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Abstract—We address throughput/energy aware opportunis-
tic transmission control in broadcast networks, under incom-
plete channel state information. The channels are modeled as
i.i.d two-state Markov chains and the transmission controller
makes transmit/idle decisions based on past 1-bit feedback from
the broadcast users. With a reward structure that captures
the trade-off between sum throughput gain (transmit) and
energy savings (idle), we formulate the transmission control
problem as an infinite horizon, discounted reward, partially
observable Markov decision process. For special cases of the
system parameters, we show that the optimal control policy
is either greedy or partially greedy. For the general case, we
follow an indirect approach towards the control problem. We
first establish thresholdability properties of the optimal control
policy in a two-user broadcast. We then extrapolate these prop-
erties to the general broadcast and propose a simple threshold
control policy. Extensive numerical results suggest near-optimal
performance of the proposed policy. In addition, the proposed
threshold policy is easy to implement with complexity being
polynomial in the number of broadcast users.

Index Terms – Broadcast network, transmission control, dy-
namic program, partially observable Markov decision process.

I. INTRODUCTION

Broadcast networks, where a source node attempts to

transmit a packet to all other nodes in the network, is an

integral component of mobile ad-hoc and sensor networks

[1]. In ad-hoc networks, broadcast plays a crucial role in a

variety of protocols that provide basic functionality to higher

layer services (e.g., [2]). In sensor networks, broadcast is

used for coordinated and distributed computing (e.g., [3]).

Thanks to the limited life of the mobile node batteries and

a limited ability to replenish these batteries, energy aware

transmission control in broadcast networks is an important

design consideration. This is particularly true in sensor net-

works where nodes are often deployed in hard to access or

hostile environments. A large volume of work (e.g., [4]-[10])

is available for energy efficient communication in wireless

networks - broadcast and otherwise. The reader is directed

to [11] for an excellent exposition on the topic. Much of
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these works, while providing valuable insights into energy

efficient network design, are lacking in one of two ways:

the physical channel considerations are disregarded and the

problem is studied exclusively at the upper layers or, if

the physical channel is indeed included in the design, the

instantaneous channel state is assumed to be readily available

at the controller.

In this paper, we attempt to address both these issues

in broadcast networks. We consider a cross-layer through-

put/energy aware transmission control problem with an ex-

plicit channel learning mechanism. In our setup, the broad-

cast channels are modeled by i.i.d two-state Gilbert Elliott
Markov chains [12] with positive time correlation. The

Gilbert Elliott channel model has been gaining popularity

among wireless researchers (e.g., [13]-[20]) as a realistic

abstraction of the fading channels. This is so, because multi-

path fading and shadowing in wireless channels induces time

correlation (memory) in the channel that can be modeled,

with reasonable accuracy, by a first-order Markov chain

([21],[22]). In each control slot, the controller makes one of

the following two decisions: (1) transmit (broadcast) a packet
to the users (2) stay idle. While a broadcast transmission is
associated with a throughput gain (and a concurrent energy

loss), an idle decision corresponds to energy savings (and a
concurrent loss in throughput). Our reward structure reflects

this trade-off – Upon transmit decision, the controller accrues
a reward of 1 for each user that successfully decodes the
broadcast packet. If an idle decision is made, a reward of
W (reward for passivity - corresponding to energy savings)

is accrued at the controller. At the end of a control slot, if

a packet was broadcast in that slot, each user attempts to

decode the packet and sends back bit 1 (decoding success)
or bit 0 (decoding failure) to the controller, over an error-free
feedback channel. The controller collects this state feedback

from all the users and creates a belief value of the users’

channel states in the next slot, using the Markov channel

statistics. The belief values thus created are used by the

controller to make transmit/idle decisions in future slots.
By formulating the control problem as a partially ob-

servable Markov decision process (POMDP) over an infinite

horizon with discounted reward [23], we obtain the following

main results: For particular ranges of the passivity reward

and belief values, we show that the optimal control pol-

icy is greedy or partially greedy, depending on the case,

thus significantly simplifying the control problem. For the

general scenario, however, due to the dimensionality of the
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POMDP, a direct analysis of the optimal control problem

appears challenging. We therefore approach the problem in

two stages: (i) First, we establish thresholdability properties

of the optimal control policy in a two-user broadcast (ii)

