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Abstract— Single-carrier cyclic prefix (SCCP) has been pro- aspects of the OFDM modification [12] translate directly to

posed as an alternative to orthogonal frequency division m  SCCP, there are a number of important differences between
tiplexing (OFDM). While the implementation complexity of the the two systems.

two schemes are comparable, SCCP avoids the peak-to-aveeag hi ded ab . h del
power ratio problem that plagues OFDM. Both OFDM and SCCP In this extended abstract, we review the system model, sum-

receivers leverage the fast Fourier transform for computaionally- ~marize our preliminary work, and present preliminary resul
efficient frequency-domain equalization. For channels thaare We will use the following notation throughout:)! denotes
significantly time-varying, however, frequency-domain eqaliza- transpose(-)* conjugate, and-)* conjugate transposé.b)
tion alone is inadequate. Several OFDM receiver modificatios denotes a circulant matrix with first columb, D(b) the

have been proposed for this time-varying case, including an . . .
which uses linear pre-processing and iterative estimationo yield ~diagonal matrix created from vectd;, F' the unitary DFT

excellent performance with low complexity. Here we designra Matrix, I the identity matrix, andi;, the k' column of I.
SCCP receiver based on similar concepts. Expectation is denoted b{-}, covariance byCov{b, ¢} :=

E{bc} — E{b} E{c"}, element-wise multiplication by»,
. INTRODUCTION the Kronecker delta by(-), and modulo’ by (-) .
Orthogonal frequency division multiplexing (OFDM) [1],
[2] has become a popular modulation format for digital Il. SYSTEM MODEL
communication in the presence of time-dispersive mulipat \ye yses — [S0, ..., sn_1]t to denote anV-block of (time-
This is in large part due to the low complexity equalizatioaomain) finite-alphabet symbols that is cyclically prepesd
afforded by OFDM's use of the fast Fourier transform (FFT)ior 1o transmission. The time-domain receivéévector,
OFDM has the disadvantage of large peak-to-average pOWgkr removal of the guard interval which is assumed at least

ratio (PAPR) relative to single-carrier systems, howewsich 55 |ong as the channel impulse response, can be written [3]
leads to the requirement for expensive transmitter power am

plifiers. Single-carrier cyclic prefix (SCCP) was proposed a r = Hys +v. (1)

an alternative to OFDM (3], [4]. Like OFDM, SCCP transmits

blocks of data separated by guard intervals and leverages FiHere v contains i.i.d. zero-mean circular Gaussian noise
to accomplish frequency-domain equalization. Unlike OFDM@mples (independent @) with varianceo?, Hy is a (time-
SCCP transmits QAM symbols, thereby circumventing thériant, circular) convolution matrix such that{y],, =
PAPR problem. Whereas OFDM uses ofepoint FFT at hua(n, (n — 1) y), and hy(n, 1) is the response of the channel
the transmitter and another at the receiver, the SCCP empl@y timen to an impulse applied at time — [. Time-domain
two N-point FFTs at the receiver and none at the transmittdfindowing with coefficient vectob prior to the N-point DFT
Though SCCP’s asymmetry may not be advantageous, @sr Yields the “frequency-domain” observatian

PAPR solution may be more important in some applications.

Fast circular convolution is an appropriate means of combat z=F D(b)H“S; FD(b)v 2)
ing time-dispersive multipath fading, i.e., linear time-invatian = C(B)FHuF"t+C(B)Fv 3)
(LTI) channels. For channels that are almuencydispersive, = C(B)Hgit + C(B)w, (4)

i.e., linear time-varying (LTV), circular convolution ale is

not sufficient [5]-[7]. A number of authors have recentiyvhere we have usetl:= Fs, w := Fv, Hqt := FHyF",
proposed modifications of OFDM for this doubly-dispersivd = Fb/VN and the circulant matrix propert¢(g) =
environment (see, e.g., [8]-[12] and the references thpreif’ D(VNF g)F.

