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Abstract

We address the problem of multiuser scheduling in a cellular downlink system with partial channel informa-
tion. In our setting, the channel of each user is modeled by a two-state Markov chain. The scheduler indirectly
estimates the channel via accumulated Automatic Repeat Request (ARQ) feedback from the scheduled users and
uses this information in future scheduling decisions. This problem is a special case of the restless multi-armed
bandit processes that have been shown to be PSPACE-hard to solve in general. By modeling the scheduling
problem as a Partially Observable Markov Decision Process (POMDP), we formulate a throughput maximization
problem and show that, despite the visible complexity of this problem, a simple round-robin fashioned scheduling
policy optimizes the system for the special case of three or less users in the system. We study the structure of
this policy for an arbitrary number of users and establish a sufficient condition for the optimality of this policy.
Drawing equivalence with a genie-aided system, we derive an explicit expression for the sum capacity of the
downlink.

Index Terms—Markov channel, downlink, multiuser scheduling, greedy policy, sum capacity.

I. INTRODUCTION

Opportunistic multiuser scheduling, introduced by Knopp and Humblet in [1] and defined as allocating
the resources to the user experiencing the most favorable channel conditions has gained immense
popularity among network designers. Opportunistic scheduling essentially taps the multiuser diversity
in the system and has motivated several researchers (e.g., [2]-[6]) to study the performance gains
obtained by opportunistic scheduling under various scenarios. For a general treatment on the subject,
see [7]. While i.i.d flat fading model is popularly used by researchers in modeling time varying channels,
it fails to capture the memory in the channel observed in realistic scenarios. The Gilbert Elliott model
[8] that represents the channel by a two state Markov chain addresses this issue. Specifically, a user
experiences error-free transmission when it observes a “good” channel, and unsuccessful transmission
in a “bad” channel. Several works have been done on opportunistic scheduling in this Markov modeled
channel, e.g., [9]-[13]. It is understandable that the availability of the channel state information at the
scheduler is crucial for the success of the opportunistic scheduling schemes. Traditionally, when the
scheduler has no channel information, pilot based channel estimation is performed and the estimates
are used for scheduling decisions (e.g., [2], [6], [14]). A new line of work, see for e.g., [15], [16],
attempts to exploit Automatic Repeat reQuest (ARQ) feedback to estimate the state of the Markov
modeled channels. ARQ is traditionally used for error control (e.g., [17]-[20]) at the data link layer.
The memory inherent in the Markov channels opens up the opportunity to exploit this ARQ feedback
information in estimating the channel states.

In this paper, we consider a downlink system with the channel of each user modeled by a two
state Markov chain and demonstrate that ARQ feedback can be used to make informed multiuser
scheduling decisions. Specifically, we consider a Markov-modeled downlink system with an ARQ
feedback provision. Using a Partially Observable Markov Decision Process (POMDP) formulation,
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( [21]-[24]), we show that, for N < 3 users, a simple greedy policy that maximizes the current reward
is optimal in terms of the sum throughput. The greedy policy can be implemented via a simple round-
robin based solution that does not require the statistics of the underlying Markov chain, so that it is
easily amenable for practical implementation. Then, for the general N user case, by exploiting the
round-robin structure of the greedy policy, we conjecture a sufficient condition for the optimality of
the greedy policy. We provide extensive simulations that suggest that the greedy policy indeed satisfies
this sufficient condition and is likely to be optimal for an arbitrary number of users in the system. By
establishing an equivalence with a genie-aided system, we then derive a simple expression for the sum
capacity of the Markov-modeled downlink system, for the two user case.

The paper is organized as follows. The problem setup is described in Section II and followed by
the proof of the optimality of the greedy policy for N = 2 in Section III. Section IV discusses the
round-robin structure of the greedy policy. The sufficient condition for the optimality of the greedy
policy for the general case of N users is derived in Section V. In the same section, we prove that the
greedy policy is optimal for N = 3 and make a conjecture about the N > 3 case. In Section VI, we
derive the sum capacity of the Markov-modeled downlink. Conclusions are provided in Section VII.

