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Sparse Linear Regression

Sparse Linear Regression

In sparse linear regression, we want to learn a sparse weight vector
x € X C RY that matches the observed data

y=Ax+weRY

where

m A € RM*N is 3 matrix that may represent collected feature data or a
physical measurement process (e.g., a blur kernel in image restoration),

m w represents an additive perturbation or modeling error,

m N > M in many cases of interest, in which case A is assumed to be
a stable embedding from X to RM.

Note: We could easily generalize to complex-valued y, A, =, w if needed.
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Sparse Linear Regression

Minimization of regularized squared loss

m A popular approach to recovering x is via the optimization problem
& = argmin 1 ||y — Az||3 + \G(z)
xr
where ||y — Az||% penalizes residual loss, G(z) promotes sparsity

(e.g., convex G(x) = ||||1 or ||z||? for ¢ < 1), and X is a trade-off
parameter.

m A Bayesian interpretation of the above is that & is the MAP estimate
of  under the prior pdf f(z) o< e 2@/ and error w ~ N(0,v%).

m For now, we focus on the simple case of separable regularizers, i.e.,
G(x) = Zjvzl g;(z;), such as |lz||; and ||z||?, which corresponds to a
statistically independent weight prior, i.e., f(x) = Hf;l fi(zy).
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Sparse Linear Regression

Minimization of mean-squared weight error

m In practice, we may instead want the MSE-optimal estimate of x:
& —E(aly) = [ f(aly)de for posteror pdf f(aly) x f(y]) /(@)
rather than the solution to a surrogate optimization problem.
m Assuming error w ~ N (0,") and statistically independent weights,
N N
fly) o< [[N (s al @, v) T f(=)),
i=1 j=1
where a] denotes the i'* row of A.

m Due to the a] x coupling term in the posterior f(x|y), the
high-dimensional integral does not decouple and thus exact MMSE
inference is computationally intractable.
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Sparse Linear Regression

The factor-graph representation

Recall that the previously discussed MAP and MMSE solutions are the
maximizer and mean, respectively, of the posterior pdf

M N
F(@ly) o [[ N (is al e, v) T £ay),

i=1 j=1
BN x
which can be visualized N(y1;afz, vv) L W ()
using a factor graph: -
N(y2; a3 =, ") W f(z2)
(White circles are ran-
dom variables and black
x
boxes are pdf factors.) N(ynr; alz,v®) Y m f(zN)
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Sparse Linear Regression

Inference via the factor graph: Message passing

m The factor-graph representation leads to two inference algorithms:

m sum-product algorithm — marginal posteriors {f(x]\y)}évzl — MMSE
m max-sum algorithm — MAP

both of which pass locally computed messages around the graph.

m When the factor-graph contains no loops (i.e., is tree-structured),
both methods yield exact estimates, but with loopy graphs (like ours)
the inference is usually only approximate.

m In any case, the computations needed by the (exact) sum-product and
max-sum algorithms are still intractable in the high-dimensional case.
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AMP Heuristics (Sum-Product)

Message from y; node to x; node: Ny [Azli,v?)
~ N via CLT N (y2: [Az]a, o)
—
pimsi(my) o< [ N(yi; 2, airar ) [,z picr (@)

{xr}ryé_‘
’ N(yar; [Az]ar, v*)

< [ N ) N (e ()i (7)) ~ N

To compute Z;(z;), v7(x;), the means and variances of {p;,}r»; suffice,
implying Gaussian message passing, like in expectation-propagation.
Remaining problem: we have 2M N messages to compute (too many!).

Exploiting similarity among the messages
{picj }M,, AMP employs a Taylor-series ~ M:lAzhv®)
approximation of their difference whose Ny [Azy, )
error vanishes as M — oo for dense A (and
similar for {p;;}7.; as N —00).
Finally, need to compute only O(M+4N)  NslAzlu.v)
messages!
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Approximate message passing (AMP)
When A is large and dense, central-limit-theorem and Taylor-series

approximations! can be applied to drastically simplify both the sum-product
and max-sum algorithms, reducing them to (for avg{|a;;|*} = &;):

