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Abstract—We propose a scheme for noncoherent iterative (i.e.,
turbo) reception of coded block transmissions over unknown time
and frequency selective, or doubly dispersive, channels. Starting
with a noncoherent metric that leverages a basis expansion model
(BEM) for the channel’s time-variation, we propose an efficient
noncoherent soft equalization strategy that combines sub-optimal
tree search with a fast noncoherent metric update. Though the
complexity of our scheme is only linear in the block length
and quadratic in the number of BEM parameters, numerical
experiments show that it attains a performance relatively close
to that of the turbo receiver with perfectly known channel.1

I. I NTRODUCTION

In this paper, we consider the problem of decoding a data
sequence transmitted over a time- and frequency-selective
channel, otherwise known as a doubly selective or doubly
dispersive (DD) channel, whose realizations are unknown but
whose statistics are known. In particular, we are interested in
the case of coded transmissions with possibly long codewords
(as with LDPC or turbo codes). While the maximum a posteri-
ori (MAP) bit detector is known to minimize the bit error rate
(BER) [1], it is too complex to implement for the codes and
channels of interest. A near-optimal but significantly cheaper
strategy follows from the turbo principle [2], which suggests to
iterate between separate soft equalization and decoding steps.
In this case, the equalizer’s role becomes that of producing
posterior bit probabilities from the received samples and any
extrinsic information previously supplied by the decoder.

The calculation of posterior bit information in the presence
of an unknown DD channel is not a trivial task, however. (See
[3] for a recent overview). In the most common approach to the
problem, the channel is modeled as a first-order Gauss-Markov
process and trellis-based methods are used with either forward-
backward or fixed-lag MAP processing. Fitting a realistic time-
varying channel into this framework generally requires theuse
of approximations which degrade performance and/or limit the
range of applicability (e.g., to slowly varying channels).

We consider a different approach to soft noncoherent equal-
ization which uses a basis expansion model (BEM) [4], [5] for
channel variations. The use of a BEM yields an efficient chan-
nel parameterization which, as we will show, translates directly
into an efficient soft noncoherent equalization algorithm.In
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addition, the flexibility of the BEM approach makes it directly
applicable to, e.g., frequency-domain channel models (as arise
with OFDM) and/or sparse channel models. (See, e.g., [6].)

The soft noncoherent equalizer we propose for DD channels
builds on recent ideas from the multiple-input multiple-output
(MIMO) literature (e.g., [7], [8]), such as the use of suboptimal
tree search to find the dominant contributions to a noncoherent
metric. Our principal contribution is the derivation of a fast
algorithm for the sequential update of the BEM-based non-
coherent metric. In particular, the proposed algorithm yields
a complexity that scales linearly in the block length and
quadratically in the number of BEM parameters. Numerical
experiments show that the proposed technique maintains per-
formance relatively close to that of turbo reception under a
perfectly known channel.

II. SYSTEM MODEL

At the transmitter, information bits are rate-R coded, inter-
leaved, and mapped to2Q-ary QAM symbols. Groups ofNs

information symbols are then combined with pilot and guard
symbols to form transmission blocks of lengthN ≥ Ns. (De-
tails on the pilots and guards will be given later.) Thejth block
is composed of the symbols{s(j)

n }N−1
n=0 which correspond

to the coded bits{x(j)
k }NsQ−1

k=0 . In particular, symbols(j)
n is

mapped from the coded bitsx(j)
n := [x

(j)
nQ, . . . , x

(j)
nQ+Q−1]

T .
A linear time-varying noisy channel gives thenth sample

of the jth received block the form

r(j)
n =

Nh−1∑

l=0

h
(j)
n,ls

(j)
n−l + v(j)

n , (1)

whereh
(j)
n,l is the channel coefficient at time-n and delay-l, Nh

is the discrete delay spread, and{v(j)
n } is zero-mean circular

white Gaussian noise (CWGN) with covarianceσ2. The chan-
nel is assumed to be Rayleigh fading and wide-sense stationary
uncorrelated scattering (WSSUS) [9], so that{h

(j)
n,l} are zero-

mean circular Gaussian withE{h(j)
n,lh

(j)∗
n−m,l−ℓ} = ρmσ2

l δℓ.
Here, ρm is the temporal autocorrelation,σ2

l is the delay-
power profile, andδℓ is the Kronecker delta sequence.