We then extrapolate the thresholdability properties to the

general broadcast and, based on this extrapolation, derive

a threshold control policy. Extensive numerical experiments

suggest that the proposed threshold policy, thanks to the

optimality framework in which it is derived, has near-

optimal performance. The proposed threshold policy is also

computationally inexpensive to implement with polynomial

complexity in the number of broadcast users. Contrast this

with the complexity of the optimal POMDP solutions – for

finite horizon POMDPs, the optimal solution is, in general,

PSPACE-hard to compute [24], whereas infinite horizon

POMDPs are, in general, undecidable [25].
The paper is organized as follows. The problem setup is

described in Section II. In Section III-A, we characterize

the optimal control policy for special cases of the system

parameters. Considering a two-user broadcast, we obtain

thresholdability properties of the optimal control policy in

Section III-B. In Section IV, we propose the threshold control

policy followed by a discussion on the numerical results in

Section V. Concluding remarks are provided in Section VI.

II. PROBLEM SETUP

A. Channel Model and Control Structure

We consider a N user broadcast. The channel between

the source node and each broadcast user is modeled by

an i.i.d two-state Gilbert Elliott Markov chain. Assuming
packetized data transmissions, each state corresponds to the

degree of decodability of the packet sent through the channel.

State 1 (ON) corresponds to full decodability, while state
0 (OFF) corresponds to zero decodability. Time is slotted
and the channel of each user remains fixed for a slot and

moves into another state in the next slot following the state

transition probability of the Markov chain. The time slots of

all users are synchronized. The two-state Markov channel is

characterized by a 2 × 2 probability transition matrix

P =

[
p 1 − p
r 1 − r

]
, (1)

where

p := prob(channel is in ON state in the current slot|

channel was in ON state in the previous slot)

r := prob(channel is in ON state in the current slot|

channel was in OFF state in the previous slot).

The Markov channel states can be interpreted as a quantized

representation of the underlying channel strength lying on a

continuum. Since, in realistic scenarios, the channel strength

is observed to evolve gradually over time (positive correla-

tion), we assume p > r throughout this work.
The source node is the central controller that, in each

slot, makes one of the following two decisions: (1) Transmit
(broadcast) a packet to the broadcast users (2) stay idle.

The packets to be broadcast to the users are stored in an

infinite queue at the source node (henceforth known as the

controller). Upon transmit decision, the controller broadcasts
the head of line packet to the users and drops it from the

queue. Each user attempts to decode the packet and sends

back bit 1 (decoding success) or bit 0 (decoding failure)
to the controller, over an error-free feedback channel. By

the definition of the two-state Markov channels, this 1-bit

feedback from an user at the end of a slot gives the state

of the channel of that user in that slot. Based on the 1-bit

feedback from the users and the Markov channel statistics,

the controller creates a belief value of the channel state of the

users in the next slot and uses it to make future transmit/idle
decisions. The control problem is thus a dynamic program

[26], more specifically a partially observableMarkov decision

process [23]. We formally define the problem below.

B. Formal Problem Definition

Horizon: The number of consecutive time slots over which
the control decisions are made is the horizon. Throughout this

work, we focus on the infinite horizon scenario.

Action: Let a ∈ {0, 1} indicate the action (control decision)
taken in the current slot. Let a = 1 correspond to the transmit
decision and a = 0 correspond to the idle decision.

Belief vector: Let π = (π1, . . . , πN ) ∈ [0, 1]N be the
vector of belief values in the current slot with πi denoting the

belief value of the channel of user i ∈ {1, . . . , N}. Define
the operator T (.) as the evolution of the belief value of a
Markov channel to the next slot under the idle decision. Thus,
if x ∈ [0, 1] is the belief value, then T (x) = xp + (1 − x)r.

