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Minimum-Entropy Blind Acquisition/Equalization
for Uplink DS-CDMA

Phil Schniter and C. Richard Johnson, Jr.*
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Abstract: In this paper, we consider blind estimation of linear chip-spaced receivers for the
demodulation of a particular short-code DS-CDMA mobile user under multipath propagation
and in the absence of timing information. We propose a family of schemes for blind acquisi-
tion and equalization based on Donoho’s Minimum Entropy principle and propose a specific
algorithm that uses the second- and fourth-order moments of a pre-whitened chip-rate received
signal. The proposed algorithm can be considered a near-far resistant initialization procedure
for, and application of, the Constant Modulus Algorithm (CMA) to DS-CDMA.

1 Introduction

Direct sequence code division multiple access (DS-CDMA) systems have received con-
siderable attention as a flexible means of communication between multiple mobile users
and centralized base stations. Since CDMA users share the same time and frequency
resources, demodulation of a particular user is principally concerned with suppression
of interference from other users. The link from base station to mobiles is referred to as
the “downlink” and is typically characterized by synchronous equal-power data trans-
mission to all users. More challenging for demodulation is the “uplink,” from mobiles
to base station, where different user transmissions are typically asynchronous and of
widely disparate power levels. Reliable demodulation might also require mitigation of
multipath interference, especially in recently proposed “wideband” CDMA schemes (e.g.,
IMT-2000) where multipath effects can be significant.

In this paper, we consider blind estimation of linear receivers for demodulation of a
(possibly weak) asynchronous CDMA user under multipath propagation. By “blind,” we
mean that all interfering code vectors, all user timings, and all multipath channels are
unknown, and that no training information is available. Thus, obtaining reliable symbol
estimates involves both blind equalization and blind timing acquisition of the desired
user. Previously proposed schemes rely solely on the second-order statistics (SOS) of
the received data and are based on either subspace-constrained optimization [1, 2] or
subspace decomposition [3]. The use of constraints implies that the minimizers of such
criteria are not, in general, global MSE minimizers. Proponents claim that “this price
is paid in exchange for the advantage of not having a training sequence” [2, p. 107], but
must we really pay this price? Similarly, subspace techniques assume that the signal and
noise subspaces can be accurately estimated, but is this usually possible?
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In this paper, we propose a family of blind acquisition/equalization schemes that
make inherent use of the higher-order statistics (HOS) of the received signal. The central
concept is rooted in Donoho’s Minimum Entropy (ME) principle [4], a fundamentally
different approach to blind acquisition/equalization than [1, 2, 3]. A major advantage
of the minimum entropy techniques is that they are capable of achieving global MMSE
solutions under ideal conditions (to be discussed) while exhibiting robust performance
in realistic (non-ideal) conditions. We present a specific ME algorithm that uses the
second- and fourth-order moments of a whitened chip-rate version of the received signal.
It can be considered a near-far resistant application of CMA to uplink DS-CDMA in the
absence of timing information.

Notation: We use bold lowercase for vectors, bold uppercase for matrices, ()" for
transposition, (-)* for conjugation, and (-)¥ for conjugate transposition. All vector/matrix
indices start with zero (i.e., we denote the first element of x by z, rather than z;), and n
used as a symbol-rate index, ¢ as a chip-rate index, k£ as a user index, and v as a hypoth-
esis index. Finally, [-] denotes ceiling, (-) , modulo-N, E{-} expectation, * convolution,
Ix]lp :== />, |m P the £, norm of x, and e,, a vector with a one in the m" position
and zeros elsewhere.

2 DS-CDMA System Model

We formulate the uplink DS-CDMA model as follows. K mobile users transmit simul-
taneously to a base station, where the k™ user transmits a symbol (i.e., “bit”) sequence
{s¥} indexed by n and with symbol spacing of 7" seconds. The users are each assigned
a “short” spreading code composed of N chips with chip duration 7, = T/N. We shall
represent the k™ user’s code by the vector ¢® = (c{”,...,c% |)*. A given user’s short
code is multiplied by each of his symbols prior to transmission, so that the transmitted
data sequence is spaced at the chip rate.

