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Abstract—We propose a scheme for near-optimal sequence a linear dependence on block length PSP-VA has also been
detection (SD) of uncoded block transmissions over unknown proposed in conjunction with LMS [5] and RLS [3], which

doubly dispersive (DD) channels. Starting with a noncoherent 5y he convenient when the channel statistics are unknown.
maximum likelihood (ML) metric that leverages a basis expansion

model (BEM) for the channel's time-variation, we propose an  Viewing PSP-VA (or PSP-LVA) as a form of suboptimal
efficient noncoherent SD strategy based on suboptimal tree tree search, the question remains as to whether a different
search with a fast metric update. Our scheme yields performance form of suboptimal tree search could offer a superior perfor

within a fraction-of-a-dB from ML sequence detection with genie- mance/complexity tradeoff, say, for longer channels. Tosa
aided channel estimates, and maintains complexity that is only ’ ’ )

quadratic in the block length.! this aim, we propose near-ML noncoherent SD that leverages
a simplified ML metric, suboptimal breadth-first search via
I. INTRODUCTION the M-algorithm [6], and recursive MMSE estimation of basis

In this paper, we consider uncoded block transmissiéPansion model (BEM) [7] coefficients. In Section IV, we
through a doubly dispersive (DD) channel, i.e., a quickiyeti show that our_algorlthm _performs within a fracthn-of-a-dB
varying inter-symbol interference (ISI) channel. When tae rfrom MLSD with genie-aided MMSE channel estimates; to
ceiver has perfect channel state information (CSI), magimu OUr knowledge, this performance is state-of-the-art. Idi-ad
likelihood (ML) sequence detection (SD)—known to minillon_, we demonstrate that our algorithm is robust to over-
mize the probability of sequence-error, can be implementggtimation of the channel fading rate. Since our algorithm
using the classical Viterbi algorithm (VA) [1] with compligx 1S O(V?|S| N, Ny M), where N, denotes the basis size, it is
O(N|S|N»+1), where N denotes the block lengtHsS| the cheaper than Kalman-PSP-LVA for moderate channel_lengths
alphabet size, and/, the discrete channel length. (.9, i > 4) and block lengths (e.glV' < 100). A detailed
Here we focus on the case that the receiver knows the ch§RMplexity comparison is provided in Section IIl.

nel statistics but not the channel state, yielding a nonestte = We now discuss related work. To our knowledge, the
sequence detection problem. In addition, we focus on GamissKalman-PSP-LVA [4] is the highest-performangeactical
channels. In this case, MLSD requires a brute-force searnti@ans of noncoherent sequence detection in the doubly dis-
among all sequences [2] and implicitly computes a minimugersive environment; it has been shown [4], [8] to outpenfor
mean-squared error (MMSE) channel estimate for each. Itlisth LMS-PSP-LVA and RLS-PSP-LVA, as well as iterative
important to note that the VA cannot be used for MLSD sino@ethods based on expectation-maximization (EM). Hence, we
the ML branch metrics in trellis-based SD are a function afse it as a baseline for comparison. The estimation of BEM
all past and future trellis states. Even when the channeldgefficients, in place of the time-varying impulse response
Gauss-Markov, the ML branch metrics are a function of aWas proposed in [9] in the context of PSP-VA. But BEM
past states. Per-survivor processing (PSP) [3], howewar, estimation does not appear to work well in conjunction with
be employed to yield an accurate VA-based approximation tfe path-pruning of PSP-VA; our experiments, as well as
MLSD. In PSP-VA, channel estimates are computed for eatitose in [9], show an early error floor. Though the suggestion
surviving path, using past symbol hypotheses in a decisidie- use generic tree-search algorithms for joint channel/da
directed manner. With a Gauss-Markov channel, for instan@stimation can be found, e.g., in [3], we are not aware
the Kalman algorithm can be employed for recursive MMSBf existing strategies that are particularly well-suitedtie
channel estimation [2]. As shown in [4], the gap betweesioubly dispersive environment.

PSP-VA and MLSD can be made quite small by adopting

a list-Viterbi algorithm (LVA), which retainsL. > 1 partial

paths at each trellis state. Assuming a first-order Gauss- Il. SYSTEM MODEL

Markov channel model, the complexity of Kalman-PSP-LVA is

Np+1 73 ich i i
O(Ns] Nj,L), which is attractive for long blocks due to We consider a discrete-time complex-baseband system with
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grant CCR-0237037 and the Office of Naval Research. S, and with a channel described by the time-varying discrete



impulse responsg,, ;. The received samples are written as A. Noncoherent Sequence Detection Metric

