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Sparsity and the underwater channel:

• Underwater channel impulse responses are often “sparse.”

• Statistically, their impulse response coefficients have heavy-tailed pdfs.
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Pilot-aided compressed channel sensing:

• Time-domain observation model:

yt = Φtht + nt t : block index

where nt is additive noise and






ht channel impulse response ⇒ Φt is a pilot-symbol convolution mtx

ht basis expansion coefs ⇒ Φt is more complicated.

• Usually, Φt is a wide matrix, so that some “sparse reconstruction” algorithm

is required to estimate ht given the nontrivial nullspace of Φt.

• Note: channel tap vector ht can be quite long (e.g., > 1000), making

estimation expensive. Some (but not all) sparse reconstruction algorithms can

exploit FFT-based fast-convolution for complexity reduction.
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Leveraging temporal channel structure:

• The classical compressed-channel-sensing method ignores the similarity of ht

across measurement blocks t ∈ {1, . . . , T}.

y1 = Φ1h1 + n1

y2 = Φ2h2 + n2

y3 = Φ3h3 + n3

...
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• Note that we do not have the classical “multiple measurement vector” sparse

recovery problem, since both the matrix Φt and the support of ht vary with t.
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A simple Markov-based model:

• We propose to model channel sparsity using a Bernoulli-Gaussian model

h
(t)

l = a
(t)

l s
(t)

l with

{

a
(t)

l ∈ C : amplitude

s
(t)

l ∈ {0, 1} : support indicator

and temporal structure using

{a(1)

l , a
(2)

l , . . . , a
(T )

l } : Gauss-Markov chain

with mean ml, variance vl, correlation ρl.

{s(1)

l , s
(2)

l , . . . , s
(T )

l } : binary Markov chain

with transition probabilities p01l , p10l

• Note that the channel statistics are allowed to vary with the lag l.
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The factor graph for pilot-aided channel estimation:
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• We perform inference on this factor graph using turbo-GAMP:

[1] S. Rangan, “Generalized approximate message passing for estimation with

random linear mixing,” arXiv:1010.5141, Oct 2010.

[2] J. Ziniel and P. Schniter, “Tracking and smoothing of time-varying sparse

signals via approximate belief propagation,” Asilomar 2010.

• We simultaneously learn channel/noise statistics via the EM algorithm.
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Example of pilot-aided underwater channel recovery:

SPACE-08 2920156F038 C0 S6 (WHOI M-sequence)
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Example of pilot-aided underwater channel recovery:

SPACE-08 2920156F038 C0 S6 (WHOI M-sequence)
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Communication over unknown sparse channels — Info Theory:

Consider a discrete-time channel that is

• block-fading with block size N ,

• frequency-selective with L taps (where L < N),

• sparse with S non-zero complex-Gaussian taps (where 0 < S ≤ L),

with coefficients and support unknown at receiver. Then

1. In the high-SNR regime, the ergodic capacity obeys

Csparse(SNR) =
N − S

N
log(SNR) +O(1).

2. To achieve the prelog factor Rsparse =
N−S
N

, it suffices to use

• pilot-aided OFDM (with N subcarriers, of which S are pilots)

• with (necessarily) joint channel estimation and data decoding.

[3] A. Pachai-Kannu and P. Schniter, “On communication over unknown sparse frequency
selective block-fading channels,” IEEE Trans. Info. Thy, to appear.
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Practical communication over unknown sparse channels:

• Transmission: pilot-aided BICM-OFDM transmission.

• Reception: joint estimation/equalization/decoding via turbo-GAMP.

SISO (de)coding generalized AMP
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Empirically achieves the theoretical prelog factor!

[4] P. Schniter, “Belief-Propagation-Based Joint Channel Estimation and Decoding for Spectrally Efficient

Communication over Unknown Sparse Channels,” Physical Communication (Elsevier): Special Issue on

Compressive Sensing in Communications, 2011.

[5] P. Schniter, “‘A Message-Passing Receiver for BICM-OFDM over Unknown Clustered-Sparse

Channels,” IEEE JSTSP, Special Issue on Soft Decoding, to appear.
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Extension that exploits temporal structure:

SISO (de)coding GAMP
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• Complexity is only O(log2N + |S|) per symbol!

• To reduce requirements on delay & memory. . .

– Markov smoothing can be performed over shorter time-blocks.

– Blocks can be overlapped to propagate beliefs forward in time.
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Interesting system design questions:

For a fixed spectral efficiency (e.g., bits/s/Hz)...

• What is the optimal CP length?

– too short and inter-symbol interference results,

– too long and little redundancy is left for LDPC coding!

• What is the optimal number of training bits?

– too few and channel estimation suffers,

– too many and little redundancy is left for LDPC coding!

• Where should training bits be placed?

– group bits together into pilot symbols?

– if yes, place pilot-symbols randomly? on regular grid?

– if no, place training bits randomly? at MSB locations?
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Performance versus CP length L:
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Performance versus number of training bits Mt:
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Performance versus SNR:
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Conclusions:

• Wideband communication channels, such as the underwater channel, often

have “sparse” impulse responses.

• Such channels also evolve smoothly with time.

• To exploit these two structures, we modeled the channel taps as

Bernoulli-Gaussian, with a binary-Markov-chain for support evolution and a

Gauss-Markov-chain for amplitude evolution.

• First, an approximate-message-passing scheme was proposed for pilot-aided

channel estimation.

• Second, an approximate-message-passing scheme was proposed for joint

channel-tracking / equalization / decoding of BICM-OFDM.

• In both cases, experiments using experimental underwater channel data

suggest that the exploitation of temporal structure improves performance

significantly.
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