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/Problem Description: \

e Uncoded block transmission over an IS| channel that varies
significantly over the block.

e Data symbols and channel are both unknown. At least one known
pilot symbol.

e Interested in near-optimal sequence detection with reasonable
complexity.

Related Work:

e Per-survivor processing (PSP): trellis-based equalization using the
surviving partial-paths as training for adaptive channel estimation.

e Joint estimation/MLSD for singly-dispersive channels.
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/System Model: \

Received samples are {r,} ", where

N, —1
I'n = § hn,lsn—l + Un,
=0

hn; : time-n response to an impulse at time (n — ).
N;, : discrete channel spread.
{s,}N-} : symbols from finite alphabet Q

{v, )= : CWGN with variance 0.
We assume WSSUS fading:

E{hn,lh* } — me-ZZCSp

n—m,l—p

Note: holds for single-carrier transmission over a time-varying ISI
channel, or multicarrier transmission over a frequency-varying |Cl

channel.
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The receiver employs a basis expansion model (BEM)

EM Approximation (Used by Receiver):

Ny—1

hpy =~ Z bnpbps forne{0,..., N —1}.

p=0
(b=t o p™ basis waveform
Ny : number of basis waveforms

0,, : coefficient for p* basis waveform and " lag

BEM options include:
e oversampled complex exponential: b, , = ejﬁ_ﬂp”, K>1

e polynomial: b, , = n?
e Karhunen-Loeve: {b,,})~ is the p' largest eigenvector of Toeplitz

N—-1
m=0

- /

correlation matrix defined from {p,,
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/BEM-Approximated System Model: \
r, = B,S;0+ v,

where, by example,

9 bf soln, s11In, p Vo
ri| = b{{ sidn, soln, 90 + vy
70 | ] béq_ _SOINb S_1INb_ \vl_/ | Vo |
—~ = ~- % ~ -0 =~
T9 B, S(Q) Vo
b, = [bno, ... ,bun,—1)" : time-n basis values
Bl = [8071, Ce ,QNbJ]T : Iag—l BEM coefficients

Note:

e O ¢ C™Nr contains all time-varying channel parameters

\\ e S{ contains data symbols s,, = [s,, ..., s¢]"
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/Noncoherent Data Detection: \
MLSD criterion:

én — arg maxp(rn|sn)
s

n

With prior channel pdf p(0),
CN(B,S;0,0°1)
p<rn|3n> — / %(rn‘snagj p(@) e
6 S~~~
CN (0, Ry)

After some algebra, we obtain a quadratic noncoherent metric

Sp = argmin{rf@snrn—l—logdet(ZSn)} A~ argmin j(Sy,)

Sn Sn

1(8n)
for ®, = (B,StRy(B,SH) +0°1,1) .
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Can write noncoherent metric as

stimation/Detector Interpretation: \

N ~H "
((sn) = U_QHTn _Bn5893n||2+ U_QesnRe_lesn

N~

“coherent” ML metric  prior reconciliation
where @Sn is the MMSE estimate of 8 from r,, given s,;:

0, = E{0r7|s,} E{r,r|s,} 7,

In other words, the noncoherent metric u(s,) adapts to the channel
that is implicitly estimated with s,, as training.

Note: Brute-force search evaluates | Q" metrics!!

- /




Phil Schniter The Ohio State University

/Fast Adaptive Sequential Decoding: \

1. Suboptimal breadth-first tree search via the M-algorithm:

e Say §,, contains the M “best” estimates of s,,. For each

extension s,.1 = |s, |, Wwhere s, € §,, and s € Q, calculate the
noncoherent metric 11(s,41). Then keep M best in S, 1.

e In total, evaluates M|Q|N noncoherent metrics.

e Performance almost indistinguishable from brute-force.

2. Fast metric computation:

e Updating 6, requires only about nN, N}, + 4N2N? operations.

Assuming N > N, N, (i.e., an underspread channel), the total
complexity of calculating 8x_; is | O(M|Q|N*N,N,,) |
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/Fast Metric Computation: \

Can write MMSE estimate as
ésn = Z;}Afrn
¥, = AYA, +o0*R;!
An _ ang e (C(’fH‘l)XNbNh

Noticing a rank-one update:

— H
an—i-l T z]-Sn T an+1an+1
H L H n—+ Ny Ny,
—1 —1 H
1 vl (Esn a”n+1)(23n Q1)
Sp+1  Tsp y

1
l+al 3, an

so complexity of calculating 0 is O(nNyNy) when n > N, Np,.

Given O, .,

\\when n > NyNy,. /

Sn+1

the complexity of calculating p(s,11) is also O(nN,N},)
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/Construction of the Transmission Frame: \

Pilots:
e One pilot symbol needed to resolve channel/data phase ambiguity.

e NV, leading pilots useful for “initializing” the metric, allowing for
good M-alg performance with small M.

e N, N, pilots required for pilot-aided estimation-then-detection.
Diversity:
e N, — 1 trailing zeros needed to make full delay-diversity accessible.

e Doppler diversity not accessible without coding/precoding. (This
issue will be treated in future work.)

~+We insert N, N, leading pilots to facilitate a fair comparison with
estimation-then-detection schemes, and we insert N;, — 1 trailing zeros

\\to make delay-diversity accessible. /
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/Numerical Experiments: \
e BPSK symbols, NV = 25

e WSSUS Jakes channel with delay spread N, = 2 and single-sided
Doppler spread fqT € {0.002,0.005}.

e Receiver BEMs (N, = 2):
1. Karhunen-Loeve (KL)
2. Oversampled Complex Exponential (OCE)

e Reference Algorithms
1. ML with perfect {h,;} (genie-aided)
2. ML with MMSE-0 from pilots+data (genie-aided)
3. ML with MMSE-6 from pilots
4. PSP with RLS-{/,,,}

- /
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frame error rate
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/Effect of Metric Approximation and Choice of M: \

fals = 0.005

—6— M-alg, M=2
—— M-alg, M=4
—A— M-alg, M=6
—+— approx noncoh—ML |]
—8&— exact noncoh—ML |1
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SNR(dB)
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/Performance with KL-BEM: \

f4Ts = 0.002 fqTs = 0.005
—— ——— — 2 10" — T

—— Kalman-PSP-LVA :
| —— M-alg + KL-BEM

*| —— ML with genie—estimated BEM
...| —2— ML with perfect CSI

| P PR | P 1

—— Kalman-PSP-LVA
| ——M-alg + KL-BEM

-{ —— ML with genie—estimated BEM
.| —— ML with perffect CSI

frame error rate
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frame error rate

#4Ts = 0.002

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ PSS I |
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| —+—M-alg + OCE-BEM
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/Performance with OCE-BEM:

£4T5 = 0.005

~
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—>— ML with genie-estimated BEM
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/Conclusions: \

e Joint channel /symbol estimation for quickly varying ISI channels.

e Leveraged BEM channel approximation, M-algorithm, fast
MMSE-channel estimation.

e Less than 1 dB from optimal performance at complexity
O(M|Q|N?*N,Ny,).

e Significantly outperforms decoupled channel /symbol estimation.

e Outperforms PSP-RLS, especially at high Doppler spreads.
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