Np—1 The MLSD estimate is defined as
™ = Z hn,lsnfl + Un, (1)
=0 §, = arg n;axp(rn|sn), (20)
whereN;, is the channel length and,, } is zero-mean circular o "
white Gaussian noise (CWGN) with covarianeé. where, marginalizing over the channel,
The receiver approximates the channel response, over the

block of N samples, by théV,-size basis expansion p(r”|8.")
Np—1 = /P(Tn|3m9)p(0)d9
hni = > bupbps fornef{0,....N-1}. (2 -
_ _ 1

Here, N, and {b, ,} are design parameters afd,;} are

random channel coefficients. An error free approximation &inced ~ CA (0, Ry), we can write

possible withiV, = N, while significant reduction in detection

complexity is possible withV, < N. As we shall see, the p(Tnlsn)

detection perf_ormance loss due to channel _modeling_ermnr ca o, [ exp {—%H"‘n — A, 0|2 - 0HR9—10} a0
be made relatively small through proper choice of bésis, }, 0 7

even forN, < N. Under approximation (2), the system model _ 1p_ s—14H 2 }

(1) can be written, fon € {0,...,N — 1}, as C BCXp ] AP Asnr,,,stn d6

Nn—1 xexp{—i (rf{r, —riA EflAHm)}
P = bl D7 sasiiton, ®) T e e e
1=0 =3 _exp {—% (rfrn —rHA, 2TAY Tn)}
H T det(0—2Xs,) o ' mTSn T
for bn = [b7L707"'7bn,Nb—1] andel = [9071,...,(9Nb_1,l] . "
Forn < N, we can writer,, := [r,,...,r0|" as where
rn, = BI;LSSz; (% (4) Esn = AgLASn +U2R671, (11)
Tnt+1 = bn+lsn+19+vn+1a (5) . Lo .
T T a7 - and where{C;} are constants irrelevant to the maximization
where® := [0, ..., 0y, _1]", vn = [on, ..., v0]", and in (10). Using the monotonicity olbg(-), we can write
bl
n a H -2 -1 4 H
B, = ©6) 3, = arg H;z:x{rn 0 (A5, 25 Ay —Ipi1)Tn
bl —logdet(c 2%, )} . (12)
[sndn, -+ Sn-ny+1ln, As reported elsewhere (e.g., [10]), the maximization in) (12
Sy = : : . (7) can be simplified by ignoring the bias teiioy det(c 2%, ).
SmINn, * Smen, 1IN, Remarkably, expe_riment; i_n Section IV show that the rmlti
The followi bb - i i ful in th | performance loss is negligible over the SNR range of interes
e following abbreviations will prove useful in the sequel T, simplified detection rule reads as
A, = B,S| 8
n S8, ~ argmin u(s, 13
afn+1 = berlSnii (9) & Sn M( ) ( )
I1l. FAST NONCOHERENTSEQUENCEDETECTION with
In this section, we describe a fast algorithm to decode  oom
{sn}N-}' from the observationgr,, }'=' in the presence of plsn) = 7 ®s, T o (14)
channel uncertainty. In doing so, we assume {sat},,, are D, =0 (I — As, 2] AL) (15)
zero or othgrwise known. Qur algorithm is sequential in regtu = (As, ReAi + 0'217,,+1)71, (16)
in that it estimates the partial-sequenge:= [s,, ..., so]” for '
n=0,1,2,..., ultimately estimating the full sequeneg;_;. Wwhere (16) follows from the matrix inversion lemma.

In deriving our algorithm, we employ the BEM approximation We will now show that the detection rule (13) performs
(2) and treatd as zero-mean circular complex Gaussian wittmplicit minimum mean-squared error (MMSE) estimation of
known autocovariancd?y. Furthermore, we assume that thé. Denoting byésn the MMSE estimate o0& from r,, given
BEM is chosen to makeR, full rank and diagonal. In the knowledge ofs,,, we have

performance evaluation of Section IV, however, we will not .

assume that the BEM approximation (2) holds perfectly, and 0., = E{0r]|s,} E{r,r[l[s,} "r, (7)
hence will see the effect of BEM mismatch. = ReAi LT (18)



where (18) follows from the fact thab, = E{r,r|s,} 1.
Plugging (15) into (18), and then applying (11), we find

by, = o 2Ry (2o, 1AL — Al A, 3714l )1,

n n Sn
=3x.'Ar,, (19)
Then, from (14), (15), (19), and (11), we find
pisa) = rilrn vl A, B AS r,
= rfrn — éiAgﬂ"n — rfAsnésn + éiEsnésn

= |lrn — As, B, |2 — 6. AT A, 8. +6. %, 8.,

~ ~H ~

= |rn — As, 05, 2+ ‘720% Ra_lasn- (20)
Equation (20) shows that the noncoherent meris,,) can
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be written as the sum of a “coherent metric” with a term that N
reconciles the implicit channel estimate against the prifh
similar observation was made in [11].) Fig. 1. Complexity of proposed scheme relative to Kalman-PSP-LVA

. for various combinations of channel length and block length. Contour

B. Fast Metric Update label p indicates that Kalman-PSP-LVA ig)? times as complex.

Since the sequence detection algorithm must comp(dg)

at each timen, a fast algorithm to comput®; ' | from =, . .
is clearly of interest. Due to the rank-one updalg, ., = Roughly speaking, this correspondsig > 4 and N < 100.

