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Sparse Linear Regression

Sparse Linear Regression

In sparse linear regression, we want to learn a sparse weight vector
x ∈ X ⊂ RN that matches the observed data

y = Ax+w ∈ RM

where
A ∈ RM×N is a matrix that may represent collected feature data or a
physical measurement process (e.g., a blur kernel in image restoration),
w represents an additive perturbation or modeling error,
N �M in many cases of interest, in which case A is assumed to be
a stable embedding from X to RM .

Note: We could easily generalize to complex-valued y,A,x,w if needed.
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Sparse Linear Regression

Minimization of regularized squared loss

A popular approach to recovering x is via the optimization problem

x̂ = argmin
x

1
2‖y −Ax‖22 + λG(x)

where ‖y −Ax‖22 penalizes residual loss, G(x) promotes sparsity
(e.g., convex G(x) = ‖x‖1 or ‖x‖qq for q < 1), and λ is a trade-off
parameter.

A Bayesian interpretation of the above is that x̂ is the MAP estimate
of x under the prior pdf f(x) ∝ e−λG(x)/νw and error w ∼ N (0, νw).

For now, we focus on the simple case of separable regularizers, i.e.,
G(x) =

∑N
j=1 gj(xj), such as ‖x‖1 and ‖x‖qq, which corresponds to a

statistically independent weight prior, i.e., f(x) =
∏N
j=1 fj(xj).
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Sparse Linear Regression

Minimization of mean-squared weight error

In practice, we may instead want the MSE-optimal estimate of x:

x̂ = E{x|y} =
∫
x f(x|y)dx for posterior pdf f(x|y) ∝ f(y|x)f(x)

rather than the solution to a surrogate optimization problem.

Assuming error w ∼ N (0, νw) and statistically independent weights,

f(x|y) ∝
N∏
i=1

N (yi;a
T
i x, ν

w)
N∏
j=1

f(xj),

where aT
i denotes the ith row of A.

Due to the aT
i x coupling term in the posterior f(x |y), the

high-dimensional integral does not decouple and thus exact MMSE
inference is computationally intractable.
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Sparse Linear Regression

The factor-graph representation

Recall that the previously discussed MAP and MMSE solutions are the
maximizer and mean, respectively, of the posterior pdf

f(x|y) ∝
M∏
i=1

N (yi;a
T
i x, ν

w)

N∏
j=1

f(xj),

which can be visualized
using a factor graph:

(White circles are ran-
dom variables and black
boxes are pdf factors.)
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Sparse Linear Regression

Inference via the factor graph: Message passing

The factor-graph representation leads to two inference algorithms:
sum-product algorithm → marginal posteriors {f(xj |y)}Nj=1 → MMSE
max-sum algorithm → MAP

both of which pass locally computed messages around the graph.

When the factor-graph contains no loops (i.e., is tree-structured),
both methods yield exact estimates, but with loopy graphs (like ours)
the inference is usually only approximate.

In any case, the computations needed by the (exact) sum-product and
max-sum algorithms are still intractable in the high-dimensional case.
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Sparse Linear Regression

AMP Heuristics (Sum-Product)

f(x1)

f(x2)

f(xN )

x1

x2

xN

p1→1(x1)

pM←N (xN )

N (y1; [Ax]1, ν
w)

N (y2; [Ax]2, ν
w)

N (yM ; [Ax]M , νw)

...
...

...

1

1 Message from yi node to xj node:

pi→j(xj) ∝
∫
{xr}r 6=j

N
(
yi;

≈ N via CLT︷ ︸︸ ︷∑
r airxr , ψ

)∏
r 6=j pi←r(xr)

≈
∫
zi

N (yi; zi, ψ)N
(
zi; ẑi(xj), ν

z
i (xj)

)
∼ N

To compute ẑi(xj), νzi (xj), the means and variances of {pi←r}r 6=j suffice,
implying Gaussian message passing, like in expectation-propagation.
Remaining problem: we have 2MN messages to compute (too many!).

