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Problem Description:

• Coded block transmission over a quickly time-varying frequency

selective channel.

• Channel realizations unknown, but channel statistics known.

• Goal: near-optimal decoding with very low complexity and

very few pilots.

Approach:

• Turbo reception (soft noncoherent equalization →

←
soft decoding).

• Soft decoder: off-the-shelf.

• Soft noncoherent equalizer: a novel design leveraging. . .

– tree-search based on M-algorithm,

– basis expansion model (BEM) for channel variation,

– fast metric update (linear complexity).
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Channel Model:

Received samples are {rn}
N−1
n=0 , where

rn =

Nh−1∑

l=0

hn,lsn−l + vn

hn,l : time-n response to an impulse at time (n − l)

Nh : discrete delay spread

{sn}
N−1
n=0 : symbols mapped from coded bits {xk}

QN−1
k=0

into the 2Q-ary symbol alphabet S

{vn}
N−1
n=0 : CWGN with variance σ2.

We assume WSSUS Rayleigh fading:

E{hn,lh
∗
n−m,l−p} = ρmσ2

l δp,

where the autocorrelation {ρm} and delay-power profile {σ2
l } are known.
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Turbo Reception:

soft
noncoherent

equalizer

soft
decoder

Π

Π−1

pilots

r
x̂

{Le(xk|r)}QN−1
k=0

{La(xk)}
QN−1
k=0

Le(xk|r) = ln

∑

x: xk=1 exp µ(x)
∑

x: xk=0 exp µ(x)
− La(xk) ”extrinsic LLR”

µ(x) = ln p
(
r|s(x)

)
+

∑

i: xi=1

La(xi) ”MAP metric”

Need O(2QN) evaluations of µ(x)  Computationally infeasible!!
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Simplified LLR Evaluation:

The “max-log” approximation:

Le(xk|r) ≈ max
x∈L∩{x:xk=1}

µ(x) − max
x∈L∩{x:xk=0}

µ(x) − La(xk)

L : set containing the M most probable x,

requires only a few evaluations of µ(x). But how complex is this?

Say r = Sh + v where h ∼ CN (0, Rh) and v ∼ CN (0, σ2
I). Then

r|s ∼ CN (0, SRhS
H + σ2

I
︸ ︷︷ ︸

Φ(s)

)

⇒ ln p(r|s) = −r
H
Φ

−1
r − ln detΦ − N ln π

⇒ µ(x) = −r
H
Φ

−1
r − ln detΦ − N ln π +

∑

i: xi=1

La(xi)

⇒ direct evaluation of µ(x) is O(N3). Still quite expensive!
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Fast Soft Noncoherent Equalization:

We propose a novel equalization algorithm, based on

• efficient tree search to find best M bit sequences L, and

• fast recursive update of MAP metric µ(x) using

– a basis expansion model (BEM) for the channel’s time-variation,

– recursive update of the implicit MMSE channel estimate θ̂.

The result is near-MAP performance with complexity that is

• linear in the block length, and

• quadratic in the channel length.
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BEM Approximation:

hn,l ≈
Nb−1∑

p=0

bn,pθp,l for n ∈ {0, . . . , N − 1}.

{bn,p}
N−1
n=0 : pth basis waveform

Nb : number of basis waveforms

θp,l : coefficient for pth basis waveform and lth lag.

Basis choices include:

• complex exponential basis: bn,p = ej 2π
N

(p−
Nb−1

2
)n,

• polynomial basis: bn,p = np

• Karhunen-Loeve basis: {bn,p}
N−1
n=0 is the pth largest eigenvector of

the Toeplitz matrix defined from the autocorrelation {ρm}
N−1
m=0.

Note: Nb = N yields zero approximation error, though typically Nb = 2.
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Sequential Processing based on the BEM:

rn := [r0, r1, . . . , rn]T = BnS
n
0θ + vn

where, by example,






r0

r1

r2







︸ ︷︷ ︸

r2

=







b
H
0

b
H
1

b
H
2







︸ ︷︷ ︸

B2







s0INb
s−1INb

s1INb
s0INb

s2INb
s1INb







︸ ︷︷ ︸

S
2
0

[

θ0

θ1

]

︸ ︷︷ ︸

θ

+







v0

v1

v2







︸ ︷︷ ︸

v2

bn = [bn,0, . . . , bn,Nb−1]
H : time-n basis elements

θl = [θ0,l, . . . , θNb,l]
T : lag-l BEM coefficients.