Now consider the baseband model illustrated in Figure 1. Each mobile transmits
his chip-rate sequence through a pulse shaping filter with impulse response p(t). In
typical applications, p(t) is bandlimited to approximately 1/7, using, e.g., a square-
root raised-cosine filter. Before reaching the receiver, each transmitted waveform passes
through a user-specific atmospheric propagation channel which includes, e.g., multipath
and path-loss effects. We restrict our focus to a linear time-invariant approximation to
the propagation channel and denote the resulting impulse response by ¢*(¢). In addition
to linear distortion, the propagation channel contributes additive noise n(t).
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Figure 1: DS-CDMA system model with chip-sampling receiver.



2.1 Discrete Model

The receiver sees the sum of all transmitted signals plus noise and samples the output
of a single “chip-matched” filter at the chip rate 1/7.. As is typical, we assume that
the chip-matched filter is identical to the transmit filter p(¢). User-specific time delays
{7} are used to capture the lack of timing coordination, or asynchronicity, among users.
Without loss of generality!, time delay is assumed in the range 0 < 7, < 7.

The model of Figure 1 admits the discrete equivalent of Figure 2, where 1N de-

notes upsampling and ¢ = (%1, ..., e8! the reverse-ordered code vector, and where
h® = (h{",.. .,hf}i_l)t contains the Tc spaced impulse response samples of the con-
volved transmit filter, propagation channel, and receiver filter:

hgk) = p(t—7) x g™ (t) * p(t)‘t:iTc : (1)

In (1) we assumed that p(t) and ¢ (¢) are causal and time-limited so that, for all k,
p(t — ) * g¥(t) * p(t)|,—;y, = 0 for i > Ly and i < 0. Note that using one number, Ly,
to characterize the length of every user’s discrete channel implies that some of the h®
may be zero-padded. Finally, note that the sampled noise process {w;} in Figure 2 is

given by w; = n(t) * p(t)|,_,
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Figure 2: Discrete-time equivalent DS-CDMA system model with chip-sampling receiver.

From now on we restrict our attention to finite-length linear receivers. Collecting,
say, the L, most recent samples at time n in the vector r(n), it is possible to express r(n)
as a linear combination of transmitted symbols. To see this, we first write r(n) in terms
of specific user contributions plus noise:

r®(n) +w(n), (2)

Mw

k=1

where ™ (n) is a vector composed of the L, most recent noiseless chip-rate k™ user
contributions 7", and w(n) is composed of the L, most recent chip-rate noise samples
w; (see Figure 2). The k' user contribution can be written as a matrix-vector product:

r®(n) = H®C®s®(n), (3)

where H® is an L, x L,+ L, —1 Toeplitz matrix and C*® is a L,+ L —1 x ’—%]
matrix structured as below,
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! Assuming stationary source processes, the received signal will be cyclo-stationary with period T'.
Thus, the statistics of the received sequence will be insensitive to shifts of nT in user delay.
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but with the rightmost code vector possibly truncated to length (L,+L,—2),+1. The
vector of the k" user’s source symbols influencing r(n), namely s® (n) := (s®,..., 50", 1),

is of length L, := [£tZe=1]  Equation (2) can then be written

r(n) = Z H®»C®s®(n) +w(n) = Hs(n)+w(n), (4)

where the L, x K L, multiuser code-channel matrix H and the K Lg; x1 multiuser source
vector s(n) are defined by

H = (HOCH HOC®,.. H©C®), (5)
s(n) = (s'(n),s®'(n),...,s%"n))". (6)

2.2 Rank of Code-Channel Matrix H

Expression (4) for the received DS-CDMA signal has the same basic structure seen
in many multichannel deconvolution problems (e.g., wideband beamforming, wideband
source separation, crosstalk suppression, and cross-polarization). The principle differ-
ences among these problems concern the properties of the “channel matrix” H. A critical
assumption typically made in analysis of the previously mentioned applications is that
‘H is full column rank. Satisfaction of this condition allows, for example, perfect recovery
of any source element in s(n) via linear processing® of r(n) in the absence of noise. Full
column rank A and the absence of noise also makes possible the “blind” determination of
these perfect-recovery linear filters using algorithms based on second- and/or higher-order
statistics. Non full-column rank A can degrade the performance of blind algorithms, in
some cases catastrophically. These reasons motivate a closer look at the rank of A for
the specific case of asynchronous DS-CDMA under multipath propagation.