2 Exploiting similarity among the messages
{pi←j}Mi=1, AMP employs a Taylor-series
approximation of their difference whose
error vanishes as M→∞ for dense A (and
similar for {pi←j}Nj=1 as N→∞).
Finally, need to compute only O(M+N)
messages!
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Sparse Linear Regression

Approximate message passing (AMP)

When A is large and dense, central-limit-theorem and Taylor-series
approximations1 can be applied to drastically simplify both the sum-product
and max-sum algorithms, reducing them to (for avg{|aij |2} = 1

M ):

for t = 1, 2, 3, . . .

v̂(t)= y −Ax̂(t) + N
M

νx(t)
νr(t−1) v̂(t−1) Onsager-corrected residual

r̂(t)= x̂(t) +ATv̂(t) back-projection update
νr(t)= νw + N

M νx(t) or 1
M ‖v̂(t)‖22 error-variance of r̂(t)

x̂(t+1)= g
(
r̂(t), νr(t)

)
nonlinear thresholding step

νx(t+1)= νr(t) avg
{
g′
(
r̂(t), νr(t)

)}
error-variance of x̂(t+1)

end

for
{
sum-prod: g(r̂, vr)=E{X|R = r̂} for R=X+E, X∼f(x), E∼N (0, νr)
max-sum: g(r̂, vr)=proxνrf (r̂) = argminx f(x)+ 1

2νr (x− r̂)2

1Donoho, Maleki, Montanari, PNAS 2009 & Rangan, arXiv:1010.5141, 2010.
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Sparse Linear Regression

AMP in perspective

As described, the inputs to AMP are the weight priors {f(xj)}Nj=1, the
noise variance νw, the choice of sum-product or max-sum, the
measurement vector y, and the operators A and AT.

By choosing appropriate priors {f(xj)}Mj=1, one can use AMP to solve
many different linear regression problems. For example, to solve the
LASSO problem, we’d run max-sum AMP with Laplacian f(xj).

The outputs of sum-product AMP are in fact the full marginal
posteriors f(xj |y), not only their means, the MMSE estimates x̂j .

The full marginal posteriors report estimate uncertainty and facilitate
tasks such as support detection,2 tuning,3 and active learning.4

2Schniter CISS 2010.
3Vila & Schniter SAHD 2011, arXiv:1207.3107.
4Schniter CAMSAP 2011.
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Sparse Linear Regression

AMP in perspective (cont.)

AMP is a so-called first-order algorithm; its computational complexity
is dominated by one operation of Ax̂(t) and ATv̂(t) per iteration.

AMP can directly exploit fast operator implementations of A and AT,
such as with Fourier, Wavelet, Hadamard transforms, and even sparse
matrices.

AMP is a form of iterative thresholding that uses an “Onsager”
correction term to ensure that

r̂(t) is an i.i.d-Gaussian corrupted version of the true x.
This concept is key to understanding the how & why of AMP!
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Sparse Linear Regression

AMP in theory

For large A with entries drawn i.i.d zero-mean sub-Gaussian, a
state-evolution5 characterizes the per-iteration MSE, E{(X̂j(t)−Xj)

2}.
Morover, when the state-evolution fixed-points are unique, the
marginal posterior pdfs f(xj |y) of sum-product AMP converge to the
true pdfs, and thus the MMSE estimates x̂(t) become exact.

For generic A, the fixed points6 of max-sum AMP minimize the
optimization objective (i.e., are exact), while those of sum-product
AMP minimize a particular variational objective based on
independent-Gaussian approximations of KL divergence.

Note: these analyses study the AMP algorithm itself, not the
belief-propagation approximations used to derive AMP.

5Bayati & Montanari, arXiv:1001.3448, 2010
6Rangan, Schniter, Riegler, Fletcher, Cevher, arXiv:1301.6295, 2013
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Sparse Linear Regression

AMP in practice

With “well-behaved” A, AMP
runs much faster than typical
sparse linear regression
algorithms, e.g., FISTA:

With “poorly behaved” A
(e.g., strongly correlated
columns/rows), AMP will
diverge unless its iterations
are damped. 200 400 600 800
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An adaptive damping mechanism has been included in the open-source
GAMPmatlab toolbox (http://sourceforge.net/projects/gampmatlab)
that varies the amount of damping so that the objective decreases
across iterations.
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Choosing & Learning Weight Priors

Choosing weight priors

As previously described, AMP algorithms can be formulated around
different choices of weight prior f(xj). Note that this prior can vary
with the coefficient index j (so we should really be writing fXj (xj).)

In some cases we are forced to work with an established criterion (e.g.,
LASSO) or we have good prior knowledge of the true f(xj).

