and limited feedback, much less work has
Overall, the BS faces a resource allocation problem thas ai

D e S 'Ween done. In [11], the impact of channel estimation error on
to maximize an efficiency-related quantity (like sum throug y o performance of OFDMA was studied. In [12], an adaptive

put) su.bject_to certain constramt.s. T.h's problem has e resource allocation framework to cope with feedback delay
extensively in a number of publications, e.g., [1}-[7]. O [ and outdated channel state information was studied.

a subcarrier, bit and power allocation algorithm is devetbp We propose to use a different form of feedback, namely

to mi_nimize power consumption while ma_intaining a data "f‘s&RQ (automatic repeat request) feedback, that is already
requirement. [2] proposed a low complexity power adaptati, esent in existing wireless systems for multiuser OFDMA

algorithm to maximize the total data rate achieved by alrsmseS stems. Although the theory developed can be easily eatend
The)_/ fc_)undd tk;]at the dr?ta Late O.f a_multpser(;)FDMlsystem fg other forms of limited feedback, we will show that, even
maximized when each subcarrier Is assigne to only one Ugfiy ARQ feedback, significant gains in terms of throughput
with thg begt ghannel gain for that subgarrler and the traat'nfsrgan be obtained. ARQ is the standard mechanism for providing
POWer-Is dlstnbute_d over the subcgrners b_y a Wa.lte.r'f'”_'nﬁw transmitter with an acknowledgement (ACK) that a given
policy. In [5], a weighted sum ergo;hc capacity maximizatio packet has been correctly received, or a negative ackngeded
pmb'e’,“ was form.ulated to prlo!t time, frequency, a”‘?' nr"Jltment (NAK) in the case that it has not. Though ACK/NAKs
user diversity Wh'_le gnforcwtl)gl] dn‘ferfent ,nﬁt'oc';s of faigse do not provide explicit channel information, they can beduse
Nqn-cpnvex optlmlzatlon probiems orweig te' sum-rate May, jnfer channel quality when considered in conjunctionhwit
|m!zat|on and weighted sum-power mmlmlzatlon were solv e corresponding transmission rates [13], [14]. For examp
using the Lagrange dual decomposition method in [7]. if a NAK was received for a particular packet, then it is likel

All these prgvious vx{orks assume the_ availability of pgrfe%at the channel signal-to-noise ratio (SNR) was below than
channel state information at the transmitter. In order fol@k that required to support the used transmission rate for that

1This work was supported in part by the Office of Naval Researutier part_'CUIar paCkeft' . .
grant N00014-07-1-0209. Since transmission rates and powers are usually considered



to be physical-layer quantities, while ARQ is usually coRsi made on the basis of ACK/NAK at time affects not only
ered to be a higher-layer mechanism, the use of ARQ ftire immediate utility, but also the probabilities of sulhseut
resource allocation can be regarded as a cross-layer teehni ACK/NAK feedbacks, and thereby the expected future uditi
We note that, if ARQ is used to supplement conventional fornf®r example, if the assigned transmission parameterskaig li

of limited feedback for physical-layer resource allocatio to yield a low packet error rate (i.e., “exploitation”),tlé will

the associated performance increase comes essentially e learned about the changing channel state. On the other
free”, since ARQ is already present. However, one could alkand, if the allocation is more suited to estimating channel
imagine using ARQ taeplace conventional forms of limited conditions rather than maximizing instantaneous goodpit (
feedback, thereby reducing both reverse-channel bankdwitéxploration”), then the instantaneous expected utilitgynive
and overall system complexity. low. This illustrates the classic tradeoff between explora
and exploitation that is faced in the optimization probleijr (
(2). More on this tradeoff can be found in [15].

We consider a packetized downlink OFDMA system with The optimal solution to the problem defined in (1)-(2)
N subchannels and< active users. Each user's channel igan be obtained through partially observable Markov degisi
assumed to be be time-invariant over the packet duration ybcesses (POMDP) [15]. Due to its extremely high com-
is allowed to vary across packets in a Markovian manngjlexity (i.e., PSPACE complete), POMDPs are impractical
Henceforth, “time” will refer to the packet index. At eacho implement for our problem [16]. We, therefore, propose
time, the base station must decide — for each subchannelg—greedy suboptimal approach that allocates resources to
which user to schedule, which modulation-and-coding séhemaximize the sum utility for the current instant without
(MCS) to use, and how much power to allocate. We assurgénsidering the effects on the future (i.e., “exploitatjorA
M choices of MCS, where MCS index: € {1,...,M} similar greedy approach was introduced in [14] for the sing|
corresponds to transmission ratg, and packet error rate yser single-channel scenario. There, it was found thatdgree
ém(7,p) = ame™""P7 under transmit powep and SNR~. rate allocation achieves a performance that is reasonédsg c
Specifically, we usep;,, ,, and v, , to denote the power to optimal under practical scenarios. We now extend thia ide
allocated to and the SNR experienced by, respectively, usgrthe multi-user multi-channel problem under considerati