Let us consider the dimensional requirements necessary for full column rank 4. To
have at least as many rows as columns, one requires L, > K [%] In the case that
K = N, the requirement becomes L, > L.+ L, —1+C, where C is an integer in the range
0 < C < N. It follows directly that a necessary condition for full column rank H with
K = N users is L, = 1, or, in other words, the absence of asynchronism or multipath!
In the case K < N, it can be shown that choosing L, > [W] guarantees that
the dimensional requirement is satisfied. To summarize, for a single-sensor DS-CDMA
system with > N users, asynchronism or multipath will ensure that H is not full column
rank for any finite observation length L,.

Practical cellular communication systems are based on the use of multiple cells, each
cell composed of one base station and <N mobiles. One of the principle advantages of
CDMA in the cellular context is its potential for universal frequency reuse. This implies,
however, that other-cell signals will interfere with in-cell communication. In fact, it has
been suggested that the typical out-of-cell interference level is roughly half of the in-cell
interference level [5]. Thus, a multi-cell model should incorporate K > N significant
users and, by the arguments above, will result in non full-column-rank H. We note that
the rank of 4 may be increased through the use of a receiver with multiple sensors [3],
but the number required to achieve full rank may be prohibitively large.

2Perfect linear recovery follows directly from the existence of a left inverse for full column rank .



3 Blind Acquisition/Equalization

With knowledge of only the £ user’s code ¢ and the received sequence {r;}, we consider
the problem of linear estimation of the £ user’s symbol sequence at the base station (up
to arbitrary phase and symbol delay). Specifically, we generate linear symbol estimates
3% = fHy(n) using receiver f and desire that 3 = ozgsifi(;z Vn, where |ay] = 1 and
d¢ € Z*. This is often referred to as the “blind acquisition and demodulation” problem
[1] because the channels {h™®}, user delays {74}, and interfering users’ codes {c® : k # ¢}

are unknown?® and no training sequences are transmitted.

3.1 Minimum-Entropy Acquisition

The proposed scheme can be motivated, at least on a conceptual level, by (i) the non-
Gaussian nature of typical DS-CDMA sources (e.g., BPSK), and (ii) the approximate
orthogonality properties of good codes, e.g. Gold codes. By “good” codes we mean those
whose cross-correlation coefficients 744 (i) == Y. c@c"; corresponding to user/timing
mismatches are significantly smaller than those corresponding to the correct user/timing
combination, i.e., 740(0) > |re(?)| Vi, £, k # £. For simplicity, let us first consider a
situation with chip-level synchronization, equal user powers, zero inter-chip interference
(ICI), and no noise. Now consider the outputs of the conventional matched-filter (MF)
receiver, i.e., a receiver forming the symbol estimates 5 = ¢@Hr(n). When the desired

user is time synchronized (i.e., 7, = 0) the symbol estimates take the form

NG { k (k)
S%) = 7‘@4 ()+E T‘gk ()+E ’f‘gk (7)

non- Gauss1an kié k#t

-~

approximately Gaussian

Assuming non-Gaussian source processes and good codes, the synchronized symbol
estimates are a sum of two processes: (i) a non-Gaussian desired process, and (ii) an in-
terference process, which tends towards Gaussianity as K becomes large. When, instead,
the MF receiver is not synchronized with the desired user, the unsynchronized symbol
estimates will take the form of the latter terms in (7), i.e., approximately Gaussian.
As described in Donoho’s seminal paper [4], the principle of “maximizing distance from
Gaussianity” is a fundamental concept that lies at the base of many blind estimation
techniques that make use of higher-order statistics. Henceforth we refer to such tech-
niques as “minimum entropy” (ME) methods in the spirit of Donoho, who demonstrated
formal connections to Shannon Entropy [4].