1-bit feedback: Upon transmit decision, at the end of the
slot, each user i in the broadcast determines if the reception
was successful and sends back a 1-bit feedback fi (1 for
success and 0 for failure). Feedback fi is one-one mapped to

the state of the channel of user i in the corresponding slot.
Expected immediate reward: In each slot, if transmit
decision is made, the controller accrues a reward of 1 for
each user that successfully decodes the broadcast packet.

If an idle decision is made, a reward of W (reward for

passivity - corresponding to energy savings) is accrued at

the controller. Thus the expected immediate reward accrued

by the controller as a function of belief vector and action is

given by

R(π, a) =

{∑
i πi, if a = 1

W, if a = 0.
(2)

Stationary control policy: A stationary control policy is

a stationary mapping from the belief vector π to an action
as follows:

: π → a ∈ {0, 1}.

Expected total discounted reward under : Under a policy
, for initial belief vector π, the expected infinite horizon
total discounted reward is given by

V (π) = R(π, a) + βE
[
V (π+)

]
(3)
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where a = (π) and β ∈ [0, 1) is the discount fac-
tor that determines the relative weight between the im-

mediate and the future rewards. The expectation is over

the belief vector in the next slot, i.e., π+, which in turn

is a function of the control decision a and (upon trans-
mit decision) the 1-bit feedback from the users. We now
proceed to explicitly express the total discounted reward

under . For notational simplicity, we first define a few

quantities. Let Π0
.
= (r, r, . . . , r, r), Π1

.
= (r, r, . . . , r, p),

Π2
.
= (r, r, . . . , p, r), . . . , Π2N−1

.
= (p, p, . . . , p, p). Let

P0(π)
.
= (1−π1)(1− π2) . . . (1−πN−1)(1−πN ), P1(π)

.
=

(1−π1)(1−π2) . . . (1−πN−1)(πN ), P2(π)
.
= (1−π1)(1−

π2) . . . (πN−1)(1−πN), . . . , P2N−1(π)
.
= π1π2 . . . πN−1πN .

The total discounted reward under is now explicitly given

by

V (π)

=

{∑
i πi + β

∑2N
−1

j=0 Pj(π)V (Πj), if a = (π) = 1

W + βV (T (π)), if a = (π) = 0.

(4)

Optimal control policy: For a given belief vector π, the
optimal expected total discounted reward (henceforth, simply
the total discounted reward), V (π), is given by the Bellman
equation [26]

V (π) = max
{∑

i

πi + β
2N

−1∑
j=0

Pj(π)V (Πj),

W + βV (T (π))
}

. (5)

By standard dynamic programming theory [26], a stationary

control policy
∗
is optimal if and only if the total discounted

reward under
∗
, i.e., V ∗(π), satisfies the Bellman equation

in (5), for every π ∈ [0, 1]N , i.e., ∗
is optimal if and only

if

V ∗(π) = max
{∑

i

πi + β

2N
−1∑

j=0

Pj(π)V ∗(Πj),

W + βV ∗(T (π))
}

. (6)

III. OPTIMAL CONTROL POLICY - PARTIAL

CHARACTERIZATION AND THRESHOLDABILITY

PROPERTIES

A. Partial Characterization of the Optimal Control Policy

Define V a(π) as the expected total discounted reward upon
transmit (active) decision in the current slot and optimal
decisions in all future slots and V p(π) as the expected total
discounted reward upon idle (passive) decision in the current
slot and optimal decisions in all future slots, i.e.,

V a(π) =
∑

i

πi + β
2N

−1∑
j=0

Pj(π)V (Πj)

V p(π) = W + βV (T (π)). (7)

Let A and P be the regions in the state space, [0, 1]N , where
it is optimal to transmit and idle, respectively. Formally,

π ∈

{
A, if V a(π) ≥ V p(π)

P , if V a(π) < V p(π).
(8)

We now report our result on the optimal control policy when

the reward for passivity W /∈ (Nr, Np).

Proposition 1. When W /∈ (Nr, Np), the optimal control
policy is greedy, i.e.,

π ∈

{
A, if

∑
i πi ≥ W

P , if
∑

i πi < W
.