The receiver consists of a soft noncoherent equalizer and a
soft decoder, connected in the turbo configuration of Fig. 1.
The equalizer uses the observations{r

(j)
n }, as well as anya

priori information provided by the decoder, to generate soft
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Fig. 1. Iterative noncoherent receiver structure.

information on the coded bits, leveraging its knowledge of
pilot symbols and statistical channel structure. The decoder
uses the soft equalizer outputs to infer the information bits,
leveraging its knowledge of the code structure. Also, the
decoder may refine the soft information on the coded bits for
subsequent use by the equalizer.

A key feature of our equalizer is its use of aNb-term basis
expansion model (BEM) for channel variation over the block:

h
(j)
n,l ≈

Nb−1∑

p=0

bn,pθ
(j)
p,l for n ∈ {0, . . . , N − 1}. (2)

Here,Nb and{bn,p} are design parameters whereas{θ
(j)
p,l } are

unknown channel coefficients. While an error-free approxima-
tion is possible withNb = N , significant reduction in receiver
complexity is possible withNb ≪ N . Under approximation
(2), the received sampler(j)

n from (1) becomes

r(j)
n = bH

n

Nh−1∑

l=0

s
(j)
n−lθ

(j)
l + v(j)

n , (3)

for bn := [bn,0, . . . , bn,Nb−1]
H and θ

(j)
l :=

[θ
(j)
0,l , . . . , θ

(j)
Nb−1,l]

T . The up-to-time-n observations

r
(j)
n := [r

(j)
0 , . . . , r

(j)
n ]T then become

r(j)
n = A(j)

n θ(j) + v(j)
n for n ∈ {0, . . . , N − 1}, (4)

whereθ(j) := [θ
(j)T
0 , . . . ,θ

(j)T
Nh−1]

T , v
(j)
n := [v

(j)
0 , . . . , v

(j)
n ]T ,

and

A(j)
n :=







s
(j)
0 bH

0 · · · s
(j)
−Nh+1b

H
0

...
...

s
(j)
n bH

n · · · s
(j)
n−Nh+1b

H
n







. (5)

Similar to r
(j)
n , we can defines(j)

n := [s
(j)
0 , . . . , s

(j)
n ]T and

x
(j)
n = [x

(j)T
0 , . . . , x

(j)T
n ]T . For brevity, the full-block quanti-

tiesr
(j)
N−1, A(j)

N−1, s(j)
N−1, v(j)

N−1, andx
(j)
N−1 will be abbreviated

by r(j), A(j), s(j), v(j), andx(j), respectively.

III. N ONCOHERENTSOFT EQUALIZER

In this section, we describe the proposed noncoherent soft
equalizer, where the soft information takes the form of log-
likelihood ratios (LLRs) on coded bits. Given the observation
r(j), and anya priori LLRs made available by the decoder,
the soft equalizer generates LLRs for each of the coded bits
in x(j). The equalizer is “noncoherent” in that it treats the

channel realizationθ(j) as unknown. However, it is assumed
to know the distributions ofθ(j) andv(j), which in our case
are CN (0,Rθ) and CN (0, σ2I), respectively. We will also
assume thats(j)

n |n<0 = 0, which in practice means that the
transmission blocks are separated by guard intervals of length
≥ Nh − 1. In addition, we make the mild assumption that
Rθ is full rank. Because the algorithm does not depend on
the block indexj, we suppress the block notation “(j)” in the
sequel.