The observations above suggest a blind timing acquisition scheme whereby the symbol-
rate output streams of delay-hypothesized matched filters are examined for their “degree
of Gaussianity.” The delay hypothesis leading to the “least Gaussian” stream could be
chosen as an estimate of the desired user’s delay. The measure of Gaussianity could be
constructed in various ways, e.g., using sample-average based estimates of kurtosis.

3.2 Minimum-Entropy Equalization

The previous section focused on the estimation of the desired user’s chip delay, i.e., the
blind acquisition problem. Our goal, however, is really the estimation of desired user

3Though the base station typically demodulates all in-cell users, and thus knows more than one code,
the assumption of unknown interfering user codes supports a model including out-of-cell users.



symbols in the presence of unknown multipath and interference. Thus, the problem of
interest bears close resemblance to a blind equalization problem.

Connections to minimum entropy have been established for several popular blind
equalization algorithms. For example, the Shalvi-Weinstein (SW) criterion [6] minimizes
the kurtosis of the estimates §,, defined K(3,) := E{|5,[*} — 2E*{|3,|>} — |E{&2}?,
subject to the power constraint E{|3,?} = E{|s,|*}. Kurtosis is, in fact, a direct measure
of “distance from Gaussianity,” and it may not be surprising that the SW criterion is
nearly identical to Wiggin’s ME method discussed in [4]. Furthermore, it has been
shown that (in the absence of noise) the minima of the constant modulus (CM) criterion
[7] correspond to SW minima, regardless of the rank of # [8]. Thus, the CM algorithm
(CMA) [9] can also be considered a member of the ME family.

A well-known difficulty in applying ME-based algorithms (such as CMA) to multiuser
demodulation is that the typical “cost function does not distinguish between desired
and interfering symbols, which leads to a number of local minima” [1]. As a partial
solution, multiuser versions of CMA have been proposed that consist of parallel single-
user demodulators whose outputs are constrained to be mutually uncorrelated (e.g., [10]).
Such techniques, however, do not address the problem of locking onto a specific user,
which is the goal of this paper.

When using an iterative ME equalization technique, the problem of demodulating a
specific user reduces to the problem of properly initializing the blind algorithm. When the
timing of the desired DS-CDMA user is known, the initialization of CMA, for example,
appears rather straightforward (see, e.g., [11]). When the desired user timing is unknown,
we propose initialization based on blind ME acquisition, as described in Section 3.1. In
fact, we consider the goal of blind acquisition not to be the estimation of the desired user’s
time delay (or group delay in the presence of multipath), but rather the achievement of
a good initialization for subsequent blind equalization.

In a power disparate, or “near-far,” scenario, the convergence of ME equalization
algorithms becomes highly sensitive to choice of initialization, making acquisition of a
specific user potentially difficult. For example, the sizes of CMA’s regions of convergence
(in equalizer parameter space) are proportional to the eigenvalues of the autocorrelation
matrix R,, := E{r(n)rf(n)} [16]. Since weak user transmissions are characterized by
signal spaces with small eigenvalues, the size of weak users’ convergence regions will also
be small and determining a CMA initialization within of one of these small regions may
be practically impossible. This phenomenon is demonstrated in Figure 3, where not even
initialization at the (global) MMSE solution was adequate for successful convergence of
the two weakest users.

In an attempt to mitigate these near-far effects, we propose a whitening of the received
signal prior to ME processing. Such “orthogonalization” is commonly used in many blind
source separation algorithms [13] as well as some blind equalization algorithms (e.g.,
[6, 14]). Pre-whitening has the effect of nearly equating each user’s region-of-convergence
volume, significantly reducing initialization sensitivity.

4 A CMA-based Acquisition/Equalization Algorithm

A CMA-based acquisition/equalization algorithm is presented below:

1) Obtain estimate T of the L, x L, whitening matrix T = VA~Y2VH where VAVH
is the eigendecomposition of the received autocorrelation matrix R..,.