II. PROBLEM SETUP
A. Channel Model and the Scheduling Problem

We consider downlink transmissions with N users. For each user, there is an associated queue at
the base station that accumulates packets intended for that user. We assume an infinite backlog at each
queue. The channel between the base station and each user is modeled by an i.i.d two-state Markov
chain. We call this the ON-OFF channel with the ON state allowing the successful transmission of a
fixed length packet. Time is slotted and the channel of each user remains fixed for a slot and evolves
into another state in the next slot according to the Markov chain statistics. The time slots of all users
are synchronized. The two-state Markov channel is characterized by a 2 x 2 probability transition matrix

P = {p q}, (1)

r S

where

« p=prob(channel is ON in the current slot | channel was ON in the previous slot)

° q=1 —p

« r=prob(channel is ON in the current slot | channel was OFF in the previous slot)

e S=1—r.

We assume p > r throughout this work. Note that this implies, for any user, the channel state is
positively correlated between adjacent slots.

The base station is the central controller that controls the transmission to the users in each slot. In
any time slot, the base station does not know the exact channel state of the users and it must schedule
the transmission of the head of line packet of exactly one user. Thus, a TDMA styled scheduling is
performed here. The power spent in each transmission is fixed, and a traditional ARQ based transmission
is deployed. Here, at the beginning of a time slot, the head of line packet of the scheduled user is
transmitted. If the packet does not go through, i.e, cannot be decoded by the user (when the channel is
in the OFF state), a NACK is sent back from the user at the end of the slot, and the packet is retained
at the head of the queue. If the packet goes through (when the channel is in the ON state), an ACK is
sent back and the packet is removed from the queue. Note that both ACKs and NACKs are assumed to
be transmitted over a dedicated error-free channel. This ARQ information, along with the label of the
control interval in which it is acquired, will be used in future scheduling decisions. The performance
metric that the base station aims to maximize is the sum throughput of the system. Details will be
discussed in the next section.



B. Formal Problem Definition

The base station must make scheduling decisions based on only a partial observation' of the underlying
Markov chain. This fits our problem into the theory of partially observable Markov decision processes
(POMDP) (see [21] for an overview of POMDP). We now proceed to introduce the terms/entities that
we use in this work, many of which are borrowed from the POMDP literature.

Control interval k: Each time slot in our problem setup will henceforth be called a control interval.
The “end” of the POMDP is fixed. A control interval is indexed by k if there are k intervals (including
the interval in question) until the end of the process.

Action ai: Indicates the index of the user scheduled in control interval £ and hence takes on values
from 1...N.

Belief vector at the k' control interval m;,: The i'" element of 7, represents the probability that the
channel of user i € 1... N in the k' control interval is in ON state, given all the past information about
the channel. Let f; denote the ARQ feedback at the end of control interval k£ with f;, = 1 indicating
an ACK and f;, = 0 indicating a NACK. The belief vector evolves from control interval k to k — 12,
Vk > 1, as follows:

b, le:aMfk:l
Wk_l(i) = r, le:ak,kaO (2)
pri(i) + (1 — me(d)), if @ # a.

where the first case indicates that user ¢ is scheduled in control interval £ and an ACK feedback was
received. Thus, according to the Markov chain statistics in (1), m;_1(7) = p. The second case is explained
similarly when a NACK feedback is received. The last case indicates that user ¢ was not scheduled for
transmission in control interval £ and hence the base station must estimate the belief value at the current
control interval (7_1(7)) from the belief value at the previous control interval (7 (7)) and the Markov
chain statistics in (1). It has been proven in [21] that the belief vector 7 is a sufficient statistic to the
scheduling decisions and ARQ information from the past. Thus the scheduling decision in any control
interval can be solely based on the belief vector for that interval and not on the past ARQ or schedule
information.