In [12], O(N) low-complexity linear pre-processing was Using the approach outlined in [12, (or, equivalently,3)
employed in conjunction withO(IN) iterative estimation to can be designed to ensure that the matt{)Hg: approx-
yield excellent symbol estimation performance. This pap8pates the banded structure illustrated in Fig. 1. Assuming
investigates the applicability of [12] to receivers for SECWwide-sense stationary uncorrelated scattering (WSSUS) [1

in doubly-selective channels. We shall see that, while mah§- E{hu(n, )hi(n — g,1 —m)} = ri(q)oid(m) wherer(q)
denotes the-lag autocorrelation normalized so thaf0) = 1

IThis work is supported in part by NSF CAREER Grant CCR-023703 ando? denotes the variance of thé tap, window coefficients
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Fig. 2. Iterative symbol estimation procedure.
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designed to maximize the signal to interference-plusenois -- - -
ratio (SINR) inx are given by (5)-(7) below [12]

Fig. 3. Truncated observation model.
b, — v, (A@R, (02 +Zaf)I—A@R> (5)
l

) A. Linear Estimation with Priors
sin(% (2D + 1)(n —m))

[A],,,,, = — (6)  The banded structure off suggests that linear estima-
' Nsm(—(n—m)) . ) . . .
N tion of a particular element;, might be accomplished with
[R]m,n = ZU? re(m —n), (7) reasonable accuracy from the truncated observatipn:=
1 [Tk_D, ..., 7k p]t, With indices taken moduldv, as opposed

wherev, (B, C) denotes the principle generalized eigenvalu@ the full observatione. (See Fig. 3.) We hope to realize
[14] of the matrix pair (B,C). D is a design parameterSUbStam'a' complexity reduction in doing so. Thus
typically chosen a® = [fyN] + 1 when f4 is the (channel-
use normalized) maximum Doppler frequency. Say that
C(B)Har = Mp (C(B)Har) + Mp (C(B)Har), WhereMp(-)  where;, contains rows{k — D, ...,k + D} of H andC,

is a mask operator which passes the elements in the shagggtains rows{k — D, ...,k + D} of C. The MMSE linear
area of Fig. 1 and zeros the rest, and whefg (-) is the com- estimate oft;, given ay, is [15]

plement of Mp (-). With proper window design, we claim thatA
Mbp (C(B)YHgt) ~ 0. Then, defining? := Mp (C(8)Har) and &, = E{ti} + Cov(tw, xr) Cov(wk, @) " (zr — E{wr})(10)
C :=(C(B), we obtain theapproximatesystem model (8):

T = ﬁkt+0kw = ﬁsz+Ckw, (9)

Recalling E{w} = 0, Cov(w,w) = o2I, Cov(s,w) =

x = Ht + Cw 0, assuming uncorrelatedls;}, and definings := E{s},
t — Fs. (8) D(v) := Cov(s, s), andt := Hs, (10) becomes
[1l. | TERATIVE ESTIMATION i, = T+ gt (x) — Hib) (11)
(1Y HAYH 2 H\ 1, H.:
In this section we focus on the estimation of the finite?x “= (H’“FD(U)F T +o Ckck) HkFD(U)F(lsz)

alphabet symbol vectog from x assuming (8) with known

‘H. Though channel estimation is an important issue, we

not address it here for reasons of space. Our symbol estimati 5=Fli o 35 = ifIFHZikfk. (13)
k

(%)m which estimates 0§ can be obtained as

procedure, illustrated in Fig. 2, is iterative.
Given current guesses of the log-likelihood ratios (LLRE) o N ]
the symbols{s;,} (which, on the first iteration, are set to zero)B- A Conditionally Gaussian Model

the means and variances of the elements iare calculated | everaging the finite-alphabet structure of the eleménits

ass andw, respectively. These are then transformed into thghd assuming reasonably larye(to invoke the Central Limit
mean and covariance of Using linear MMSE estimation and Theorem), we assume that the estimation error is Gaussian, o
incorporating these mean/variance priors, the eleménty equivalently, that the estimates are conditionally Garssi

are estimated one-at-a-time, leveraging the banded stauct v _

of H for complexity reduction. The resulting estimatesre (3]st = b) = 1 ¢<§lm - 1" (b)) (14)
then transformed back into the-domain, from which the ! oi”(b) oi”(b) ’