Then all that remains is to derive the nonlinear thresholding function:

sum-prod: g(r̂, vr)=E{X|R = r̂} for R=X+E, X∼f(x), E∼N (0, νr)
max-sum: g(r̂, vr)=proxνrf (r̂) = argminx f(x)+ 1

2νr (x− r̂)2

In the case that closed-form expressions do not exist, a scalar Gaussian
mixture7 (GM) approximation can be used to mimic the desired f(xj)
with arbitrarily high accuracy.

7Vila and Schniter, arXiv:1207.3107, 2012.
Phil Schniter (OSU) AMP Tools for Large-Scale Inference OSU-LAIR 2013 15 / 31



Choosing & Learning Weight Priors

Learning weight priors

Often we don’t know the weight prior f(xj) in advance, even though
reconstruction MSE would benefit from knowing it.

Fortunately, in the high dimensional setting, we can learn the weight
prior from the noisy compressed measurements y.

For example, we can learn a GM approximation of f(xj) by using
expectation maximization8 iterations outside AMP, yielding MSE
performance virtually indistinguishable from knowing f(xj) in advance!

In the high-dimensional limit, the estimates returned by the EM
procedure converge to maximum-likelihood estimates.9

In addition, we can simultaneously learn the data-error variance νw.

8Vila and Schniter, arXiv:1207.3107, 2011.
9Kamilov, Rangan, Fletcher, and Unser, arXiv:1207.3859, 2012.
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Choosing & Learning Weight Priors

Algorithm comparison 1

Recall: higher phase-transition-curve = better algorithm.
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Here, the non-zero elements of x were drawn independent zero-mean Gaussian.
EM-GM-AMP learns and exploits the true weight prior!
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Choosing & Learning Weight Priors

Algorithm comparison 1

Recall: higher phase-transition-curve = better algorithm.
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EM−GM−AMP

RVM via BCS

Subspace Pursuit

OMP

LASSO via AMP

LASSO theory

Here, the non-zero elements of x were = 1.
EM-GM-AMP learns and exploits the true weight prior!
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Generalized Linear Models

Generalized linear models

Until now we have assumed linear regression under quadratic loss, i.e.,
that the observations y are i.i.d-N -corrupted versions of the (hidden)
linear transform outputs z , Ax:

f(y|z) =
M∏
i=1

f(yi|zi) with f(yi|zi) = N (yi; zi, ν
w)

But there are many applications that need a more general f(yi|zi):
outliers: yi = zi + wi with super-Gaussian wm
binary classification: f(yi|zi) = [1 + exp(−yizi)]−1
quantization: yi = quant(zi)
phase retrieval: yi = |zi|
OFDM comms: f(yi|zi) = sizi + wi with unknown symbol si

Fortunately, the Generalized AMP (GAMP)10 extension tackles these
generalized-linear inference problems.

10Rangan, arXiv:1010.5141, 2010.
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Generalized Linear Models

GAMP in perspective

GAMP is very similar to AMP but it uses two non-linear thresholding
steps: one produces the weight estimate x̂(t) and the other produces
the transform estimate ẑ(t).

Max-sum GAMP can be interpreted as a primal-dual algorithm
(Arrow-Hurwicz in particular) with adaptively controlled step-sizes.11

Like with AMP, experiments show GAMP running much faster than its
peers.

All AMP theory can be extended to GAMP: the state evolution12 for
large i.i.d sub-Gaussian A and the fixed-point analysis11 for generic A.

11Rangan, Schniter, Riegler, Fletcher, Cevher, arXiv:1301.6295, 2013
12Javanmard and Montanari, arXiv:1211.5164, 2012.
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Generalized Linear Models

GAMP enables “co-sparse” or “analysis” models

So far we have been operating under the “synthesis” framework, where
x is, say, a sparse (e.g., wavelet) representation of an image s = Ψx,
yielding problems like LASSO

x̂ = argmin
x
‖y −ΦΨx‖22 + λ‖x‖1 and then ŝ = Ψx̂.

An alternative is the “analysis” framework, e.g., TV regularization

ŝ = argmin
s
‖y −Φs‖22 + λ‖Ψ+s‖1.

The two are equivalent when the dictionary Ψ is invertible, but not
when the dictionary is overcomplete, as is often the case of interest.