fort =1,2,3,...
o(t)=y — Ad(t) + 1} V’ﬁzfj]))i;(t—l) Onsager-corrected residual
7(t)=a(t) + ATo(t) back-projection update
V() =" + v(t) or 1 [|0(0)[I3 error-variance of ()
z(t+1)=g(7(t),v" (1)) nonlinear thresholding step
vE(t+1) = v (t) avg{g' (#(t),v" (1)) } error-variance of &(t+1)
end

sum-prod: g(7,v")=E{X|R =7} for R=X+E, X~ f(z), E~N(0,0")
for . AoayT) — 2 — 3 1 22
max-sum: g(7,v") =prox,, ; () = argmin, f(x)+ 5 (z —7)

1Donoho, Maleki, Montanari, PNAS 2009 & Rangan, arXiv:1010.5141, 2010.
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AMP in perspective

m As described, the inputs to AMP are the weight priors {f(asj)}évzl the
noise variance ¥, the choice of sum-product or max-sum, the

measurement vector y, and the operators A and AT.

m By choosing appropriate priors {f(:z:])}j]‘i1 one can use AMP to solve
many different linear regression problems. For example, to solve the

LASSO problem, we'd run max-sum AMP with Laplacian f(z;).

m The outputs of sum-product AMP are in fact the full marginal
posteriors f(x|y), not only their means, the MMSE estimates ;.

m The full marginal posteriors report estimate uncertainty and facilitate
tasks such as support detection,? tuning,® and active learning.*

*Schniter CISS 2010.
3Vila & Schniter SAHD 2011, arXiv:1207.3107.
*Schniter CAMSAP 2011.
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AMP in perspective (cont.)

m AMP is a so-called first-order algorithm; its computational complexity
is dominated by one operation of A(t) and AT®(t) per iteration.

m AMP can directly exploit fast operator implementations of A and AT,
such as with Fourier, Wavelet, Hadamard transforms, and even sparse
matrices.

m AMP is a form of iterative thresholding that uses an “Onsager”
correction term to ensure that

7(t) is an i.i.d-Gaussian corrupted version of the true x.
This concept is key to understanding the how & why of AMP!
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AMP in theory

m For large A with entries drawn i.i.d zero-mean sub-Gaussian, a
state-evolution® characterizes the per-iteration MSE, E{(X;(t)—X;)?}.

Morover, when the state-evolution fixed-points are unique, the
marginal posterior pdfs f(xz;|y) of sum-product AMP converge to the
true pdfs, and thus the MMSE estimates Z(¢) become exact.

m For generic A, the fixed points® of max-sum AMP minimize the
optimization objective (i.e., are exact), while those of sum-product
AMP minimize a particular variational objective based on
independent-Gaussian approximations of KL divergence.

m Note: these analyses study the AMP algorithm itself, not the
belief-propagation approximations used to derive AMP.

5Bayati & Montanari, arXiv:1001.3448, 2010
6Rangan, Schniter, Riegler, Fletcher, Cevher, arXiv:1301.6295, 2013
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AMP in practice

m With “well-behaved” A, AMP 0
runs much faster than typical
sparse linear regression
algorithms, e.g., FISTA: 20

—FISTA
—— AMP-Lasso

m With “poorly behaved” A
(e.g., strongly correlated

columns/rows), AMP will -5

diverge unless its iterations L ‘ ‘ ‘
200 400 600 800

are damped. iteration

m An adaptive damping mechanism has been included in the open-source
GAMPmatlab toolbox (http://sourceforge.net/projects/gampmatlab)
that varies the amount of damping so that the objective decreases
across iterations.

Phil Schniter (OSU) AMP Tools for Large-Scale Inference OSU-LAIR 2013 13 /31



Choosing weight priors

m As previously described, AMP algorithms can be formulated around
different choices of weight prior f(z;). Note that this prior can vary
with the coefficient index j (so we should really be writing fx(z;).)

m In some cases we are forced to work with an established criterion (e.g.,
LASSO) or we have good prior knowledge of the true f(z;).

m Then all that remains is to derive the nonlinear thresholding function:

sum-prod: g(7,v")=E{X|R =} for R=X+FE, X~ f(z), E~N(0,v")

max-sum: (7', v") =prox, ;(7) = argmin, f(x)+ S (z — 7)?

m In the case that closed-form expressions do not exist, a scalar Gaussian
mixture’ (GM) approximation can be used to mimic the desired f(z;)
with arbitrarily high accuracy.