LLRs are updated. To accomplish this last step we assume ) ‘ ,

a conditionally-Gaussian model for the estimafés}. The Where o(w) = —=e™", 1" (b) = E{5”|sy = 0}, and
procedure then repeats, starting with the most recent LBRs.[o;"” (b)]? := Cov(s”,5;”|s; = b). In the sequel, we restrict
more detailed description is given below. When appropriateurselves to the BPSK alphabet so that {—1,+1}; QAM
we use the superscrifit to denote thet” iteration. extensions are straightforward but tedious (see, e.g]).[16




From (13) and the definition qf;” (b),
P (b) = iHFHZik E{E s = b}
FTY (“ D+ g (Bfals = b} - HiE) ) (15)

_(” + zH FH(szg(” Hk)le(b — s“))

_ Q(i)H

—()) = (1- ()*)
where in (15) we used the fact th:E{a:k|sl = b} =
HiF (89 +ii(b—5")) = H t_‘)—i—Hszl( —5;"). Next we

find an expression fojo;” (b)]?. Before doing so, however, it
will be convenient to note from (11) and (13) that

=1 FHZ’Lk(t( Y +g( )H( xp — 7‘?1@{(1)))
i Zz (& + g™ (HiFs + CLFv — Hy F5) )
_(1) + ZHFH (Z’L g(T)HHk) (
(Z zkggc)HCk)FV
k
= p0H

50 +41QV (s — 39) + 4/ POy

s (0) + 41 QVM (s — 89 +4y(5)”

+Q( )*

57+ QT (- (16)

NO)
5y

§(i))

+'Ll

—b POy
) +i ’

and that, sinc&{s|s; = b} = 3 — 4;(5;" — b),

E{(s 59 +4(5” — b)) (s — 59 +4(s)" — b))H|sl = b}
Cov(s,s|s; =)

D(vD) — qyif .

(18)

Using (17), (18), and the definition of” (b),

o

®)* = E{(
ilHQ“)H(D(v(”)
q"" D(v")q;’

A2 7 ~ H
7= uf ) (51" — i (6) st = b
- H ”)Q“)zl—i-a ZHPmHP(n

i v
— Q1 (19)

?|lpy?

where g;” denotes the'™ column of Q” and wherep,”
denotes thé'" column of P,

C. Log-Likelihood Ratio and Update of Priors

The a priori and a posteriori log likelihood ratio (LLR)
are defined asL(s;) Pt and L(s]3)”)

@ 08 Ploi=—1)
%, respectively. The LLR updaté\(5(") :
S|=— Sl

log

L(s1|8;”) — L(s:) can be shown to equal
. p(3;"|s1 = +1)
A(S) = 1og -
( PGl = 1)
= (CDR =[50 — ()P
[oy” (1))
Re(QU (5~ 5) + IS0
= i i i 2 2 \
D QG + T
where we used the facts thaf’(+1) = o,”(—1) and
~(i i 2 ~ i 2
s —m (D[ =] - “(+1)!
— A(%) (1_ (1)*) (1)_|_Q(w)*
~[8 —a-eis” - el
= are{ (i~ (1= Q)
= 4Re{Q{1(3” — 5")} + Q1’5" (21)

since we will haves; € R with a BPSK alphabet.
Updating of the priors can be accomplished via

= > b-P(s; =0b|3") = tanh (%“”“)) (22)

beB

=S (b—5")P(s

beB

—<z+1)

vy —bj3") = 1-

(577 @3)

We set thea priori LLR for iteration i +1 equal to thea
posteriori LLR from iterationi. Denoting thea priori LLR
used in iteration by L®(s;), we obtain the LLR update:

L(i+1)(81) _ L(Sl'é;i)) = L(i)(sl)—FA(gEi)), (24)

We should point out that a soft decoding algorithm could be
easily embedded within the bottom path of Fig. 2 (e.g., [16])
If, on the other hand, hard symbol estimates are desired, the
can be generated vig” = sign(Re(5/”)) = sign(s”) =
sign(L(s;|3;”)). An algorithm summary appears in Table I.