Note:

• θ ∈ C
NbNh contains all unknown channel coefficients,

• S
n
0 contains data symbols sn := [s0, s1, . . . , sn]T .
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Fast Metric Update:

Say xn contains bits from sn. Can compute µ(xn) given µ(xn−1) via

an = [snb
H
n , sn−1b

H
n , · · · , sn−Nh+1b

H
n ]H ∈ C

NhNb

dn = Σ
−1
n−1an

αn = (1 + a
H
n dn)−1

Σ
−1
n = Σ

−1
n−1 − αndnd

H
n

µ(xn) = µ(xn−1) −
αn

σ2
|rn − a

H
n θ̂n−1| − ln(παn) +

∑

i: xi=1,xi∈sn

La(xi)

θ̂n = (INhNb
− αndna

H
n )θ̂n−1 + (1 − αnd

H
n an)rndn,

using only 2(NhNb)
2 + 9NhNb + 8 multiplications!
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Fast Tree Search:

Breadth-first search via the M-algorithm:

• Say L′
n contains the M “best” estimates of xn. For each extension

xn+1 = [ x
xn ], where xn ∈ L′

n and x ∈ {0, 1}Q, calculate the metric

µ(xn+1). Then collect the M best extensions in the set L′
n+1.

• Doing this for n = 0, . . . , N − 1 requires the evaluation of M2QN

MAP metrics, yielding L′ := L′
N−1, an estimate of the M most

probable bit vectors.

• Performance almost indistinguishable from full search (i.e., L′ ≈ L).

In total, 2M2QN(NbNh)
2 multiplications are required to compute the

MAP metrics {µ(x) : x ∈ L′}. Note that this complexity is

• linear in the block length N ,

• quadratic in the channel length NbNh.
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Construction of the Transmission Block:

Pilots:

• One pilot symbol sufficient to resolve channel/data phase ambiguity.

• Np > 1 pilots provide a good “initialization” of µ(xNp
), helping

improve the accuracy of tree search.

• Np ≥ NhNb needed for channel-estimation followed by coherent

decoding.

Guard:

• A ZP guard interval of length Nh−1 prevents inter-block

interference and enables capture of diversity from delay spread.

• Note: we hope to capture Doppler diversity through iteration with

soft decoder.
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Numerical Experiments (Setup):

Transmitter:

• rate-1
2

LDPC coding, frame length 4096, QPSK (Q = 2),

• block length N = 64,

• Np ∈ {3, 6, 9} pilots.

Channel:

• WSSUS Rayleigh (via Jakes) with Nh = 3 taps at fDTs = 0.002.

Receiver:

• KL-basis with Nb = 2,

• search parameter M ∈ {16, 32, 64, 128},

• inner (i.e., LDPC decoding) iterations ≤ 60,

• outer (i.e., turbo) iterations ∈ {1, 2, 4, 8, 12, 16}.
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Choice of search parameter M :
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Choice of # outer iterations:

5 6 7 8 9 10
10

−5

10
−4

10
−3

10
−2

10
−1

Eb/No(dB)

B
E

R

 

 

iteration 1
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iteration 4
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iteration 12
iteration 16
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Choice of # pilots Np / genie-aided comparison:
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Soft Kalman Estim Np=9
Kalman−LVA Np=9
NC (Proposed) Np=9
Genie−Estim CH
Perfect CH Knowledge

15



Phil Schniter The Ohio State University'

&

$

%

Numerical Experiments (Interpretations):

Genie-aided references:

1. perfectly known channel,

2. channel estimated from 100% training.

Only about 2 dB away!

Maximum diversity order offered by channel:

• fDTs = 0.002 ⇒ coherence time = 500 symbols.

• 4096-symbol frame ⇒ 8 coherence intervals.

• 3 taps ×8 coherence intervals = 24 degrees of freedom .

The BER slopes confirm that our scheme achieves maximum diversity!
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Conclusions:

• We presented a novel scheme for the reception of coded

transmissions over quickly varying multipath channels

• Leveraged a BEM approximation of channel, the M-algorithm, a fast

recursive update for the MAP metric, and the turbo principle.

• Achieved performance ≈ 2 dB away from genie-aided bounds at a

complexity of ≈ 2M2Q(NbNh)
2 mults per QAM symbol.

• Only need one pilot per block, though a few more help performance.
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