Scheduling Policy @;: A scheduling policy @, in the control interval k is a mapping from the belief
vector and the control interval index to an action as follows:

Q. (m, k) — ap Yk > 1,1 €0, 1]N.

Note that the scheduling policy can, in general, be time-variant.

Reward Structure: In any control interval k, a reward of 1 is accrued when the transmission is
successful, i.e, when f; = 1, and no reward is accrued when f; = 0. Note that this reward structure is
defined to be consistent with our performance metric, the sum throughput (to be discussed shortly).

Net Expected Reward in the control interval m, V,,: With the belief vector, 7,,, and the scheduling
policy, {Qy }r<m, fixed, the net expected reward, V,,,, is the sum of the reward, R,, (7, a,,), expected in
the current control interval m and E[V,,,_], the reward expected in the future control intervals. Formally,

Vm(ﬂ—ma {gk}kgm) = Rm(ﬂ—ma a'm) + E[Vm—l(/ﬂm—b {gk}kgm—l)‘ﬂ—ma a'm]a (3)

where the expectation is over the belief vector 7, ;. Since the reward in each control interval is either
1 or 0, the expected current reward can be written as

Ro(Tmy ) = ().

"n this case, the set of time-stamped ARQ feedback on the channels.
Note that the control intervals are in decreasing order consistent with the POMDP theory.



Performance Metric- the Sum Throughput, 1,,: For a given scheduling policy, {@},>1, the sum
throughput is given by

nem({@ebeat) — lim LT AFehiezt) 4

m— oo m

where 7(i),7 € 1... N is the steady state probability that the channel of user ¢ is ON in the underlying
Markov chain.
Optimal Scheduling Policy, {@; };>1:

{@ i>1 = arg max Noum({Atrz1)- &)

kY h>1

III. OPTIMAL SCHEDULING POLICY FOR TWO USERS
Consider the following policy:

@k D (7, k) — ar, = argmax Ry(mg, ag)
ag
= argmaxm(i) Vk>1,m €0, 1]V,

Since the above given policy attempts to maximize the expected current reward, without any regard
to the expected future reward, it follows an approach that is fundamentally greedy in nature. For this
reason, we henceforth call {dj};>; the greedy policy. R

Proposition 1: The sum throughput, 7)4,,, of the system is maximized by the greedy policy {@y }r>1
for the case when N = 2, i.e.,

Ay = A VE> 1

Proof: From subsection II-B, to prove the optimality of the greedy policy, it is sufficient to prove
that

(@} eem = arg max Vi (o, {@ptecm) Vm > 1,m, € [0,1]% (6)

kYk<m

We first prove the following statement:

P) If, for a fixed m > 1,
{ék}kgm—l = arg max Vi (T 1, (B them_1) Vrm1 € [0,1)%

{4, k<m—1

then
(@b oem = arg max Vi (mm, {8 eem) Vi € [0,1)2.

kSk<m

The proof of (P) involves expanding the net expected reward V;;, as a sum of the rewards expected in
each of the future control intervals with {@;}r<m—1 = {@x}r<m—1. We then establish that the reward
expected to be accrued in any future control interval is independent of the current scheduling decision
a,, (this result is summarized in Corollary 2). This proves (P) which in turn is used to establish (6)
using an induction argument. The complete proof is omitted for conciseness and the reader is referred
to [28] for details. |

Corollary 2: The future reward expected to be accrued in any control interval £ < m — 1 is
independent of the scheduling decision a,,, as long as the greedy policy is implemented in control
interval k. Formally,

Erilmmam=1 Be(Tr, k) = Erpjrnam=2 Bi(Tr, 1), Yk <m — 1



with a; indicating the use of greedy policy in control interval k.

The above observation will be pivotal in obtaining a simple, closed form expression for the sum
capacity of the Markov-modeled downlink in Section VI.