GAMP can be used13 to solve the analysis problem via the
augmentation A =

[
Φ
Ψ+

]
and appropriate definition of {f(yi|zi)}i>M .

13Borgerding, Schniter, Rangan, 2013.
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Turbo-AMP for structured models

Breaking the independence assumption

AMP & GAMP were derived under the independence assumptions

f(x) =
∏
j

f(xj) and f(y|z) =
∏
i

f(yi|zi).

But in many applications, x or y|z are known to be structured and
exploiting this structure can often dramatically aid inference:

Persistence-across-time in multi-observation problems
Persistence-across-wavelet-scale in natural images
Persistence-across-delay in sparse impulse responses
Persistence-across-space in change detection
Code structure in communications

Such structure can be modeled via structured sparsity (e.g., block-,
tree-, field-structured), amplitude correlation, and other methods.
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Turbo-AMP for structured models

Augmenting the factor graph

As a tangible example, consider recovering a sequence of sparse vectors
{x(l)}Tl=1 from the sequence of compressed linear observation vectors

y(l) = Ax(l) +w(l), l = 1, . . . , T

where x(l) = d(l) � θ(l), with support d(l) ∈ {0, 1}p and amplitudes θ(l)

that both vary slowly over time l.
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To tackle such applications, the
“turbo AMP” methodology14 uses
sum-product message-passing
with AMP approximations in the
dense portion of the factor graph.

In this application, turbo-AMP’s
MSE nearly matches that of the
support-oracle Kalman smoother.

14Schniter, CISS 2010; Ziniel and Schniter, arXiv:1205.4080, 2010.
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Turbo-AMP for structured models

Learning the structural hyperparameters

When modeling structure across coefficients, one faces the burden of
specifing additional hyperparameters.

For example, on the previous slide, one would need to specify the
support transition probabilities f(d(l)n |d(l−1)n ) and the amplitude
correlation E{θ(l)n θ

(l−1)
n }.

Fortunately, in the high-dimensional regime, these structural
hyperparameters can be learned on-the-fly using an EM procedure
similar to that discussed earlier.

An object-oriented implementation15 of this EM-turbo-AMP
methodology is included in the GAMPmatlab toolbox
(http://sourceforge.net/projects/gampmatlab).

15Ziniel, Rangan, and Schniter, SSP 2012.
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Bilinear extensions

Generalized-bilinear inference

Until now we have considered (generalized) linear problems:

Estimate x given (y,A) under likelihood f(y|z), where z = Ax.

But many important problems are (generalized) bilinear, i.e.,

Estimate (A,X) given Y under likelihood f(Y |Z), where Z = AX.

For example. . .

Matrix completion:
Z = AX is a low-rank matrix and f(Y |Z) hides certain elements.

Robust PCA:
Z = AX is a low-rank matrix and f(Y |Z) models outliers.

Dictionary learning:
A is dense, X is sparse, and f(Y |Z)|Z=AX models small errors.
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Bilinear extensions

Bilinear Generalized AMP (BiG-AMP)

The AMP framework has been
applied to the generalized-bilinear
factor-graph on the right, yielding
the BiG-AMP16 algorithm.

Furthermore, EM and turbo exten-
sions have been developed for au-
tomatic parameter tuning and ex-
ploitation of structure across the
elements of A and X. l

k

i
j

xjl p(yil|zil) aikp(xjl) p(aik)

1

Experimental results show state-of-the-art performance for BiG-AMP in
matrix completion, robust PCA, and dictionary learning applications.

16Parker, Schniter and Cevher, ITA 2012, arXiv:1310.2632
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Conclusion

Conclusion

AMP provides a fast and flexible approach to classical sparse linear
regression with theoretical guarantees for large i.i.d sub-Gaussian
matrices and known fixed-points in general.

GAMP extends to the generalized linear model, enabling, e.g., logistic
regression, phase retrieval, and TV-regularization.

GAMP can be run inside an expectation-maximization (EM) loop to
learn and exploit the true weight prior and data likelihood, since
usually these are apriori unknown.

Turbo-GAMP exploits structure across the weights {xj} and the
conditional observations {yi|zi}.
BiG-AMP extends all of the above to generalized bilinear inference
problems like matrix completion, robust PCA, and dictionary learning.

All of the above is implemented in the GAMPmatlab toolbox.
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