Proof Outline: We first reformulate the infinite horizon
control problem as a limit of the finite horizon problem

and then using backward induction, we show that, for any

horizon length, the optimal future discounted reward after

the transmit decision, i.e., V a(π)−
∑

i πi, equals the reward

after the idle decision, i.e. V p(π)−W , whenW /∈ (Nr, Np).
Details of the proof are available in [27].

Proposition 2. For any W , the optimal control policy has
the following partial structure

π ∈ A, if
∑

i

πi ≥ W

Proof Outline: The proof proceeds by first showing that
the total discounted reward, V (π), is component-wise convex
in π. We then show that the optimal future reward after
the transmit decision is at least as high as the optimal
future reward after the idle decision. This establishes the
proposition. Details are available in [27].

It is worth noting that the energy loss per broadcast action

(transmit) and hence W is independent of the number of

broadcast users, N . Thus as N increases, the throughput gain
(transmit) progressively outweighs the energy savings (idle).
It follows that the optimal policy would increasingly choose

to transmit than idle, with increasing broadcast size. This
intuition is supported by the result in Proposition 2.

B. Thresholdability Properties of the Optimal Control Policy
in the Two-User Broadcast

For general values of the system parameters, a direct

analysis of the optimal control policy appears challenging,

thanks to the dimensionality of the POMDP that models the

control process. Therefore, we first study the control problem

in a reduced dimension - the two-user broadcast - and later

use this analysis to study the general broadcast.

We first classify the two-user broadcast into two types

based on the optimal control decision at steady state, as

below:

• Type I: If (πss, πss) ∈ A
• Type II: If (πss, πss) ∈ P

Let RI denote the region {(π1, π2); π1 ∈ [πss, 1], π2 ∈
[πss, 1]}. Let RII denote the union of the regions R1

II

.
=

{(π1, π2); π1 ∈ [0, πss], π2 ∈ [πss, 2πss − π1]} and R2
II

.
=

{(π1, π2); π2 ∈ [0, πss], π1 ∈ [πss, 2πss − π2]}. We now
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record our result on the thresholdability properties of the

optimal control policy in the Type-I two-user broadcast.

Proposition 3. If the two-user broadcast is Type I, i.e.,
V a(πss, πss) ≥ V p(πss, πss), then
(1) RI ∈ A
(2) V a(πss, πss) = V p(πss, πss) ⇒ RII ∈ P
(3) V a(πss, πss) > V p(πss, πss) ⇒ (Thresholdability prop-

erty) In the region R1
II , if for k ∈ [−1, 0], ∃ a π∗

1

and π∗

2 = π∗

1k + πss(1 − k) such that V a(π∗

1 , π∗

2) =
V p(π∗

1 , π∗

2), then

(π1, π2 = π1k + πss(1 − k)) ∈

{
A, if π1 ∈ [π∗

1 , πss]

P , if π1 ∈ [0, π∗

1)

If � such a (π∗

1 , π∗

2), then

(π1, π2 = π1k + πss(1 − k)) ∈ A ∀ π1 ∈ [0, πss].

Similarly, in the region R2
II , if for k ∈ [−1, 0], ∃ a

π∗

2 ∈ [0, πss] and π∗

1 = π∗

2k + πss(1 − k) such that
V a(π∗

1 , π∗

2) = V p(π∗

1 , π∗

2), then

(π1 = π2k + πss(1 − k), π2) ∈

{
A, if π2 ∈ [π∗

1 , πss]

P , if π2 ∈ [0, π∗

1)

If � such a (π∗

1 , π∗

2), then

(π1 = π2k + πss(1 − k), π2) ∈ A ∀ π2 ∈ [0, πss].

Proof Outline: We first establish crucial structural prop-
erties of the reward functions V (π), V a(π), V p(π) in the
two-dimensional state space along specific axes (π1, π2 =
π1k + c), for various ranges of k, c ∈ R and show that the
belief vector, upon consecutive idle decisions approaches the
steady state in a straight line. Using these properties, with

tedious algebraic manipulation, we establish the proposition.

Details can be found in [27].

We now record our result on the thresholdability properties

of the optimal control policy when the two-user broadcast is

Type II.