S, o+ asn+1a§ , the matrix inversion lemma yields In computing the figure, We.assumed QPSK ggitl, = 0.005.
nt The BEM size N, (a function of N) was set equal to the

1 (E;}asnﬂ)(Z;ﬂlaan)H 21 number of significant eigenvalues of the channel correatatio

a (21) matrix. To evaluate Kalman-PSP-LVA complexity, we counted
the multiplies required of the algorithm in [4], assumiRg P
With the aid of (21), it is straightforward to show thats,) matrix inversion costg P* —2P? + 2 P multiplies (e.g., using
can be computed usirgjVy Np, (3+Np Ni, ) +(n+1)(NoNo+1)  Gaussian elimination), and noting that [4] assumed a firgéio
multiplications. Gauss-Markov channel model. For the M-algorithm, we used
M =4, and, for LVA, we used. = 4.

-1
3 =3
Sn+1 Sn H -1
1 + asn+1 (an a‘8n+1)

C. Suboptimal Tree Search

We propose to perform an approximate minimization iR- On Pilot/Guard Symbols
(13) via tree search. While many options exist, we chooseBecause the metric (13) lacks an absolute phase reference,
breadth-first search via the M-algorithm [6] since it offaesar- decoding ambiguities will exist for rotationally symmetri
optimum performance at low (and channel/SNR-independeatphabets (e.g., QAM or PSK). Furthermore, gain ambigsiitie
complexity. We now outline the M-algorithm assuming th&t amay exist for non-constant-modulus alphabets. These rscala
symbols in{sn}ﬁl’;o1 are unknown; a modification for known ambiguities, however, can be resolved by the use of a single
pilot/guard symbols will be described in the next sectioay S pilot. While we do not classify the methods described in
that, at then'" detection stage, the M-algorithm has a recorthis paper as “pilot-aided” per se (e.g., they unambiguousl
of the M surviving lengthn partial paths, whereM/ is a decode non-symmetric alphabets [12]), their performaand (
design parameter. The M-algorithm then computes the mettie performance of noncoherent MLSD) can be significantly
(20) for each lengtl{in + 1) extension of thes@/ paths and enhanced through judicious embedding of known symbols.
keeps only the besd/ of these extensions as survivors for For example, the achievable diversity is strongly influehce
the next stage. At the final stage, the best survivor is chodgynhow the lastV;, — 1 symbol locations are used. To see why,
as the full sequence estimate. Thidg|S| metrics need to be notice that a data symbol at indéX — k& would contribute to
computed at stage. Using the fast algorithm of Section I11-B, the observationgr,, }_ ! through thek channel coefficients
the total number of multiplications required to compéte_; {h:7l}f;01 and, hence, see at most"-order diversity. To
is 2NNy Nu (3 + NoNp) + N (N + 1)(Ny Ny, 4+ 1)]M|S|. prevent symbols transmitted in the Id8}, — 1 locations from

Figure 1 compares the complexity of the proposed technigaehieving less thanN,ih—order diversity—thereby dominating
to Kalman-PSP-LVA over a range of block lengtdé and high-SNR error-rate, we advocate the use of length-— 1)
channel lengthsv,. In particular, Fig. 1 shows contours of thezero-padding. As another example, decoding complexity can
complexity ratio of Kalman-PSP-LVA relative to the propdsebe strongly influenced by how the firdf, symbol locations
algorithm, where contour label indicates that Kalman-PSP-are used. IfN, > N, pilot symbols are placed at the
LVA is 107 times as complex. Thus, féV, N}, ) located above beginning of the sequence, then they can be used to compute
the “0"-labeled contour, the proposed algorithm is cheapex.reasonable initial channel estimate, allowing “caliiorst of



the noncoherent metric (20) before the M-algorithm dissaravith the aid of the/V,-length pilot sequence. For genie-aided
partial paths. Such a calibration allows good M-algorithivILSD, 6 was estimated using a full frame of (randomly-
performance with a small value éf (or, similarly, good PSP- generated) known symbols transmitted over an identicat-cha
LVA performance with a small value af). nel realization. We reason that MLSD with genie-aided

Note that a simple modification of the M-algorithm sufficeMSE-0 acts as a tight performance upper bound for any
to handle the case of arbitrary pilot/guard symbols: When tiB&=M-based noncoherent sequence detection scheme. In,Fig. 3
M-algorithm encounters a known symbol, each surviving pathe KL-BEM was employed, while in Fig. 4 the OCE-BEM
is given a single (rather thai$|-ary) extension. was employed. All traces used BEM ordd}, = 3.