A. LLR Approximation

The log-likelihood ratio (LLR) of coded bitxk given r,

L(xk|r) := ln
Pr[xk = 1|r]

Pr[xk = 0|r]
, k ∈ {0, . . . , NsQ − 1},(6)

can be written in the form [7]

L(xk|r) = ln

∑

x:xk=1 p(r|x) · exp lT x
∑

x:xk=0 p(r|x) · exp lT x
, (7)

where l := [La(x0), . . . , La(xNsQ)]T and La(xk) :=
lnP [xk = 1]/P [xk = 0] denotes thea priori LLR of xk.
The use of the metric

µ(x) := ln p(r|x) + lT x (8)

allows the “extrinsic” LLRLe(xk|r) := L(xk|r)−La(xk) to
be written

Le(xk|r) = ln

∑

x:xk=1 exp µ(x)
∑

x:xk=0 exp µ(x)
− La(xk). (9)

ComputingLe(xk|r) from (9) requires2NsQ evaluations of
µ(x), and hence is impractical. However, as suggested in [7],
the extrinsic LLRLe(xk|r) can be approximated as

Le(xk|r) ≈ max
x∈L∩{x:xk=1}

µ(x) − max
x∈L∩{x:xk=0}

µ(x) − La(xk),
(10)

using the “max-log” approximation
∑

x:xk=1 expµ(x) ≈
maxx:xk=1 µ(x) and subsequently restricting the maximiza-
tion search space to the “most important” sequencesL.

B. LLR Evaluation via Tree Search

The Rayleigh fading model (4) implies that

r|x ∼ CN (0,ARθA
H + σ2I), (11)

whereA depends on the coded bitsx through the correspond-
ing symbolss. Thus, the use ofΦ := ARθA

H +σ2IN yields

ln p(r|x) = −rH
Φ

−1r − ln(πN detΦ), (12)

allowing the metric to be written as

µ(x) = −rH
Φ

−1r − ln(πN detΦ) + lT x. (13)

Because direct evaluation of (13) requiresO(N3) opera-
tions, we recognize two principle challenges in evaluating(10):

1) Efficient selection of the “most important” sequencesL,
2) Fast calculation ofµ(x) for x ∈ L.



As suggested in [8], both challenges can be met by evaluating
the partial metric

µ(xn) := ln p(rn|xn) + lTnxn (14)

sequentially (i.e., as µ(x0), µ(x1), . . . , µ(xN−1)) using M
possibilities of each partial bit vectorxn, where nowln :=
[l0, . . . , ln]T and li := [L(xiQ), . . . , L(xiQ+Q−1)]

T . To
choose theM possibilities ofxn, all one-symbol extensions of
theM “most important” partial bit vectorsxn−1 are examined,
and only theM extensions which maximize the partial metric
µ(xn) are kept. In other words, the M-algorithm2 [10] is
applied to compute{µ(x)}x∈L′ for L′ ≈ L. Note that
L′ ∩ {x : xk = 1} or L′ ∩ {x : xk = 0} might be empty
for somek, in which caseLe(xk|r) would be infinite. To
prevent this situation, the LLRs are clipped to a finite value.
The choice of the clipping threshold is discussed in [8].

In the sequel, we show that the metricµ(xn) can be up-
dated fromµ(xn−1) using onlyO(N2

b N2
h) operations, so that

{µ(x)}x∈L′can be evaluated using onlyO(NM2QN2
b N2

h)
operations. The soft equalizer complexity is thuslinear in
the block lengthN and quadratic in the number of channel
parametersNbNh.