Proposition 4. If the two-user broadcast is Type II, then
(1) (π1, π2) ∈ P , ∀π1 + π2 ≤ 2πss

(2) (Thresholdability property) In the region RI , if for
k ≥ 0, ∃ a π∗

1 and π∗

2 = π∗

1k + πss(1 − k) such that
V a(π∗

1 , π∗

2) = V p(π∗

1 , π∗

2), then

(π1, π
∗

1k + πss(1 − k)) ∈

{
A, if π1 ∈ [π∗

1 , 1]

P , if π1 ∈ [πss, π
∗

1)

If � such a (π∗

1 , π∗

2), then

(π1, π2 = π1k + πss(1 − k)) ∈ P ∀ π1 ∈ [πss, 1].

Proof Outline: The proof proceeds along the lines of the
proof of Proposition 3. The reader is referred to [27] for

details.

Call the set of points (π∗

1 , π∗

2) identified in Proposition 3
and Proposition 4 as the threshold boundary in Type I

and Type II broadcasts, respectively. Recall the definition

of V a(π) from (7). We now characterize the threshold
boundaries below.

Corollary 5. When the broadcast is Type I: within region
RII , the threshold boundary is given by the upper segment
of the hyperbola

V a(π1, π2) = W + βV a(T (π1), T (π2)).

When the broadcast is Type II: Within region RI , the thresh-
old boundary is given by the upper segment of the hyperbola

V a(π1, π2) =
W

1 − β
.

The upper segment of the hyperbola indicates the segment
of the hyperbola that lies in the first quadrant around the
asymptotes.

Proof Outline: The corollary is established in two stages.
We first derive the threshold equations using the threshold-

ability properties reported in Proposition 3 and Proposition 4

and show that it is a hyperbola. Next we study the slope of

the hyperbola and the hyperbola asymptotes to show that the

threshold boundary is the upper segment of the hyperbola
for both broadcast types. The reader is referred to [27] for

details.

Fig. 1 illustrates the threshold boundaries for both broad-

cast types.

IV. THRESHOLD CONTROL POLICY

For the two-user broadcast, we have shown that the optimal

control policy has thresholdability properties and have char-

acterized the threshold boundaries in specific regions of the

two-dimensional state space. In this section, without proof,

we extrapolate the threshold boundaries to the entire state

space and derive threshold control policies for the two-user

broadcast and subsequently for the N -user broadcast.
The extrapolation is formally stated next: The threshold-

ability property of the optimal control policy reported in
Proposition 3 and Proposition 4, in regions RII and RI ,
respectively, extends to the entire state space [0, 1]2. The
extrapolated threshold boundary spanning the entire state

space is given by the hyperbola equations in Corollary 5

for Type I and Type II broadcasts. Fig. 2 illustrates this

extrapolated boundary for both broadcast types.

The threshold control policy for the two-user broadcast is

now given below.

Step 0: (Initialization) Identify the broadcast type and eval-
uate the quantities V (Π(0)) . . . V (Π(3)).

Step 1:With (π1, π2) denoting the belief vector in the current
slot, solve the second order polynomial equation (polynomial

in k) for the corresponding broadcast type.

Type I : V a(kπ1, kπ2)−
(
W + βV a(T (kπ1), T (kπ2))

)
= 0,

Type II : V a(kπ1, kπ2)−
W

1 − β
= 0.

Note that the polynomial nature of the preceding equations

can be verified by examining the expression for V a in

(7). Let k1, k2 be the solutions to these equations. Let

k∗ = max{k1, k2}.
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Fig. 1. Illustration of the threshold boundaries in restricted regions of the two-dimensional state space when the broadcast is (a) Type I, (b) Type II.
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Fig. 2. Illustration of the extrapolation of the threshold boundaries to the entire two-dimensional state space when the broadcast is (a) Type I, (b) Type II.

Step 2: The threshold control policy is given by

Transmit, if k∗ ≤ 1

Idle, if k∗ > 1

Note that Step 1 identifies the point on the extrapolated

threshold boundary along the direction of the belief vector

(π1, π2), with k∗ = max{k1, k2} resulting from the fact that
the threshold boundary is given by the upper segment of
the hyperbola (Corollary 5). The second step determines the

control decision based on the location of the belief vector

with respect to the extrapolated threshold boundary.