D. Efficient Implementation

Many of the quantities in the algorithm outlined in Table |
have structures that lead to efficient computation.

C.C¥ is a sub-block oiCC*" = C(F(b® b*)/V/N), the
latter of which requiresO(N log N') operations to compute.
Furthermore, the Toeplitz nature &C* implies that the
subplotC,CY is identical for everyk. Thus,CoC¥ can be
calculated once and used for all iterations andkall

Although H;, is an (2D + 1) x N matrix, it contains
only 4D + 1 non-zero columns. Thus, calculation f, "’
and Hf' g\ require O(D?) operations and must be doné
times per iteration. Calculation (ﬁ:k 0 HHggth requires
O(ND?) operations and must be done once per iteration.
Calculation of F D(v®)F¥ requiresO(N log N) operations
and must be done once per iteration. G\VED (v®)FH,
calculation of HyF D(v®)FAHT andH, F D(v®)Fi,
requireO(D?) andO(D?) operations, respectively, for eakh
Note that the matrix inverse used to compgjeis performed



LO(s) =0 W
for i=0.
for l = O N —1,
59 = tanh(L<"')(sl)/2)
ug” =1-(5)2
end
) = F3
for k:O...N—l,
g\ = (Hp FD(w)FHHE + 62C,CH) ' Hy FD(v)FHiy
t( i) _ t( i) +g( )H(mk _ ﬁkf(i))

end
QW = FH ZN lHkgk k;F

i) — H N—-1 H (i) :H
PO =F1 (3,755 Cla i )F
30 = FHi(l)
for 1=0...N—1,
) Re{QU)(g(%) _ —(I))} + |Q(i)|2§(l)
L("+L>(sz):L(l)(s;)+4 o [ lm L = (l)l-,l Al
q; D(v<’))ql - ‘QUlez +‘72Hpi”2

end
end

TABLE |
SUMMARY OF |ITERATIVE SYMBOL ESTIMATION ALGORITHM.

on a(2D+1) x (2D+1) matrix. Thus, for computatiofig;’},
we requireO(N D?) operations.

To update the likelihoods L% (sy)
cially mterested in the computatlon 04" D(w?)g" 1N L,
{Qi s and ([P 1715
guantities eliminates the need to explicitly comp@€&’ and
P For brevity we omit superscript® in the sequel.

N—-1

1) Computation of g D(v)q, }n-,": From the definition

of Q and the results in the appendlx we know that

- Ly o

d=—2D

Fad (m—mn) (25)

where ay is E\tleldth sub-diagonal ofy>) ' Hf g,it, i.e.,
[adm = [Xrso Hf gkzkhdﬂnm,m Writing oy = Fagq
andag,m = [odlm, we find

N-1
v)gp = Y [Quil*vn (26)
n=0

2D .
e J W"(l*d)ad,(k—n)Na?a(k_">N(27)

[ U(kfm)N Z e*j%r(l*d)(kfm)ad,mazs’AZB)
d,l=—2D
where we usedn = (k—n)y so thatn = (k —m), If
we defineB,(d,l) == agmof,,e’ ¥ =D™ and D(d,1) =
D([e= I F =0 .’efj%“(l*d)(N DY), then

[QO D( )(IOa ai’ D(v)qy, -

t
) qﬁfl D(”)(IN—l]

— Z D(d,1)C(v)B(d,1) (29)
dl7—2D
1 2D

- = > D, )FD(F"v)F"B(d,1) (30)

d,l=—2D

k=0 » WE are espe HpkH2 _

. Direct computation of these

Thus computation ofg D(v)q,,}+ -, can be accomplished
by calculating a few FFTs for each combination ff, 1},
requiring a total ofO(D?N log N) operations.