C. Fast Metric Update

Writing the partial metric (14) in the form of (13) yields

µ(xn) = −rn
H
Φ

−1
n rn − ln(πn+1 detΦn) + lTnxn, (15)

where Φn := AnRθA
H
n + σ2In+1. In the Appendix, we

derive the following fast sequential algorithm to compute
µ(xN−1), which can be shown to requireN(N2

b N2
h +

7NbNh + 8) multiplications.

set {µ(x−1), Σ
−1
−1, θ̂−1} :=

{
lnσ−2, σ−2Rθ, 0

}
;

for n = 0, 1, 2, . . . , N − 1,

an = [snbH
n , · · · , sn−Nh+1b

H
n ]H ; (16)

dn = Σ
−1
n−1an; (17)

αn = (1 + aH
n dn)−1; (18)

Σ
−1
n = Σ

−1
n−1 − αndndH

n ; (19)

µ(xn) = µ(xn−1) −
αn

σ2
|rn − aH

n θ̂n−1|
2

− ln(σ2π/αn) + lTnxn; (20)

θ̂n = (I − αndnaH
n )θ̂n−1 + (1 − αndH

n an)rndn; (21)

end

D. On Pilots and Guards

While a single pilot symbol per block is sufficient to resolve
the inherent channel/data phase ambiguity, we have found that
the inclusion of several pilots is beneficial to the performance
of the (suboptimal) tree search proposed in Section III-B.
In particular, if pilots can be incorporated into the first few

2Other types of tree search could also be applied. However, unlike most
other search algorithms, the M-algorithm yields a complexitythat is invariant
to channel realization and SNR.

metrics (i.e.,µ(xn) for small n), then M-algorithm path-
pruning becomes more robust. We investigate these issues
numerically in Section IV.

As mentioned earlier, the use of block zero-padding with
guard length≥ Nh − 1 prevents inter-block interference,
thereby justifying the use of decoupled block equalization.

Note that a simple modification of the M-algorithm suffices
to handle the case of arbitrary pilot/guard symbols: When the
M-algorithm encounters a known symbol, each surviving path
is given a single (rather than2Q-ary) extension.

IV. N UMERICAL RESULTS

For the numerical experiments, Jakes method was employed
to generate realizations of a WSSUS Rayleigh fading channel
with uniform delay-power profileσ2

l = 1/Nh and temporal
autocorrelationρm = J0(2πfdTsm). Here,fdTs denotes the
normalized single-sided Doppler spread andJ0(·) the 0th-
order Bessel function of the first kind. The valuesfdTs =
0.002 andNh = 3 were assumed throughout.

The transmitter employed rate-R = 1
2 irregular low density

parity check (LDPC) codes with average column-weight3,
generated via the publicly available software [11]. The coded
bits were mapped to QPSK symbols (i.e.,Q = 2) and
partitioned into data blocks of lengthNs, each of which was
merged withNp leading pilots andNh − 1 trailing zeros
to form a transmission block of lengthN = Ns + Np +
Nh − 1. So that each codeword spannedJ = 64 data blocks,
(JQNs, RJQNs)-LDPC codes were employed. The block
length N = 64 was used throughout withNp = 6 pilots per
block (unless otherwise noted).

The soft noncoherent equalizer used the Karhunen Lóeve
(KL) BEM [5] with Nb = 3 to model channel variation.
In other words,bn,p = [V ]n,p for V constructed column-
wise from the Nb principal eigenvectors ofRθ. The M-
algorithm used the search parameterM = 64, where the LLR
magnitudes were clipped to2.3. The publicly available LDPC
decoder from [11] was used with a maximum of60 “inner”
iterations, and equalization/decoding were iterated using a
maximum of 16 “outer” (or “turbo”) iterations. We specify
themaximum number of iterations because the receiver breaks
out of both the inner and outer loops as soon as the LDPC
syndrome check indicates error-free decoding.

A. Effect of Equalizer Parameters and Pilots

Figure 2 shows coded BER under different choices of the M-
algorithm search parameter:M ∈ {16, 32, 64, 128}. The figure
shows that performance increases withM , although gains from
the use ofM > 64 are quite small (e.g.,≈ 0.1 dB).

Figure 3 shows coded BER versus the maximum number
of outer (i.e., turbo) iterations. There, performance is seen
to increase until about12 iterations, after which it saturates.
Note that receiver complexity does not increase linearly with
the number of outer (or inner) iterations, because in the vast
majority of cases the iterations terminate early.