We now extend the preceding threshold policy, heuristi-

cally, to the N -user broadcast. Before that, we generalize the
two-user broadcast classification to the N -user case: The N -
user broadcast is identified as Type I if V a(πss, . . . , πss) ≥
V p(πss, . . . , πss) and Type II otherwise. Denote (πss . . . πss)
simply by πss. Using the identity T (πss) = πss, with

elementary reasoning [27], this rule can be simplified as

below:

Type =

{
I, if V a(πss) ≥

W
1−β

II, if V a(πss) < W
1−β

.
(9)

The threshold control policy for the N -user broadcast is
now given by the following steps, when W ∈ (Nr, Np):

Step 0: Initialization

• Evaluate the quantities V (Π0), . . . , V (Π2N−1):
Note that, by the inherent symmetry in the underly-

ing Markov channel statistics of the users, we have

the following property (P ): For any permutation Ψ
on the belief vector x, we have V (x) = V (Ψ(x)).
Thus the 2N quantities, V (Π0), . . . , V (Π2N−1), can
be obtained by evaluating only the following N +
1 quantities: {V (Π(2i−1)}, i ∈ {0, 1, 2, . . . , N}.
Interpreting the infinite horizon discounted re-

wards as limits on the finite horizon rewards,

as we did in the proof of Proposition 1, evalu-

ate V (Π0) = limt→∞ Vt(Π0), . . ., V (Π2N−1) =
limt→∞ Vt(Π2N−1), using an appropriate measure
of convergence. The finite horizon reward Vt(x) is
given by the finite horizon Bellman equation [26]

Vt(x) = max
{∑

i

xi + β

2N
−1∑

j=0

Pj(x)Vt−1(Πj),

W + βVt−1(T (x))
}

.
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Step 0: Initialization (continued)

• Identify the broadcast type:
The broadcast type is identified using the simplified

rule (9), reproduced below:

Type =

{
I, if V a(πss) ≥

W
1−β

II, if V a(πss) < W
1−β

.

where V a(πss) is evaluated using (7), simplified
using property (P ) as

V a(πss) = Nπss + β

N∑
j=0

NCj(1 − πss)
(N−j) ×

πj
ssV (Π(2j − 1)),

with V (Π(0)) . . . V (Π(2N − 1)) evaluated earlier.

Step 1: Threshold control policy on belief vector π

• If
∑

i πi > W , transmit (follows from Proposition 2.
Skip to Step 2.

• Otherwise, solve the followingN th order polynomial
equation for the corresponding broadcast type:

If the broadcast is Type I:

V a(kπ) −
(
W + βV a(T (kπ))

)
= 0.

If the broadcast is Type II:

V a(kπ) −
W

1 − β
= 0,

where, recall from (7),

V a(x) =
∑

i

xi + β

2N
−1∑

j=0

Pj(x)V (Π(j)),

with V (Π(0)) . . . V (Π(2N −1)) evaluated in Step 0.
Let {k1, . . . , kN} be the solutions to the polynomial
equation. Let k∗ = maxi s.t. ki∈R{ki}.

• The threshold policy is given by

Transmit, if k∗ ≤ 1

Idle, if k∗ > 1

Step 2: State evolution

• If transmit decision was made, at the end of the
slot, collect the 1-bit feedback, f1, . . . , fN , from

the broadcast users and update the belief values as

below.

πi ←

{
p, if fi = 1

r, if fi = 0
.

• If idle decision was made, update the belief vector
as π ← T (π).

• Repeat Step 1 in the next slot.

0
0

1

1

π1

π2 lower entropy - idle
higher entropy - transmit

45◦

Fig. 3. Illustration of the connection between the threshold scheduling
decision and the entropy of the broadcast system state.