2) Computatlon of Q. k N*O : From (25), we know that

Qrr = T 2D e ¥ We could either calculate

{Qrx}ny" directly in O(DN) operations or via an IFFT in
O(N log N) operations sincéQo.0, @11, - -
F™ag0, 1,05, an—1,0]".

3) Computauon 0f{||pk|| Recall thatp, = Piy
where P = F7Y", CHg il F. If g, is a lengthA zero-
padded version ofg, such that[g,|i—pin), = [gkln
for n € {0,...,2D + 1}, then Cfg, = C"g,. This
implies thatP = FCc”Y", g,i/ F = FYCYGF =
D(b*)FYGF, where G ¢ CV*N s constructed using,
as its k' column and, by definitionC = FD(b)F,
This yields |p, |2 = 3, [b.[F” GF],, x|?. Note thatG is
banded with2 D+1 active diagonals. In the appendix we study
matrices of the formF” GF and find that[F* GF], ) =
S Y p e Fay oy, where nowa, = Fay such
thata, is the d"” sub-diagonal ofG. Thus

5 QN*LN*l]t =

}Nl

N-1
> Z ¥ g o (31)
n=0 d=—D
1 N—-1
=% by, |2 Z e IFnU=dy, o ) O (ke (32)
n=0 d,l=—D
1 N—-1 D
g2 —m *
= 5 2 by [ > e FENEag af,, (33)
m=0 dJl=—D

Reusing the definitiong,,, (d, 1) := Ad,mQ €
D(d,l) :=D([e ¥ =)0 =iF(=)N-1]) we have
t
[Hpollz, le”2 ) ||PN71H2}
1 D
=% 2 D@ncbobpsdl (34)
dl=—D
1

D
- D(d,)FD(F" (b b)) F?3(d,1) (35)
7w 2, P pEet)

Thus {||p, || }N ! can be calculated using a few FFTs for
each comblnatlon ofd, 1}, requiring a total of2(D?N log N)
operations.

To conclude, the iterative symbol estimation algorithm-out
lined in Table 1 requires onlY)(D?N log N') operations per
iteration to estimateV symbols.

IV. SIMULATION RESULTS

In Fig. 4 we plot the simulated (uncoded) symbol error rate
versus SNR= —101log;, 0% for BPSK in WSSUS Rayleigh
fading channels (generated using Jakes model [13]) with
uniform power delay profile and unit energy (i.8, 07 = 1).

The SCCP block length i& = 128 and both the channel delay
spread and guard interval length a4 samples. Each trace
represents results averaged from 5000 channel realization



algorithm evolves log-likelihood ratios, a soft decodirigge
could easily be embedded (e.g., [16]) to further improve
performance.

APPENDIX

SayH < CV*N has the banded structure of Fig. 1 but with
2PD +1 active diagonals. Now defing, ,,, := [H](nym) ,.m
forn € Z andm € {0,1,...,N — 1}, so that[H], ,, =
Un—m,m- The vectoray := [aq,o, - -
ements on thd*" sub-diagonal o, so thatH is completely

.yaq,n—1]! collects the el-

described by thePD + 1 vectors{a_pp,...,app}.
ExaminingB = FZ HF, we find that
) 1 N—1N-1
- 270 - 270
10°F  fd=0.001 4 10°F  fd=0.01 4 10°F fd=0.03 4 [ — Jjank —Jjim
D=1 D=3 D=5 Brn.m N Z Z ¢ Ok—1,1€
N=128 N=128 N=128 k=0 [=0
W Yo e Y 1 B =
SNR SNR SNR = N Z el nnd Z ad,leijﬁl(min)
d=—PD 1=0
Fig. 4. Symbol error rate versus SNR after 10 iterations o= 128 and 1 rD 2w
WSSUS Rayleigh fading with various cases{gf;, D}. = \/—_ Z el N [Fad]<m_n>N.
N d=—PD
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