Figure 4 shows the effect ofNp, the number of pilots
per block, on coded BER. As predicted in Section III-D,



performance increases withNp until about Np = 6, after
which it saturates. We reason that, at the saturation point,the
improvement in channel estimation error is balanced by the
penalty onEb/No.

B. Performance Comparison

In Fig. 5, the proposed soft noncoherent equalizer was
compared to two genie-aided bounds, to ahard noncoher-
ent equalization scheme, and to a softcoherent equalization
scheme aided by soft channel estimates.

For the first genie-aided bound, perfect channel knowledge
was assumed. Note that, with perfect channel knowledge,
the proposed soft noncoherent scheme reduces to the soft
coherent scheme of [8] (which also evaluates max-log LLRs
using the M-algorithm). For the second genie-aided bound,
a 100% pilot-block (i.e.,Np = 62) was used to generate a
MMSE channel estimate that was subsequently used by the
soft coherent equalizer [8]. Figure 5 shows that the proposed
equalizer3 performs about2 dB from the perfectly-known
channel bound and about1.6 dB from the 100%-pilot bound.

The reference hard noncoherent equalization scheme used
the list-Viterbi algorithm (LVA) with per-survivor Kalman-
filter generated channel estimates, similar to [13]. To convert
the hard LVA bit estimates into the LLRs needed for soft
decoding, we considered a binary symmetric channel whose
cross-over probability was matched to the experimentally
measured uncoded BER (at eachEb/No). Since the LVA does
not provide a means to incorporate soft decoder outputs, outer
iteration was not used. We usedNp = 9 (after observing
poor performance with fewer pilots) and an LVA list size of
64. Figures 3 and 5 show that the proposed soft noncoherent
equalizer outperforms the hard noncoherent equalizer by≈ 1
dB without outer iteration, and≈ 2 dB with outer iteration.

As a reference soft channel estimator, we considered the
soft Kalman approach of [14]. Fig. 5 shows that the proposed
equalizer exhibits≈ 2.4 dB gain over the combination of soft
channel estimation and soft coherent decoding.

APPENDIX

We first derive a fast recursion forµ1(xn) := rn
H
Φ

−1
n rn.

Rewriting Φn with the aid of An =
[

An−1

aH

n

]

, where aH
n

denotes thenth row of A, we have

Φ
−1
n =

[
Φn−1 An−1Rθan

aH
n RθA

H
n−1 aH

n Rθan + σ2

]−1

=

[
P n pn

pH
n pn

]

, (22)

for the block-inverse quantities

P n := Φ
−1
n−1 + p−1

n pnpH
n (23)

pn := −Φ
−1
n−1An−1Rθanpn (24)

p−1
n := σ2 + aH

n

(

Rθ − RθA
H
n−1Φ

−1
n−1An−1Rθ

)

an.(25)

3It is interesting to note that the asymptotic slope of the BER curves
suggests that the algorithm captures the full diversity of the noncoherent DD
channel [12]. In particular, with codewords spanningJN = 4096 symbols
and a channel coherence time of(fdTs)−1 = 500 symbols, the codeword
experiences8 coherence intervals for each of theNh = 3 channel taps, or
24 degrees of channel freedom in total. The asymptotic BER slopes have a
slope of about24.

