
OFDMA Downlink Resource Allocation via ARQ
Feedback

Rohit Aggarwal∗, Mohamad Assaad†, C. Emre Koksal∗, and Philip Schniter∗
∗Dept. of ECE, The Ohio State University, Columbus, OH 43210.Email: {aggarwar,koksal,schniter}@ece.osu.edu
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Abstract—In OFDMA downlink resource allocation, the base
station exploits knowledge of the users’ channel realizations in
order to opportunistically assign users to appropriate subchan-
nels, as well as to optimize the rates and powers across those
subchannels. Because reverse-link bandwidth is scarce, the base
station’s channel knowledge must be obtained via some form of
limited feedback. While the typical assumption for this feedback
is that it comes in the form of heavily quantized SNR estimates
computed at the user terminals, we propose to use ACK/NAK
feedback that is already provided by higher-layer ARQ. Towards
this aim, we propose a greedy resource allocation scheme, based
on distributional (rather than point) estimates of SNR. We also
show how these SNR distributions can be updated recursively
for Markov time-varying channels.1

I. I NTRODUCTION

In the downlink of a wireless orthogonal frequency division
multiple access (OFDMA) system, the base station (BS) must
deliver data to a pool of users whose channels vary in both
time and frequency. Since bandwidth and power resources are
limited, the BS would like to use them most efficiently, e.g.,
by pairing users with strong subchannels and by distributing
power across users in the most effective manner. At the same
time, the BS must maintain per-user quality-of-service (QoS)
constraints, such as a minimum reliable rate for each user.
Overall, the BS faces a resource allocation problem that aims
to maximize an efficiency-related quantity (like sum through-
put) subject to certain constraints. This problem has addressed
extensively in a number of publications, e.g., [1]–[7]. In [1],
a subcarrier, bit and power allocation algorithm is developed
to minimize power consumption while maintaining a data rate
requirement. [2] proposed a low complexity power adaptation
algorithm to maximize the total data rate achieved by all users.
They found that the data rate of a multiuser OFDM system is
maximized when each subcarrier is assigned to only one user
with the best channel gain for that subcarrier and the transmit
power is distributed over the subcarriers by a water-filling
policy. In [5], a weighted sum ergodic capacity maximization
problem was formulated to exploit time, frequency, and multi-
user diversity while enforcing different notions of fairness.
Non-convex optimization problems of weighted sum-rate max-
imization and weighted sum-power minimization were solved
using the Lagrange dual decomposition method in [7].

All these previous works assume the availability of perfect
channel state information at the transmitter. In order to exploit
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the favorable channel conditions due to channel variations
in OFDMA resource allocation, the BS must have adequate
knowledge of the current channel states. It is very difficult,
however, to supply the BS with full channel state information
(CSI), i.e., the exact channel gains of all users at all sub-
channels, since the bandwidth of reverse channels is scarce.
Hence, practical resource allocation schemes must use some
form of limited feedback. In conventional resource allocation
schemes, the limited feedback comes in the form of heavily
quantized SNR estimates computed at the user terminals, and
this feedback might come intermittently from only a subset
of the previously scheduled users [8]–[10]. In [8], channel
prediction was used to overcome the effect of outdated channel
information on the performance of adaptive OFDM systems.
The effect of channel estimation error, as well as that of
outdated channel state information, on the performance of
adaptive OFDM for the variable bit rate case was studied
in [9]. In [10], a power allocation algorithm for OFDM rate
maximization was developed based on average and outage
capacity criteria. It was shown that the outage probability
may be significantly reduced due to CSI errors. These works
focused on single-user OFDM scenarios. For multiple users
employing OFDMA and limited feedback, much less work has
been done. In [11], the impact of channel estimation error on
the performance of OFDMA was studied. In [12], an adaptive
resource allocation framework to cope with feedback delay
and outdated channel state information was studied.

We propose to use a different form of feedback, namely
ARQ (automatic repeat request) feedback, that is already
present in existing wireless systems for multiuser OFDMA
systems. Although the theory developed can be easily extended
to other forms of limited feedback, we will show that, even
with ARQ feedback, significant gains in terms of throughput
can be obtained. ARQ is the standard mechanism for providing
the transmitter with an acknowledgement (ACK) that a given
packet has been correctly received, or a negative acknowledge-
ment (NAK) in the case that it has not. Though ACK/NAKs
do not provide explicit channel information, they can be used
to infer channel quality when considered in conjunction with
the corresponding transmission rates [13], [14]. For example,
if a NAK was received for a particular packet, then it is likely
that the channel signal-to-noise ratio (SNR) was below than
that required to support the used transmission rate for that
particular packet.