2) Compute L, x 1 filterbank output vectors y®(n) := FOITr(n), for n =1,..., M
and L, > N, where £, the v*" column of F®, equals ¢ delayed by v chips.

MMy ()t
M 1P (n)2)2

4) Set initial equalizer £ (0) equal to the column of F® generating the smallest £{*.

3) Estimate the normalized kurtosis of each filter output: £{¥ :=

5) Estimate ¢ user’s symbols using “pre-whitened CMA”: set x(n) = Tr(n), §© =
£fOH (n)x(n), and update via £ (n+1) = £fO(n) — ux(n)8* (]3P > —1).

Comment 4.1 (Delay hypotheses):  For simplicity, 2) suggests L, chip-spaced delay
hypotheses, though better performance should result from a denser delay set (as in [1]).

Comment 4.2 (Choice of equalization algorithm): CMA is often considered the most
widely implemented and analyzed blind equalization technique and is noted for its ro-
bustness and simplicity. Hence, it was chosen for our ME demodulation scheme. Most
importantly, perhaps, CMA is known to have close ties to MMSE minimization [7] and
has been shown to asymptotically achieve global MMSE solutions when # is full column
rank and noise is absent [7]. Furthermore, CMA is known to be robust to noise and
to H that are not full column rank [7, 9]. If speed of convergence is thought to be a
problem, faster converging versions are available [15] (with higher computational cost),
though pre-whitening alone greatly improves the tracking properties of CMA [14].

Comment 4.3 (Initialization criterion): The proposed algorithm uses kurtosis as a “mea-
sure of entropy” in the initialization stage. Recall from [8] that kurtosis-based initial-
ization and CMA adaptation form a natural pair: k" < 2 ensures that the peak index
of the asymptotic system response q© := (f®H 'i"H)t equals the peak index of the ini-
tial system response. This implies that kurtosis can be directly related to acquisition
probability when using codes with good cross-correlation properties.

Other initialization criteria might also work well. For example, [4] notes Gray’s
MY |y (n)?
(Cnty lyw(m))?
suggest gives comparable acquisition performance (see Figure 6).

criterion: which is easier to compute than &%, but which simulations

Comment 4.4 (Effect of noise): In the absence of noise, pre-whitening via T = Ry,*/* will

result in an effective channel matrix TH that is perfectly orthogonal. In this case, CMA
regions of convergence are uniform in size and shape [16]. In the presence of noise, there is
still evidence to suggest that whitening adequately reduces CMA initialization sensitivity.
The pre-whitened noisy CM cost function can be written Jom = —2||f7 R/ H||4+3||£]|4—
2||f||3+1 (for BPSK), where, remarkably, the effect of noise appears only in the first term.
Note that the region of convergence sizes will be determined by ||[fZR;,/*#||4 since the
other terms are invariant to the orientation of f. Even when the minimum singular value
of H is = g,,, the matrix R,,"/*H will have condition number ~ 2, implying relatively
uniform regions of convergence.

A more serious problem may occur, however, when the singular values of H are < gy,
since the corresponding minima of J.,, may completely disappear [12]. Unfortunately, no
linear pre-processing of the received signal can remedy this. In fact, this loss of weak-user
minima will plague any demodulation scheme based on CM cost or additive modifications
thereof (e.g., [10]).

Comment 4.5 (Effect of codes/multipath): As the codes become less orthogonal (i.e.,
|7 x(7)| increases for k# ¢ or i#0) and /or multipath becomes more severe, it can be shown
that the delayed matched-filters used as initialization hypotheses (recall algorithm steps



2-4) create output streams with higher kurtosis . Interpreting [8] in a CDMA context,
increasing k¥ above 2 decreases the probability of CMA’s convergence to a user with the
desired code and delay v. (Actually, this is advantageous in preventing CMA capture by
an out-of-cell interferer with the desired code, since we expect out-of-cell signals to be
more significantly corrupted by multipath than in-cell signals.) In addition, higher x{®
increase the probability of attraction by CM saddle points, thereby potentially slowing
initial convergence [9].