Remark: The convexity of the threshold boundary renders
optimality properties to the threshold policy in the following

sense. Consider two belief vectors πg and πr such that∑
πg =

∑
πr. Thus, if the broadcast state is in any of these

two states, the immediate rewards upon transmit decisions are
the same. Indeed, the immediate rewards upon idle decisions
are equal toW in both states. Let the entropy of the broadcast

in state πg be lower than when the broadcast is in state πr,

i.e.,
∑

i H(πg(i)) <
∑

i H(πg(i)), where H(x) indicates
the entropy of a channel with belief x. It is intuitive to
see that if it is optimal to transmit at state πg , then it

is optimal to transmit at state πr. This is because, with

the ‘exploitation’ end of the trade-off equalized between πg

and πr (since
∑

πg =
∑

πr), the exploration end of the

tradeoff is more pronounced in πr due to its higher entropy,

essentially making it optimal to transmit, i.e., explore at πr,

if it is optimal to explore at πg . Since the threshold boundary

in the proposed threshold policy is convex, if the threshold

decision at πg is to transmit, then the threshold decision at
πr is also to transmit. An illustration of πg , πr along with

the convex threshold boundary is provided in Fig. 3. Thus the

threshold policy, thanks to the optimality framework in which

it is derived, exhibits an implementation structure similar to

that of the optimal policy.

V. NUMERICAL RESULTS AND DISCUSSION

We now proceed to illustrate, via numerical experiments,

that the proposed policy has near-optimal performance. We

first study the finite horizon performance of the proposed

policy in Fig. 4. The total discounted reward corresponding

to the proposed policy over a finite horizon m (denoted

by Vpolicy(m)) is plotted alongside the optimal total dis-
counted reward over horizon m (denoted by V (m)). Note
that Vpolicy(m) is almost indistinguishable from V (m). Re-
call that the threshold policy was derived by extending the

structural properties of the optimal control policy from the

two-user broadcast to the general N -user broadcast. The
superior performance of the threshold policy, indicated by

Fig. 4 (and subsequent numerical results), suggests that the

structural properties indeed extend to the N -user broadcast.
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W p r β V Vpolicy %opt

3.2323 0.8147 0.7380 0.2762 4.4651 4.4651 100 %

3.8261 0.9575 0.9239 0.2946 5.4227 5.4227 100 %

1.6813 0.4218 0.3862 0.6753 5.6400 5.6399 99.9987 %

0.9212 0.2769 0.0128 0.2583 2.3176 2.3176 100 %

1.5327 0.4387 0.1674 0.6593 4.4950 4.4950 100 %

2.2140 0.6491 0.4750 0.5886 5.3344 5.3253 99.8298 %

1.9074 0.6868 0.1260 0.4211 4.0446 4.0446 100 %

1.1852 0.4868 0.2122 0.4681 3.8936 3.8935 99.9994 %

1.8291 0.6443 0.2439 0.6869 6.5860 6.5726 99.7966 %

1.7714 0.6225 0.3654 0.3246 2.7002 2.7002 100 %

TABLE I
ILLUSTRATION OF THE NEAR-OPTIMAL PERFORMANCE OF THE PROPOSED THRESHOLD POLICY. TOTAL REWARD VALUES ARE TRUNCATED TO FOUR
DECIMAL PLACES. EACH ROW CORRESPONDS TO A FIXED SET OF RANDOMLY GENERATED SYSTEM PARAMETERS AND INITIAL BELIEF VALUES.

NUMBER OF BROADCAST USERS = 4.

N W p r β Vgenie Vpolicy Vnofb %fbgain
2 0.8139 0.4456 0.2880 0.6256 2.2523 2.2446 2.0923 95.1679 %
2 0.4801 0.2630 0.1720 0.6135 1.2585 1.2570 1.2017 97.4352 %
2 0.7949 0.6477 0.2921 0.5282 1.9907 1.9788 1.8996 86.9424 %
3 1.5819 0.5469 0.5236 0.7789 6.8312 6.7480 6.0094 89.8665 %
3 2.2272 0.8003 0.1135 0.4531 4.2901 4.2875 4.0562 98.8572 %
3 1.3724 0.5085 0.2597 0.6906 4.5968 4.5653 4.1031 93.6145 %
4 1.8299 0.5085 0.2597 0.6906 6.0284 6.0083 5.4709 96.3937 %
4 2.3315 0.7513 0.1916 0.5036 4.9462 4.9347 4.6579 96.0039 %
4 0.7165 0.4709 0.1085 0.7066 2.8552 2.8015 2.2272 91.4621 %
5 1.1834 0.6948 0.2203 0.7701 8.4060 8.4045 7.6546 99.8030 %
5 2.0542 0.4898 0.2182 0.5878 5.3549 5.3510 4.8626 99.2000 %
5 0.3981 0.1190 0.0593 0.7758 3.4376 3.3988 1.4755 98.0243 %