k at MCSm on subchannekh at timet. The greedy resource allocation problem at titmis formally
We denote, byU(g), the concave utility function which stated as follows:

represents the utility attained by a user that achievesmdagd

IIl. PROBLEM SETUP

At any given point in time¢, our resource allocation problem max - i % |:It+1 %

is designed to obtain the joint power, rate, and subchannel I 1eT 51Dt et mk,m

allocation that maximizes the total conditional expecigttife [pff’k}’m]ep

utility given the feedback received until that time, subjex o 1 et

an instantaneous sum-power constraint. We now define an E{U((l — ameb"“’n-kvrﬂm)rm)|F§}]
allocation indicator variable? , < {0,1} that takes the

value 1 if subchannel is allocated to usek: with MCS m st > IR i < Prga. 3)
at timet, and0 otherwise. In the sequel, we u$¥, , , | to n,k,m

denote theN x K x M-dimensional matrix of indicators (at
time ), and [p;, , .| to denote the corresponding matrix o
powers. Then, the finite horizon problem can be stated as: 11l. GREEDY RESOURCEALLOCATION ALGORITHM
T N K M
max ) Y>>,
[I:L,}g,m]ez T=t+1n=1k=1m=1

[Pr e, mlEP

1Jn the next section, we will propose an algorithm to solve (3)

. In the sequel, for the sake of simplicity, we take the utility
[ X function in (3) to be the identity functioti () = x. However,
we note that our analysis can be easily extended to the case of
more general concave utility functions. To proceed, weenrit
E {U((l B amefbmp;,k,mv;,k))rm)‘Fﬁ }} (1) the Lagrangian associated with (3) as follows:

n,k,m

s.t. Z I7 emPreom < Praz, VT, @) L () = H( Z I;Jr,}mpffklm — Pmaz) (4)
n,k,m n,k,m
t+1 *bmpt+1 ’yt+1 +
whereZ c {0,1}V*ExM js the set of feasible indicator - E{In,k,m(l — Qe Tk "*’“)Tm’F1}>
matrices that guarantee that no more than one user is abbcat n,k,m

to a subchannel at a tim@ := {R* L;ag}NXKXM is the set \yhere the expectation is overyh![FY). To simplify the
of non-negative power matrices, ard, denotes the set of qiation, we suppress thesuperscripts for the remainder of

feedback matrices (for all users and subchannels) obt&ipedihis section. The associated unconstrained problem can the
the base station from time to ¢. The constraint (2) does notp, stated as:

allow the total power usage on all subchannels exdégg.
at any instant. One can observe that the resource allocation max,,~o Minr, , 1€z, (pnp.mjer L) (5)



In the sequel, we find it useful to denote theoptimal N x IV. SNR UPDATE UsSING ACK/NAK s

K x M-dimensional matrices of indicators and powers as  The previous section gives details of the proposed greedy

T* (1), P* — are min ‘ L(w). (6) @lgorithm for resource allocation. For its implementatione
(2 (k). P () BN, 1. JeT o m]P LIH)- (6) needs to compute the distributigity,"| F'}) at each timet

Furthermore, we writeZ* () = [I); . (n)] and P*(u) = for all user/subchannel combinatiofis, »). Let the channel
[Py, 1.m ()], @nd define the optimal total power for any fixedmpulse response coefficients for udeat timet be collected
value of  as in the vectorh}, = [ht ,,...,h% ,]T € CE, whereL is the im-
. . . pulse response length amdienotes transpose. The frequency-
Proy(n) = Zk: Lo e (1) g (1) () domain channel responsdl’, = [HY . Hi, JT € CV s
T then

Lemma 1: The value Pf,(n) is monotonically non-
increasing ingu.