Since transmission rates and powers are usually considered



to be physical-layer quantities, while ARQ is usually consid-
ered to be a higher-layer mechanism, the use of ARQ for
resource allocation can be regarded as a cross-layer technique.
We note that, if ARQ is used to supplement conventional forms
of limited feedback for physical-layer resource allocation,
the associated performance increase comes essentially “for
free”, since ARQ is already present. However, one could also
imagine using ARQ toreplace conventional forms of limited
feedback, thereby reducing both reverse-channel bandwidth
and overall system complexity.

II. PROBLEM SETUP

We consider a packetized downlink OFDMA system with
N subchannels andK active users. Each user’s channel is
assumed to be be time-invariant over the packet duration but
is allowed to vary across packets in a Markovian manner.
Henceforth, “time” will refer to the packet index. At each
time, the base station must decide — for each subchannel —
which user to schedule, which modulation-and-coding scheme
(MCS) to use, and how much power to allocate. We assume
M choices of MCS, where MCS indexm ∈ {1, . . . ,M}
corresponds to transmission raterm and packet error rate
ǫm(γ, p) = ame−bmpγ under transmit powerp and SNRγ.
Specifically, we usept

n,k,m and γt
n,k to denote the power

allocated to and the SNR experienced by, respectively, user
k at MCSm on subchanneln at time t.

We denote, byU(g), the concave utility function which
represents the utility attained by a user that achieves goodputg.
At any given point in time,t, our resource allocation problem
is designed to obtain the joint power, rate, and subchannel
allocation that maximizes the total conditional expected future
utility given the feedback received until that time, subject to
an instantaneous sum-power constraint. We now define an
allocation indicator variableIt

n,k,m ∈ {0, 1} that takes the
value 1 if subchanneln is allocated to userk with MCS m
at time t, and0 otherwise. In the sequel, we use[It

n,k,m] to
denote theN × K × M -dimensional matrix of indicators (at
time t), and [pt

n,k,m] to denote the corresponding matrix of
powers. Then, the finite horizon problem can be stated as:

max
[Iτ

n,k,m]∈I

[pτ
n,k,m]∈P

T
∑

τ=t+1

N
∑

n=1

K
∑

k=1

M
∑

m=1

[

Iτ
n,k,m ×

E
{

U
(

(1 − ame−bmpτ
n,k,mγτ

n,k))rm

)
∣

∣F t
1

}

]

(1)

s.t.
∑

n,k,m

Iτ
n,k,mpτ

n,k,m ≤ Pmax, ∀τ, (2)

where I ⊂ {0, 1}N×K×M is the set of feasible indicator
matrices that guarantee that no more than one user is allocated
to a subchannel at a time,P := {R+ ∪ 0}N×K×M is the set
of non-negative power matrices, andF t

1 denotes the set of
feedback matrices (for all users and subchannels) obtainedby
the base station from time1 to t. The constraint (2) does not
allow the total power usage on all subchannels exceedPmax

at any instant. One can observe that the resource allocation

made on the basis of ACK/NAK at timet affects not only
the immediate utility, but also the probabilities of subsequent
ACK/NAK feedbacks, and thereby the expected future utilities.
For example, if the assigned transmission parameters are likely
to yield a low packet error rate (i.e., “exploitation”), little will
be learned about the changing channel state. On the other
hand, if the allocation is more suited to estimating channel
conditions rather than maximizing instantaneous goodput (i.e.,
“exploration”), then the instantaneous expected utility may be
low. This illustrates the classic tradeoff between exploration
and exploitation that is faced in the optimization problem (1)-
(2). More on this tradeoff can be found in [15].

The optimal solution to the problem defined in (1)-(2)
can be obtained through partially observable Markov decision
processes (POMDP) [15]. Due to its extremely high com-
plexity (i.e., PSPACE complete), POMDPs are impractical
to implement for our problem [16]. We, therefore, propose
a greedy suboptimal approach that allocates resources to
maximize the sum utility for the current instant without
considering the effects on the future (i.e., “exploitation”). A
similar greedy approach was introduced in [14] for the single-
user single-channel scenario. There, it was found that greedy
rate allocation achieves a performance that is reasonably close
to optimal under practical scenarios. We now extend this idea
to the multi-user multi-channel problem under consideration.
The greedy resource allocation problem at timet is formally
stated as follows:

max
[It+1

n,k,m
]∈I

[pt+1

n,k,m
]∈P

N
∑

n=1

K
∑

k=1

M
∑

m=1

[

It+1
n,k,m ×

E
{

U
(

(1 − ame−bmpt+1

n,k,m
γt+1

n,k )rm

)
∣

∣F t
1

}

]

s.t.
∑

n,k,m

It+1
n,k,mpt+1

n,k,m ≤ Pmax. (3)

In the next section, we will propose an algorithm to solve (3).