TABLE II
ILLUSTRATION OF THE GAIN ASSOCIATED WITH 1-BIT FEEDBACK. EACH ROW CORRESPONDS TO A FIXED SET OF RANDOMLY GENERATED SYSTEM

PARAMETERS AND INITIAL BELIEF VALUES. REWARD VALUES ARE TRUNCATED TO FOUR DECIMAL PLACES.
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Fig. 4. V (m), Vpolicy(m) versus horizon m for various number of
broadcast users.

In the rest of this analysis, we will focus on the infinite

horizon performance of the proposed policy, compared with

various system level performance limits. Note that the infinite

horizon reward can be approximated by evaluating finite

horizon rewards over a ‘sufficiently’ large horizon. From

exhaustive simulations, we observed that the reward functions

achieve reasonable convergence around m = 7 (also seen in
Fig. 4). We therefore approximate the infinite horizon rewards

by the rewards evaluated at m = 7 in the rest of this analysis.
In Table I, we report the % suboptimality of the proposed
policy. The quantity %opt:=

Vpolicy

V
× 100% quantifies the

degree of optimality of the proposed policy. Each row in

Table I corresponds to randomly generated system parameters

with N = 4. The near optimal performance of the proposed
policy is once again evident from Table I.

In Table II, we study the gains achieved by using 1-bit

feedback from the users. The quantity Vgenie corresponds to

the total discounted reward under optimal scheduling in the

genie-aided system defined as follows: at the end of each
slot — independent of whether a transmit or idle decision

was made in that slot — the scheduler learns about the

channel states of all the users in that slot. The quantity

Vnofb is the total discounted reward when the scheduler

rejects the feedback information from the scheduled users

and schedules solely based on the knowledge of the system

level parameters, i.e.,N, W, β and the statistics of the Markov
channels, i.e., p and r. Thus with horizon m = 7, Vnofb =

max{W, Nπss}
1−β7

1−β
, where the steady state probability of

the Markov channels, πss = r
1−(p−r) . The gain correspond-

ing to the 1-bit feedback from each user, at the end of slots
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when transmit decision was made, is now quantified by the
quantity %fbgain=

Vpolicy−Vnofb

Vgenie−Vnofb
× 100%. The high value of

%fbgain reported in Table II, for various randomly generated
system parameters, underlines the significance of using the

1-bit feedback as well as the near-optimal performance of

the proposed policy.

Remark on Complexity: The proposed threshold policy
involves solving a N th order polynomial, the complexity of
which is polynomial in N when eigenvalue based solution

techniques are used. Thus the proposed policy is compu-

tationally inexpensive to implement. Contrast this with the

complexity of the optimal POMDP solutions – for finite hori-

zon POMDPs, the optimal solution is, in general, PSPACE-

hard to compute [24], whereas infinite horizon POMDPs are,

in general, undecidable [25].

VI. CONCLUSION

We studied throughput/energy aware opportunistic trans-

mission control in Markov-modeled broadcast networks when

channel state information is estimated using delayed 1-bit

feedback from the users. Formulating the control problem as

an infinite horizon, discounted reward, partially observable

Markov decision process, we showed that, for specific ranges

of system parameters, the optimal control policy is either

greedy or partially greedy. For the general case, we proposed

a threshold control policy that is derived in an optimization

framework for the two-user broadcast. The proposed policy is

amenable for practical implementation with complexity being

polynomial in the number of broadcast users. Extensive nu-

merical results suggest that opportunistic transmission control

using only 1-bit feedback from users obtained only during the

transmit slots is associated with significant system level gains
and that almost all of these gains can be realized using the

proposed threshold control policy.
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