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Problem Description:

• Uncoded block transmission over an ISI channel that varies

significantly over the block.

• Data symbols and channel are both unknown. At least one known

pilot symbol.

• Interested in near-optimal sequence detection with reasonable

complexity.

Related Work:

• Per-survivor processing (PSP): trellis-based equalization using the

surviving partial-paths as training for adaptive channel estimation.

• Joint estimation/MLSD for singly-dispersive channels.
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System Model:

Received samples are {rn}
N−1
n=0 , where

rn =

Nh−1∑

l=0

hn,lsn−l + vn,

hn,l : time-n response to an impulse at time (n − l).

Nh : discrete channel spread.

{sn}
N−1
n=0 : symbols from finite alphabet Q

{vn}
N−1
n=0 : CWGN with variance σ2.

We assume WSSUS fading:

E{hn,lh
∗

n−m,l−p} = ρmσ2
l δp

Note: holds for single-carrier transmission over a time-varying ISI

channel, or multicarrier transmission over a frequency-varying ICI

channel.
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BEM Approximation (Used by Receiver):

The receiver employs a basis expansion model (BEM)

hn,l ≈
Nb−1∑

p=0

bn,pθp,l for n ∈ {0, . . . , N − 1}.

{bn,p}
N−1
n=0 : pth basis waveform

Nb : number of basis waveforms

θp,l : coefficient for pth basis waveform and lth lag

BEM options include:

• oversampled complex exponential: bn,p = ej 2π

NK
pn, K ≥ 1

• polynomial: bn,p = np

• Karhunen-Loeve: {bn,p}
N−1
n=0 is the pth largest eigenvector of Toeplitz

correlation matrix defined from {ρm}
N−1
m=0
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BEM-Approximated System Model:

rn = BnS
n
0θ + vn

where, by example,
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bn = [bn,0, . . . , bn,Nb−1]
H : time-n basis values

θl = [θ0,l, . . . , θNb,l]
T : lag-l BEM coefficients

Note:

• θ ∈ C
NbNh contains all time-varying channel parameters

• S
n
0 contains data symbols sn = [sn, . . . , s0]

T
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Noncoherent Data Detection:

MLSD criterion:

ŝn = arg max
sn

p(rn|sn)

With prior channel pdf p(θ),

p(rn|sn) =

∫

θ

CN (BnS
n
0θ, σ2I)

︷ ︸︸ ︷

p(rn|sn, θ) p(θ)
︸︷︷︸

CN (0, Rθ)

dθ

After some algebra, we obtain a quadratic noncoherent metric

ŝn = arg min
sn

{

r
H
n Φsn

rn
︸ ︷︷ ︸

µ(sn)

+ log det(Σsn
)
}

≈ arg min
sn

µ(sn)

for Φsn
=

(
BnS

n
0Rθ(BnS

n
0 )H + σ2In+1

)
−1

.
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Estimation/Detector Interpretation:

Can write noncoherent metric as

µ(sn) = σ−2‖rn − BnS
n
0 θ̂sn

‖2

︸ ︷︷ ︸

“coherent” ML metric

+ σ−2
θ̂

H

sn
R

−1
θ θ̂sn

︸ ︷︷ ︸

prior reconciliation

where θ̂sn
is the MMSE estimate of θ from rn given sn:

θ̂sn
= E{θr

H
n |sn}E{rnr

H
n |sn}

−1
rn

In other words, the noncoherent metric µ(sn) adapts to the channel

that is implicitly estimated with sn as training.

Note: Brute-force search evaluates |Q|N metrics!!
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Fast Adaptive Sequential Decoding:

1. Suboptimal breadth-first tree search via the M-algorithm:

• Say Sn contains the M “best” estimates of sn. For each

extension sn+1 = [ s
sn

], where sn ∈ Sn and s ∈ Q, calculate the

noncoherent metric µ(sn+1). Then keep M best in Sn+1.

• In total, evaluates M |Q|N noncoherent metrics.

• Performance almost indistinguishable from brute-force.

2. Fast metric computation:

• Updating θ̂sn
requires only about nNbNh + 4N2

b N2
h operations.

Assuming N > NbNh (i.e., an underspread channel), the total

complexity of calculating ŝN−1 is O(M |Q|N2NbNh) .
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Fast Metric Computation:

Can write MMSE estimate as

θ̂sn
= Σ

−1
sn

A
H
n rn

Σsn
= A

H
n An + σ2

R
−1
θ

An = BnS
n
0 ∈ C

(n+1)×NbNh

Noticing a rank-one update:

Σsn+1
= Σsn

+ an+1a
H
n+1

a
H
n+1 = b

H
n+1S

n+1
n+1 ∈ C

NbNh

Σ
−1
sn+1

= Σ
−1
sn

−
(Σ−1

sn
an+1)(Σ

−1
sn

an+1)
H

1 + aH
n+1Σ

−1
sn

an+1

,

so complexity of calculating θ̂sn+1
is O(nNbNh) when n > NbNh.

Given θ̂sn+1
, the complexity of calculating µ(sn+1) is also O(nNbNh)

when n > NbNh.
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Construction of the Transmission Frame:

Pilots:

• One pilot symbol needed to resolve channel/data phase ambiguity.

• Nh leading pilots useful for “initializing” the metric, allowing for

good M-alg performance with small M .

• NhNb pilots required for pilot-aided estimation-then-detection.

Diversity:

• Nh − 1 trailing zeros needed to make full delay-diversity accessible.

• Doppler diversity not accessible without coding/precoding. (This

issue will be treated in future work.)

 We insert NhNb leading pilots to facilitate a fair comparison with

estimation-then-detection schemes, and we insert Nh − 1 trailing zeros

to make delay-diversity accessible.
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Numerical Experiments:

• BPSK symbols, N = 25

• WSSUS Jakes channel with delay spread Nh = 2 and single-sided

Doppler spread fdTs ∈ {0.002, 0.005}.

• Receiver BEMs (Nb = 2):

1. Karhunen-Loeve (KL)

2. Oversampled Complex Exponential (OCE)

• Reference Algorithms

1. ML with perfect {hn,l} (genie-aided)

2. ML with MMSE-θ̂ from pilots+data (genie-aided)

3. ML with MMSE-θ̂ from pilots

4. PSP with RLS-{ĥn,l}
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Effect of Metric Approximation and Choice of M :

fdTs = 0.005
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Performance with KL-BEM:
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Performance with OCE-BEM:
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Conclusions:

• Joint channel/symbol estimation for quickly varying ISI channels.

• Leveraged BEM channel approximation, M-algorithm, fast

MMSE-channel estimation.

• Less than 1 dB from optimal performance at complexity

O(M |Q|N2NbNh).

• Significantly outperforms decoupled channel/symbol estimation.

• Outperforms PSP-RLS, especially at high Doppler spreads.
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