III. G REEDY RESOURCEALLOCATION ALGORITHM

In the sequel, for the sake of simplicity, we take the utility
function in (3) to be the identity functionU(x) = x. However,
we note that our analysis can be easily extended to the case of
more general concave utility functions. To proceed, we write
the Lagrangian associated with (3) as follows:

Lt+1(µ) = µ
(

∑

n,k,m

It+1
n,k,m pt+1

n,k,m − Pmax

)

(4)

−
∑

n,k,m

E
{

It+1
n,k,m(1 − ame−bmpt+1

n,k,m
γt+1

n,k )rm

∣

∣F t
1

}

,

where the expectation is overp(γt+1
n,k |F t

1). To simplify the
notation, we suppress thet superscripts for the remainder of
this section. The associated unconstrained problem can then
be stated as:

maxµ>0 min[In,k,m]∈I,[pn,k,m]∈P L(µ). (5)



In the sequel, we find it useful to denote theµ-optimal N ×
K × M -dimensional matrices of indicators and powers as

(

I∗(µ),P∗(µ)
)

:= arg min[In,k,m]∈I,[pn,k,m]∈P L(µ). (6)

Furthermore, we writeI∗(µ) = [I∗n,k,m(µ)] and P∗(µ) =
[p∗n,k,m(µ)], and define the optimal total power for any fixed
value ofµ as

P ∗
tot(µ) :=

∑

n,k,m

I∗n,k,m(µ)p∗n,k,m(µ). (7)

Lemma 1: The value P ∗
tot(µ) is monotonically non-

increasing inµ.
Proof: See [17]

Based on this lemma, we can find the value ofµ optimizing (5)
as follows. We start with a very small positive value ofµ, for
which the power constraint will not be met. Then we gradually
increase the value ofµ until the power constraint is met with
equality. Lemma 1 guarantees that the unique optimalµ will
be attained when the power constraint is met with equality.

Recall that solving the unconstrained problem involves
finding

(

I∗(µ),P∗(µ)
)

for each value ofµ. For this, we
rewrite the problem as follows. Let us define

Vn,k,m(p) := µp − E
{

(1 − ame−bmpγn,k)rm | F t
1

}

, (8)

so that

L(µ) = −µPmax +
∑

n,k,m

In,k,mVn,k,m(pn,k,m). (9)

Note thatVn,k,m(p) is convex and its minimization overp
can be solved using KKT conditions, i.e.,∂

∂p
Vn,k,m(p) =

0 ∀n, k,m. This implies that

µ = ambmrm E{γn,ke−bmpn,k,mγn,k |F t
1} (10)

Finally, subchanneln is allocated to the user/MCS combina-
tion (k,m) whose value ofVn,k,m is smallest.

Based on the analysis provided above, we propose the
following algorithm:

1) Initialize µ at a very small positive value.
2) For each subcarriern = 1, . . . , N :

a) For each(k,m), calculatepn,k,m from (10). No-
tice thatpn,k,m describes the power consumed by
assigning subcarriern to userk with MCS m. If
pn,k,m < 0, then forcepn,k,m = 0.

b) For each(k,m), calculateVn,k,m(pn,k,m) via (8).
c) Find (k∗,m∗) = argmin(k,m) Vn,k,m and set

In,k,m = 1 for (k,m) = (k∗,m∗) and In,k,m = 0
for all (k,m) 6= (k∗,m∗). Consequently setpn =
pn,k∗,m∗ (i.e., the subchannel is allocated to the
user whoseVn,k,m is minimum).

3) If
∑

n pn > Pmax, then increaseµ by a very small
amount and repeat step 2), else end.

Upon termination, we get
∑

n pn ≈ Pmax. (The situation
∑

n pn < Pmax would arise if the initialµ was too large or
if the last increase inµ was too large).