Writing µ1(xn) using (22) andrn = [ rn−1

rn
], we get

µ1(xn) = rH
n−1P nrn−1 + 2ℜ{rH

n−1pnrn} + pn|rn|
2. (26)

The MMSE estimate ofθ from rn−1 conditioned onsn−1:

θ̂n−1 = E{θrH
n−1|sn−1}E{rn−1r

H
n−1|sn−1}

−1rn−1 (27)

= RθA
H
n−1Φ

−1
n−1rn−1, (28)

allows us to writerH
n−1pn = −θ̂n−1anpn, which can be

combined with (23)-(25) to express (26) as

µ1(xn) = rH
n−1Φ

−1
n−1rn−1 + pnθ̂

H

n−1anaH
n θ̂n−1

+ 2pnℜ{θ̂
H

n−1anrn} + pn|rn|
2 (29)

= µ1(xn−1) + pn · |rn − aH
n θ̂n−1|

2. (30)

For a fast update ofµ1(xn), we need fast updates ofpn

and θ̂n. For pn, the matrix inversion lemma (MIL) implies

Rθ − RθA
H
n−1Φ

−1
n−1An−1Rθ

= σ2(AH
n−1An−1 + σ2R−1

θ
︸ ︷︷ ︸

:= Σn−1

)−1 (31)

from which (25) gives

p−1
n = σ2(1 + aH

n Σ
−1
n−1an). (32)

BecauseΣn = Σn−1 + anaH
n , a second application of the

MIL yields Σ
−1
n = Σ

−1
n−1 − αndndH

n for dn := Σ
−1
n−1an

andαn := (1 + aH
n dn)−1 = pnσ2. Together, this gives a fast

update ofpn = αn/σ2.
For θ̂n, a third application of the MIL givesΦ−1

n =
σ−2(I − AnΣ

−1
n AH

n ), which applied to (28) yields

θ̂n = σ−2Rθ

(
ΣnΣ

−1
n AH

n − AH
n AnΣ

−1
n AH

n

)
rn (33)

= σ−2Rθ

(
Σn − AH

n An

)
Σ

−1
n AH

n rn (34)

= Σ
−1
n AH

n rn (35)

=
(
Σ

−1
n−1 − αndndH

n

)(
AH

n−1rn−1 + anrn

)
(36)

=
(
INhNb

− αndnaH
n

)
θ̂n−1 +

(
1 − αndH

n an

)
rndn,(37)

giving a fast update for̂θn.
A fast recursion forµ2(xn) := ln

(
πn+1 detΦn

)
is:

µ2(xn)

= ln
{

(σ2π)n+1 det
(
σ−2R

1

2

θ AH
n AnR

1

2

θ + INhNb

)}

(38)

= ln
{
(σ2π)n+1 det

(
σ−2R

1

2

θ anaH
n R

1

2

θ

+ σ−2R
1

2

θ AH
n−1An−1R

1

2

θ + INhNb

)}
(39)

= ln
{
σ2π

(
1 + σ−2aH

n R
1

2

θ (40)

×
(
σ−2R

1

2

θ AH
n−1An−1R

1

2

θ + INhNb

)−1
R

1

2

θ an

)}

+ ln
{
(σ2π)n det

(
σ−2R

1

2

θ AH
n−1An−1R

1

2

θ + INhNb

)}

= ln
{
σ2π(1 + aH

n (AH
n−1An−1 + σ2R−1

θ )−1an)
}

+ ln
{
πn det(An−1RθA

H
n−1 + σ2In)

}
(41)

= ln(σ2π/αn) + µ2(xn−1), (42)

where (41) useddet(xxH + B) = (1 + xHB−1x) det(B).
The updates forµ1(xn), µ2(xn), θ̂n, andΣ

−1
n , derived here

are combined to form (16)-(21).
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Fig. 2. Coded BER vs.Eb/No for M-algorithm parameterM ∈
{16, 32, 64, 128}.
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Fig. 3. Coded BER vs.Eb/No for different numbers of outer
iterations.
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Fig. 4. Coded BER vs.Eb/No for different numbers of outer
iterations.
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Fig. 5. Coded BER vs.Eb/No for proposed soft noncoherent
equalizer, hard noncoherent equalizer based on Kalman-LVA, soft
coherent equalization plus soft Kalman channel estimate, and soft
coherent equalization with perfect channel estimate (genie-aided) and
with MMSE estimate using 100% pilots (genie-aided).
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