"Vila and Schniter, arXiv:1207.3107, 2012.
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Choosing & Learning Weight Priors

Learning weight priors

m Often we don’t know the weight prior f(x;) in advance, even though
reconstruction MSE would benefit from knowing it.

m Fortunately, in the high dimensional setting, we can learn the weight
prior from the noisy compressed measurements y.

m For example, we can learn a GM approximation of f(x;) by using
expectation maximization® iterations outside AMP, yielding MSE
performance virtually indistinguishable from knowing f(z;) in advance!

m In the high-dimensional limit, the estimates returned by the EM
procedure converge to maximum-likelihood estimates.?

m In addition, we can simultaneously learn the data-error variance v*.

8Vila and Schniter, arXiv:1207.3107, 2011.
9Kamilov, Rangan, Fletcher, and Unser, arXiv:1207.3859, 2012.
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Choosing & Learning Weight Priors

Algorithm comparison 1

Recall: higher phase-transition-curve = better algorithm.

0.9} | — EM-GM-AMP
—+—RVM via BCS
0.81|-—--Subspace Pursuit
—— OMP
0.7f .
----- LASSO via AMP
0.61-| —LASSO theory 4

0.4
0.3

0.2

0.1 02 03 04 05 06 07 08 09
delta

Here, the non-zero elements of « were drawn independent zero-mean Gaussian.
EM-GM-AMP learns and exploits the true weight prior!
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Choosing & Learning Weight Priors

Algorithm comparison 1

Recall: higher phase-transition-curve = better algorithm.

0.9 — EM-GM-AMP 1
——RVM via BCS

08 -—--Subspace Pursuit ]
0.7H|——omP |
----- LASSO via AMP

—— LASSO theory

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
delta

Here, the non-zero elements of x were = 1.
EM-GM-AMP learns and exploits the true weight prior!
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Generalized Linear Models

Generalized linear models

m Until now we have assumed linear regression under quadratic loss, i.e.,
that the observations y are i.i.d-A-corrupted versions of the (hidden)
linear transform outputs z 2 Ax:

flylz) = nyzwzz with  f(yilzi) = N (yi; 2, v")

m But there are many applications that need a more general f(v;i|z):
m outliers: y; = z; + w; with super-Gaussian w,,

binary classification: f(y;|2;) = [1 + exp(—y;2:)] 7!

quantization: y; = quant(z;)

phase retrieval: y; = |2;]

OFDM comms: f(y;|z;) = s;z; + w; with unknown symbol s;

m Fortunately, the Generalized AMP (GAMP)!? extension tackles these
generalized-linear inference problems.

0Rangan, arXiv:1010.5141, 2010.
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GAMP in perspective

m GAMP is very similar to AMP but it uses two non-linear thresholding
steps: one produces the weight estimate &(¢) and the other produces
the transform estimate 2(t).

m Max-sum GAMP can be interpreted as a primal-dual algorithm

(Arrow-Hurwicz in particular) with adaptively controlled step-sizes.!?

m Like with AMP, experiments show GAMP running much faster than its
peers.

m All AMP theory can be extended to GAMP: the state evolution'? for
large i.i.d sub-Gaussian A and the fixed-point analysis'! for generic A.

11Rangan, Schniter, Riegler, Fletcher, Cevher, arXiv:1301.6295, 2013
12 Javanmard and Montanari, arXiv:1211.5164, 2012.
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Generalized Linear Models

GAMP enables “co-sparse” or “analysis’ models

m So far we have been operating under the “synthesis” framework, where
@ is, say, a sparse (e.g., wavelet) representation of an image s = Pz,
yielding problems like LASSO

& = argmin ||y — ®Pz||3 + \|z|; and then § = Pzi.
xT
An alternative is the “analysis” framework, e.g., TV regularization
s =arg msin ly — ®s|3 + A TTs|s.

m The two are equivalent when the dictionary W is invertible, but not
when the dictionary is overcomplete, as is often the case of interest.