Comment 4.6 (Recursive estimation of T): For successful acquisition in a time-varying
near-far environment, it is important that T tracks signal variations. Fortunately, there
exist various computationally-efficient recursive strategies for updating T based on a
forgetting factor (e.g., using QR factorization of R./* and Given’s rotations). Though
the estimation of T is the most computationally demanding part of the algorithm, one
should realize that this burden is essentially distributed over all in-cell users.

Since, when T(n) is tracking, we do not want variations in T(n) to adversely effect
the adaptation of CMA, we recommend using CMA to adapt v®(n) := TH(n)f®(n)
while operating directly on the received data: 3¢ = v (n)r(n). The resulting filter
update, v(@(n+1) = v (n) — ,uﬁ;\,} (n)r(n)sO*(]5¥2—1), is Gooch’s “orthogonal-CMA”
[14], first proposed for synchronous CDMA applications in [11].

5 Simulation Results

In all simulations, we use Gold codes with N =31, equalizers of length 62, user delays 7
uniformly distributed over [0, 7T’), root-raised-cosine pulse shaping with excess bandwidth
0.2, and discrete ray multipath channels ¢**(¢). The N, multipath rays are normally
distributed in amplitude (relative to a zero-delay ray) with std. dev. o, and are uniformly
distributed in time over the interval [0,7}). In Figures 3-4, we assume 25 in-cell users and
zero out-of-cell users, while in Figures 5-6 we assume 20 in-cell users and 120 out-of-cell
users, the latter with 10 dB lower average power. For in-cell users we use N, = 3, T, = 2,
and o, = 0.3, while for out-of-cell users N, = 10, T, = 10, and o, = 0.5. With these
parameters, the in-cell and out-of-cell ICI span approximately 10 and 18 T, respectively.
Unless otherwise noted, we assume an in-cell log-normal user power distribution with
std. dev. 0, = 5 dB and out-of-cell with o, = 1 dB. The noise {w;} is zero-mean AWGN
with SNR = 20 dB (referenced to the average in-cell user’s power).

Figures 4-6 are the result of 500 Monte Carlo simulations. In Figure 4, we com-
pare the performance of the proposed ME scheme with Madhow’s multipath-specific
CMOE scheme [1, Remark 3.10]*, where we assume perfect knowledge of the received
signal statistics R, and k. Our performance measures include both lock probability
and mean-squared symbol estimation error. “Lock” occurs when final multiuser system
responses q achieve their absolute maximum at an index corresponding to the de-
sired user, as discussed in Comment 4.2. MSE calculations® are based only on receivers
achieving lock. Figure 5, which includes significant out-of-cell interference, compares the
performance of the ME and CMOE schemes over a range of in-cell user power devia-

4We were unable to compare to [2] and [3] since both schemes require the existence of a decorrelating
receiver. As discussed in Section 2.2, this is not possible in the single-sensor multi-cell environment since
the anticipated number of in- plus out-of-cell users will prevent H from reaching full column rank.

5The MSE performance of the (adaptive) ME algorithm could be improved by reducing the step-size
1, whereas the performances reported for CMOE were computed in closed form.



tions. Figure 6 investigates lock probability as a function of the data length M used in
estimation of initialization hypotheses (recall Comment 4.3).
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We have presented a general approach to the blind acquisition/equalization of short-code
CDMA based on a minimum entropy principle and, within this context, have proposed
a scheme using kurtosis-based initialization of pre-whitened CMA. Simulations including
multipath and significant out-of-cell interference suggest that the CMA-based method
achieves higher acquisition probability and performance significantly closer to global
MMSE solutions than do previously proposed schemes based on subspace-constrained
optimization. Furthermore, the CMA-based approach does not require the use of multi-
ple sensors, as do previously proposed schemes employing subspace decomposition.
Interesting questions remain concerning the relative optimality of various ME schemes



and their performance in non-stationary environments.
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