Proof: See [17] B whereG € CV* is determined by the OFDMA scheme. For
Based on this lemma, we can find the valug.@ptimizing (5) example,G could be the first columns of a DFT matrix. In
as follows. We start with a very small positive valueoffor any case, we can write
which the power constraint will not be met. Then we gradually

Hj, = Ghy, (11)

increase the value of until the power constraint is met with ~ p(y" 71 |F!) = / p(YEH RS p(RETHEY),  (12)
. . . . ’ t+1 ’
equality. Lemma 1 guarantees that the unique optimalill hit
be attained when the power constraint is met with equa“ty-noticing thatp(vffkl\hiﬂ) is a Dirac-delta function because

Recall that solving the unconstrained problem involvege SNR+! , = C|H! ,|? is a deterministic function of the
finding (Z*(w), P*(u)) for each value ofu. For this, we . o P ) P .
rewrite the problem as follows. Let us define impulse responsdy,” . BY ass_umptpn,h,hgs I\ilarkowan.

Consequently, the posterior distributigrih, " |F;) can be
Voo (p) = pp —E{(1 - A UmPI R Yy | Fﬁ}, (8) rgwritten using the Markov property and Bayes rule, respec-
tively, as follows:

so that
1) gty
L(.u“) = *,U,anl. + Z Invkﬂnvn’k’m(pn7k7nl)_ (9) p(h’k |F1) = /hk

o Sty — PR BLFEY
Note thatV,, j...(p) is convex and its minimization ovep kI T o R (R )
can be solved using KKT conditions, i.ea%vn,k,m(p) = TRk o
0¥, k,m. This implies that where fi = [fi,,....fk |7 is the vector of feedbacks

—b , gt corresponding to usek at time ¢ (for all subchannels), and
# = Ombmtm Bpn e mimnm b | Fi) (10) where !, € {0,1,0}. Here,0 denotes NAK 1 denotes ACK,

Finally, subchannek is allocated to the user/MCS combina2nd? denotes void (i.e., no feedback received). We assume that
tion (k, m) whose value ofl/, ;. ., is smallest. the receiver generates ARQ feedbacks independently across

Based on the analysis provided above, we propose fFigchannels, so that

(R RRRLIFD,  (13)

(14)

following algorithm: . N t
t t
1) Initialize x at a very small positive value. p(filbs) = T p(fh ks (i) (15)
2) For each subcarriex =1,..., N: n=1

a) For each(k,m), calculatep,, x ,, from (10). No- where

tice thatp,, 1 ., describes the power consumed b
18P fem €8S poy Y= Tl (16)
assigning subcarrien to userk with MCS m. If ot .
Dok < 0, then forcepmk’m/ =0. Zm Ifl,k,’mame_ mlf’n.Ic,m'Yn.lc7 f =0
b) For each(k,m), calculateV;, k. (pn,k.m) Via (8). — ST (1 _ efbmp;,k,mfl‘k) . f=1
c¢) Find (k*,m*) = argming ., Vo rm and set -y ot =0
Iy km =1 for (k,m) = (k*,m*) and I, j.,m = 0 m “n,k,m? e

for all (k,m) # (k*,m*). Consequently set, = Equations (12)-(16) give a straightforward methodrecur-
Pnk=m= (i.€., the subchannel is allocated to theively updating the SNR distributions from the new feedbacks

user wWhoseV,, i ,,, is minimum). obtained at each time instant. In summary, we perform the
3) If 3, pn > Pmaa, then increasequ by a very small following steps at each time. For each usef, and using
amount and repeat step 2), else end. p(ht|Fi™") calculated at the previous time step,

Upon termination, we ge}_, p, &~ Ppq.. (The situation 1) Obtain feedbackg?, € {0,1,0}",
S, Pn < Prax would arise if the initialu was too large or ~ 2) Computep(f}, , | 7% (k) for all n on a lattice of
if the last increase in. was too large). points forh}, using the error-rate rule (16),



3) Computep(h! | F) on a lattice of points foh}, using both decrease. Although it is not shown in the figure, we have

the Bayes-rule steps (14)-(15). observed that, for an adequately dense set of rates, thaalpti
4) Computep(h’,i,“ | F}) on a lattice of points forh], powers remain relatively constant. From the SNR estimation
using the Markov-prediction step (13), subplots in Fig. 1, it is clear that the algorithm tracks tiNRS

5) For eachn, computep(y,’, | F7) on a grid of points reasonably well.
for 4/} via the lattice-to-grid conversion step (12).