IV. SNR UPDATE USING ACK/NAK S

The previous section gives details of the proposed greedy
algorithm for resource allocation. For its implementation, one
needs to compute the distributionp(γt+1

n,k |F t
1) at each timet

for all user/subchannel combinations(k, n). Let the channel
impulse response coefficients for userk at timet be collected
in the vectorht

k = [ht
1,k, . . . , ht

L,k]⊺ ∈ C
L, whereL is the im-

pulse response length and⊺ denotes transpose. The frequency-
domain channel responseHt

k = [Ht
1,k, . . . ,Ht

N,k]⊺ ∈ C
N is

then

Ht
k = Ght

k, (11)

whereG ∈ C
N×L is determined by the OFDMA scheme. For

example,G could be the firstL columns of a DFT matrix. In
any case, we can write

p(γt+1
n,k |F t

1) =

∫

h
t+1

k

p(γt+1
n,k |ht+1

k )p(ht+1
k |F t

1), (12)

noticing thatp(γt+1
n,k |ht+1

k ) is a Dirac-delta function because
the SNRγt

n,k = C|Ht
n,k|

2 is a deterministic function of the
impulse responseht+1

k . By assumption,ht
k is Markovian.

Consequently, the posterior distributionp(ht+1
k |F t

1) can be
rewritten using the Markov property and Bayes rule, respec-
tively, as follows:

p(ht+1
k |F t

1) =

∫

ht
k

p(ht+1
k |ht

k)p(ht
k|F

t
1), (13)

p(ht
k|F

t
1) =

p(f t
k|h

t
k)p(ht

k|F
t−1
1 )

∫

h
′t
k

p(f t
k|h

′t
k)p(h′t

k|F
t−1
1 )

, (14)

where f t
k = [f t

1,k, . . . , f t
N,k]⊺ is the vector of feedbacks

corresponding to userk at time t (for all subchannels), and
wheref t

i,k ∈ {0, 1, ∅}. Here,0 denotes NAK,1 denotes ACK,
and∅ denotes void (i.e., no feedback received). We assume that
the receiver generates ARQ feedbacks independently across
subchannels, so that

p(f t
k|h

t
k) =

N
∏

n=1

p(f t
n,k|γ

t
n,k(ht

k)) (15)

where

p(f t
n,k = f |γt

n,k) (16)

=















∑

m It
n,k,mame−bmpt

n,k,mγt
n,k , f = 0

∑

m It
n,k,mam

(

1 − e−bmpt
n,k,mγt

n,k

)

, f = 1

1 −
∑

m It
n,k,m, f = ∅.

Equations (12)-(16) give a straightforward method ofrecur-
sively updating the SNR distributions from the new feedbacks
obtained at each time instant. In summary, we perform the
following steps at each timet. For each userk, and using
p(ht

k|F
t−1
1 ) calculated at the previous time step,

1) Obtain feedbacksf t
k ∈ {0, 1, ∅}N ,

2) Computep(f t
n,k | γt

n,k(ht
k)) for all n on a lattice of

points forht
k using the error-rate rule (16),



3) Computep(ht
k | F t

1) on a lattice of points forht
k using

the Bayes-rule steps (14)-(15).
4) Computep(ht+1

k | F t
1) on a lattice of points forht

k

using the Markov-prediction step (13),
5) For eachn, computep(γt+1

n,k | F t
1) on a grid of points

for γt+1
n,k via the lattice-to-grid conversion step (12).

V. SIMULATION SETUP AND RESULTS

In this section, we evaluate the performance of our greedy
algorithm and compare it with the optimal solution. We assume
that there areK = 2 users,N = 2 available OFDMA subchan-
nels, and channel impulse response lengths ofL = 2. Each
impulse response coefficient varies according to the following
Markov model, independently of the other coefficients:

ht+1
l,k = (1 − α)ht

l,k + αwt
l,k, wt

l,k ∼ CN (0, 1), (17)

whereα is a known constant that determines the fading rate.
For the modulation matrixG in (11), we used2

G =

[
√

1/3
√

2/3

−
√

1/3
√

2/3

]

. (18)

When computing packet error rateεm(γ, p), we usedam =
1 ∀m and chosebm to match the error rate ofm-QAM at
25 dB (based on equation number (3) in [14] considering
25 symbols per packet). The performance of the proposed
greedy algorithm is compared to two reference schemes. The
“round robin” scheme does not use any feedback and allocates
the users in a round robin fashion on each subchannel. The
“global genie” scheme solves the optimization problem (1)-
(2) assuming perfect knowledge of all SNRs at all times. In
this case, the problem (1)-(2) simplifies significantly. In par-
ticular, the conditional expectation vanishes, so that goodput
maximization at future time instants is no longer a function
of the current resource allocation. In other words, the perfect-
CSI solution is greedy in nature. Moreover, the perfect-CSI
solution serves as an upper bound to the optimal POMDP
solution of the limited-feedback optimization problem. These
claims can be rigorously proved by straightforward extensions
of the single-user single-channel proofs given in [14].