m GAMP can be used!? to solve the analysis problem via the

augmentation A = [\1?+] and appropriate definition of { f(vi|zi)}i>n-

13Borgerding, Schniter, Rangan, 2013.
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Turbo-AMP for structured models

Breaking the independence assumption

m AMP & GAMP were derived under the independence assumptions
Hf ;) and f(ylz) = Hf yilz).

m But in many applications, « or y|z are known to be structured and
exploiting this structure can often dramatically aid inference:

m Persistence-across-time in multi-observation problems
Persistence-across-wavelet-scale in natural images
Persistence-across-delay in sparse impulse responses
Persistence-across-space in change detection
Code structure in communications

m Such structure can be modeled via structured sparsity (e.g., block-,
tree-, field-structured), amplitude correlation, and other methods.
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Augmenting the factor graph

As a tangible example, consider recovering a sequence of sparse vectors

{21 | from the sequence of compressed linear observation vectors
y(l) = Az —i—w(l), (=1,...,T

where 2 = d® © 8" with support d) € {0,1}? and amplitudes 0

that both vary slowly over time [.

F To tackle such applications, the
/3, “turbo AMP" methodology'* uses
oL sum-product message-passing

, with AMP approximations in the
\"8’ dense portion of the factor graph.

/3; In this application, turbo-AMP’s
\'33; MSE nearly matches that of the
support-oracle Kalman smoother.

14Schniter, CISS 2010; Ziniel and Schniter, arXiv:1205.4080, 2010.
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Turbo-AMP for structured models

Learning the structural hyperparameters

m When modeling structure across coefficients, one faces the burden of
specifing additional hyperparameters.

For example, on the previous slide, one would need to specify the
support transition probabilities f(dg)\dg_l)) and the amplitude
correlation E{Hg)&(f_l)}.

m Fortunately, in the high-dimensional regime, these structural
hyperparameters can be learned on-the-fly using an EM procedure
similar to that discussed earlier.

m An object-oriented implementation®® of this EM-turbo-AMP
methodology is included in the GAMPmatlab toolbox
(http ://sourceforge. net/projects/gampmatlab).

15Ziniel, Rangan, and Schniter, SSP 2012.
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Bilinear extensions

Generalized-bilinear inference

m Until now we have considered (generalized) linear problems:

Estimate x given (y, A) under likelihood f(y|z), where z = Ax.

m But many important problems are (generalized) bilinear, i.e.,

Estimate (A, X) given Y under likelihood f(Y|Z), where Z = AX.
For example. ..

m Matrix completion:
Z = AX is a low-rank matrix and f(Y|Z) hides certain elements.

m Robust PCA:
Z = AX is a low-rank matrix and f(Y'|Z) models outliers.

m Dictionary learning:
A is dense, X is sparse, and f(Y'|Z)|z=ax models small errors.
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Bilinear Generalized AMP (BiG-AMP)

The AMP framework has been P ot v, liji;]i@ﬂ'/?lf) ain_ploi)
applied to the generalized-bilinear e T
factor-graph on the right, yielding )
the BiG-AMP1® algorithm. 1 Y \

Furthermore, EM and turbo exten-
sions have been developed for au- 1
tomatic parameter tuning and ex-
ploitation of structure across the L
elements of A and X. NG

Experimental results show state-of-the-art performance for BiG-AMP in
matrix completion, robust PCA, and dictionary learning applications.

18parker, Schniter and Cevher, ITA 2012, arXiv:1310.2632
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Conclusion

Conclusion

m AMP provides a fast and flexible approach to classical sparse linear
regression with theoretical guarantees for large i.i.d sub-Gaussian
matrices and known fixed-points in general.

m GAMP extends to the generalized linear model, enabling, e.g., logistic
regression, phase retrieval, and TV-regularization.

m GAMP can be run inside an expectation-maximization (EM) loop to
learn and exploit the true weight prior and data likelihood, since
usually these are apriori unknown.

m Turbo-GAMP exploits structure across the weights {x;} and the
conditional observations {y;|z;}.

m BiG-AMP extends all of the above to generalized bilinear inference
problems like matrix completion, robust PCA, and dictionary learning.

m All of the above is implemented in the GAMPmatlab toolbox.
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