Figures 3—4 show that, when the KL-BEM is used, the pro-
posed noncoherent sequence detector comes within a fractio

To generate DD channel realizations, we used a widef-a-dB from MLSD with genie-aided MMSE; and within
sense stationary uncorrelated scattering (WSSUS) Jakat®utl dB from MLSD with perfect CSl, for all tested values
model [13] with uniform delay-power profile, for whichof SNR andf47;. In comparison, Kalman-PSP-AR performs
E{hnih} 1o} = pmoide andof = 1/N,,. For the case about2 dB worse. When OCE-BEM is used, the proposed
of Rayleigh fading.,, = Jo (27 fqTsm), where 4T, denotes scheme performs similar to to Kalman-PSP-AR at low SNR,
the normalized single-sided Doppler spread dp(l) denotes but seems to avoid (or postpone) the error floor exhibited by
the 0*"-order Bessel function of the first kind. As suggestellalman-PSP-AR at high SNR. From the high-SNR slope of
by Section 1lI-D, the symbol sequence includaf leading the error traces, it can be seen that the proposed algorithm
pilots andN,;, — 1 trailing zeros. attains a diversity order aWV; = 3 for both BEMs.

We consider two choices of receiver BEM: Karhunerele Perf Vi T
(KL) [14] and oversampled complex exponential (OCE) [15](.:' er_ormance ersuf T
For the KL-BEM, b, , = [V].,, Where the columns of In Fig. 5, the prqposed KL-BEM and Kalman-PSP-LVA
V are the eigenvectors of the channel covariance matfigtectors were designed for fixef47; = 0.005 but then

corresponding to theV, largest eigenvalues. For the OCElested on differing values ofy7;. (The simulation parameters
b= with were the same as for Figures 3—4.) Figure 5 demonstrates

BEM basis, we start withb,, , = L i R (=" )
N that the robustness of the proposed algorithm (as well as Kalman-

oversampling factoX = 2, determine the statisticRy PR e
best match the channel covariance, then de-correlate gig b&>F LVA) to over-estimation of the Doppler spread. This is
an important practical consideration because known ttatis

vectors so thaiRy, becomes diagonal.
have been assumed throughout.

IV. NUMERICAL RESULTS

A. Suboptimality of Metric Simplification and M-Algorithm

Figure 2 compares the frame error rate (FER) of exact non-
coherent MLSD in (12) to that of the simplified SD criterion[i
in (13). To facilitate exact MLSD, the system parametersewe
chosen asV = 10, N, = 2, f4Ts = 0.005, N, =1, andS =
BPSK, where a KL-BEM with/N, = 2 was assumed at the

V. CONCLUSION

We proposed a scheme for near-optimal sequence detec-
on of uncoded block transmissions over unknown doubly
(rjispersive channels, focusing on the case of Gaussian elsann
with known statistics. Our scheme was based on suboptimal

Le_e search of a simplified noncoherent ML metric, and it

receiver. It can be seen that the performance loss due to V\J d th lorithm i . . ith f dat
metric simplification is negligible throughout the SNR raraf cverage t e M-algorithm in conjunction Wlt ast update o
MMSE-estimated BEM parameters. The inclusion of a few

Interest. F|gure'2 also sh'ov_vs'the FER when the. M-algor,thméﬁot& while not strictly necessary, was encouraged tiitiaie
used to approximately minimize (13), under various choafes

M. It can be seen that choosifg > 4 results in performance the use of rotationally symmetnc .symbol aIphabet;, the use
L . of facilitate low-complexity decoding, and the achievemen
that is within0.2 dB of optimal.

of N}/"-order diversity. Numerical experiments showed that
B. Performance Versus SNR the proposed algorithm performed within a fraction-of&-d

frO{n MLSD with genie-aided MMSE channel estimation, and

seFlug:r:Ez deei?;?p(a;fhtfhe_FSTOOLQESSEZS; ?_\?A? rz\?v?tmerggoutl dB from MLSD with perfect CSI. Furthermore, the
a o\ roposed algorithm was found to be robust to mismatch in

L = 4) and to two genie-aided schemes: MLSD with perfect e assumed Doppler spread. The experiments also showed

known {h,, ; }, and MLSD with a genie-aided MMSE estimate[ : .
e _ hat the proposed algorithm outperformed Kalman-PSP with
of 6. In both figures, subplot (a) correspondsftd’, = 0.002 list-Viterbi, while at the same time requiring less comjigx

while subplot (b) corresponds tgy7; = 0.005. For all .
experiments N — 64, N, — 3, S — BPSK, andN, — 9. (assuming channel lengf;, > 4 and block lengthV < 100).
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