Figure 1 shows the change of rate and estimated SNR as a
function of timet for a typical realization, whenα = 10−2.
The top two plots show, for the first subchannel (i.e.,n = 1),
the allocated raterm and the error bars on the estimated mean
of γn,k∗,t versus timet. The bottom two plots show the same
for the second subchannel (i.e.,n = 2). Focusing on the first
subchannel, it can be seen that, after reception of an ACK
(denoted by the point marker “·”), the SNR estimate always
increases. This is expected because an ACK conveys that the
channel was good enough to support the previously allocated
rate. It can also be seen that an increase in estimated-SNR
results in a subsequent increase in rate. After reception of
a NAK, however, the SNR estimate and the subsequent rate

2We did not choose a DFT matrix forG because a2× 2 DFT matrix has
orthogonal rows which would cause the subchannels gains to be statistically
independent. This would prevent the algorithm from inferring the value of
one subchannel SNR from the other.

both decrease. Although it is not shown in the figure, we have
observed that, for an adequately dense set of rates, the optimal
powers remain relatively constant. From the SNR estimation
subplots in Fig. 1, it is clear that the algorithm tracks the SNRs
reasonably well.
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Fig. 1. Typical rates and SNR estimates versus timet.

Figure 2 shows the instantaneous goodput summed over
both subchannels versus timet for a typical realization, when
α = 10−2. While the greedy and round-robin algorithms start
from the same (feedback ignorant) starting point, it can be
seen that the greedy algorithm quickly optimizes the resource
allocation parameters, approaching near to the performance of
the global genie within about20 packets. For this simulation,
the fading rateα = 10−2 was chosen fast enough to make
the SNRs somewhat difficult to track, which led the greedy
algorithm to select non-optimal allocations at some times.
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Fig. 2. Typical instantaneous sum-goodput versus timet.

To investigate the relationship between steady-state goodput
and channel fading rateα, Fig. 3 plots steady state goodput
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Fig. 3. Steady-state sum-goodput versus fading rateα.

(summed across subchannels) as a function of fading rate
α. For each point in the plot, we averaged500 realizations
of 200-packet duration. For eachα, the constantC in the
relationshipγt

n,k = C|Ht
n,k|

2 was chosen to keep the mean
SNR at 25 dB. From the figure, it can be seen that the
proposed greedy algorithm achieves significantly better steady-
state goodput compared to the fixed rate scheme, for all fading
rates. However, the improvement decreases with increase in
channel fading rateα. This behavior is expected, because
as α increases it becomes more difficult to infer the SNR
reliably from previous ARQ feedback. From Fig. 3, we do,
however, see a performance gap between the greedy algorithm
and global genie, even for low values ofα. We attribute
this gap to the suboptimal nature of greedy adaptation under
ARQ feedback. In particular, the greedy algorithm tends to
continue scheduling a user whose channel remains “better than
average,” because the inferred SNRs of not-recently-scheduled
users quickly revert to the apriori (i.e., “average”) SNR. The
problem is that there may exist a not-recently-scheduled user
with a very good subchannel (that the greedy algorithm is not
aware because of not doing “exploration”).

VI. CONCLUSION

In this paper, we proposed a greedy algorithm for user, rate,
and power allocation for the Markov OFDMA downlink, based
only on ARQ feedback. Using ARQ feedback collected at
each packet time, our algorithm recursively updates the SNR
distribution for every combination of user and subchannel,
and uses these distributions to optimize the user, rate, and
power for each subchannel in order to maximize a goodput-
based utility subject to an instantaneous sum-power constraint.
Numerical experiments suggest that our system can achieve a
significant goodput improvement compared to a non-adaptive
round-robin system, despite the coarse nature of the CSI
inferred from ARQ feedback. For example, our algorithm
recovers about60% of the difference in goodput between the

no-CSI and full-CSI cases with slowly fading channels, and
about40% of the difference with quickly fading channels.
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