o
I

User 1 after ACK

V. SIMULATION SETUP AND RESULTS o8 L e

In this section, we evaluate the performance Of OUr gree g § of .o e pummmes O uerzaenu
. . . . . o1 o a R
algorithm and compare it with the optimal solution. We assun =3 , ‘ ‘ ‘ ‘ ‘ ‘ L Qg o%l)

_ _ H 10 20 30 40 50 60 70 80 90 100
that there ard( = 2 users,N = 2 available OFDMA subchan- 2~ 2000 : : : : : : ‘ —
nels, and channel impulse response lengthd. ot 2. Each £ g 1000l User2
impulse response coefficient varies according to the faligw 322 3 Actual SNR

. . . =] @
Markov model, independently of the other coefficients: K 0 100

=7
O | eeeessesaeateesresanens®® L eeeteanatett
hi = (L= )hfy +aw)y,  wip ~CN(0,1),  (17) 2 § B e s RN
%o 5
whereq is a known constant that determines the fading rat *g..—« . . . . . . .
. . . 10 20 30 40 50 60 70 80 90 100
For the modulation matrixG in (11), we usedi £ 2000 ‘ : : ; : — : :
€ c
= C
1/3 2/3 o © 1000
G:[V/ V23 (18) =3
nn

—/1/3 \/2/3

When computing packet error ratg, (v, p), we useda,, =
1 ¥m and choseb,, to match the error rate afi-QAM at
25 dB (based on equation number (3) in [14] considering
25 symbols per packet). The performance of the prCJpOSE:OlFigure 2 shows the instantaneous goodput summed over
greedy algorithm is compared to two reference schemes. The[ : : o
b . oth subchannels versus timéor a typical realization, when
round robin” scheme does not use any feedback and allocates |, i : .
. . ) = 10—=. While the greedy and round-robin algorithms start
the users in a round robin fashion on each subchannel. The . . s
. - L rom the same (feedback ignorant) starting point, it can be
global genie” scheme solves the optimization problem (1)- . : .y
. . een that the greedy algorithm quickly optimizes the resour
(2) assuming perfect knowledge of all SNRs at all times, Ifgllocation arameters, approaching near to the perforenahc
this case, the problem (1)-(2) simplifies significantly. larp P > app 9 P

. . . ) the global genie within abo ackets. For this simulation,
ticular, the conditional expectation vanishes, so thatdgob global g —9 a0 p
S ; . . . the fading raten = 10~“ was chosen fast enough to make
maximization at future time instants is no longer a functio - .
. e SNRs somewhat difficult to track, which led the greedy
of the current resource allocation. In other words, thequ+f

CSI solution is greedy in nature. Moreover, the perfect—Cglgomhm to select non-optimal allocations at some times.

solution serves as an upper bound to the optimal POMC™
solution of the limited-feedback optimization problem.eBk 14
claims can be rigorously proved by straightforward extensi
of the single-user single-channel proofs given in [14]. 12
Figure 1 shows the change of rate and estimated SNR a
function of timet for a typical realization, whem = 10~2.
The top two plots show, for the first subchannel (ire= 1),
the allocated rate,,, and the error bars on the estimated mee
of v, %, + versus timef. The bottom two plots show the same
for the second subchannel (i.e.,= 2). Focusing on the first
subchannel, it can be seen that, after reception of an A( al Giobal Gerie
(denoted by the point marker™, the SNR estimate always Greedy Algorithm
increases. This is expected because an ACK conveys that 2t e veiothuait
channel was good enough to support the previously allocal
rate. It can also be seen that an i.ncrease in estimated—s T e e 7 8 s 100
results in a subsequent increase in rate. After reception Packet Number
a NAK, however, the SNR estimate and the subsequent rate

10 20 30 40 50 60 70 80 90 100
Packet Number

Fig. 1. Typical rates and SNR estimates versus time

10H:

Instantaneous Sum-Goodput

Fig. 2. Typical instantaneous sum-goodput versus time

2We did not choose a DFT matrix fa& because & x 2 DFT matrix has
orthogonal rows which would cause the subchannels gaing tetdiistically . . . .
independent. This would prevent the algorithm from infegrithe value of To investigate the relationship between steady-statefgod

one subchannel SNR from the other. and channel fading rate, Fig. 3 plots steady state goodput



no-CSl and full-CSI cases with slowly fading channels, and

= about40% of the difference with quickly fading channels.
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