It has to be mentioned that a parallel work, [25], by Qing Zhao et al., addresses a similar problem
in a cognitive radio setting where a single user attempts to opportunistically access one of the several
radio channels. Due to the fundamental difference in the application areas targeted, the overlap between
our paper and [25] is limited to the result on the optimality of the greedy policy when N = 2 users.
The proof technique they have used involves evaluating the net expected reward by averaging over the
channel states of both the users in the current control interval. Whereas, in our case, we averaged over
the belief vector. Moreover, we explicitly established that the reward expected to be accrued in any
future control interval is independent of the current scheduling decision. This is unlike [25], where the
independence result is obtained only for the net future reward.

IV. STRUCTURE OF THE GREEDY POLICY FOR N USERS

We now take a closer look at the structure of the greedy policy for the general case of N users. We
begin by defining the following quantity.
Scheduling order vector, Oy: The ordered arrangement of the index of the users in decreasing order of
Tk (Z), i.e.,

Or(1) = argmaxmy(i)

Or(N) = argminm(i).
Thus, under the greedy policy in k, a;, = Ox(1).

We now discuss the evolution of O to Oy_;1. Consider any two users ¢ # a; and j # aj. Thus
from (2), mp_1(i) = pmp(i) + (1 — mx (i) = (p — r)me(i) + 7. Similarly 7,_1(7) = (p — r)me(j) + 7.
Thus 7_1(i) > mr_1(j) if me(d) > me(j), Vi # ax,j # ag. Consider the user scheduled in control
interval k, i.e., user ag. If the ARQ feedback f; = 1, then 7m;_1(ax) = p. Since for any user i # ay,
Tr—1(i) = pmg(i) +7r(1 —mg(2)) and since p > r, we have, m,_1(ax) > m—1(i), Vi # ax. Similarly when
fr =0, mp_1(ar) =7 < m_1(i), Vi # ai. From the preceding observations,

{Or —ar} ax], if fr. =0, (7)

where {Of — ax} is the schedule order vector Oy with the element valued a; removed. For instance

{lz y 2] —y}=[z 2].
As a special case, when the greedy policy is employed in control interval k, i.e., when ay = Ok(1),

Opy = {O’“’ if fi= 1 ®)

Op 1 — {[ak {On—a], if fi=1

[Ok(2) Ox(3) ...Ox(N) O(1)1, if fr = 0.

We are now in a position to make the following important observation:
Let the greedy policy be implemented from control interval m. Let the schedule order vector, O,,, be
available to the base station. The scheduling algorithm is implemented as follows: Schedule the user
positioned at the top of the schedule order vector (i.e., a,, = O,,(1)). If an ACK is received, schedule
the same user again in the next control interval. Otherwise, schedule the next user in the schedule order
vector O,,. Repeat the same procedure in all the future control intervals. If the bottom of the schedule



order vector is reached, repeat from the top. Formally, the algorithm is implemented in the following
simple steps

o Step 1: Initialize the control interval index k£ «— m and the position of the scheduled user in the

schedule order vector as 7 «— 1.

« Step 2: Schedule user O,,(i) in control interval k, i.e., ar = O, (7).

e Step3: If fy=0and i < N, then:« ¢+ 1. If f =0 and i = N, then ¢ «— 1.

o Step 4: k — k — 1. If £ > 0, then repeat steps 2-4.

Thus the scheduling algorithm, under the greedy policy, boils down to a simple round-robin algorithm
with a change in scheduling decision stimulated by a NACK feedback. The schedule order vector, O,,,
provides the order of this round-robin approach. There is no need to evaluate the belief vector in every
control interval and hence the Markov transition matrix information is not required. This structure
makes the greedy policy particularly attractive from an implementation point of view. Motivated by this
development, we proceed to examine the optimality of the greedy policy in a general N user setting.

V. ON THE OPTIMALITY OF THE GREEDY POLICY FOR N USERS
A. Sufficient Condition for the Optimality of the Greedy Policy

Consider a control interval m > 1 with belief vector =,, and action a,,. Let the users be indexed
in_the order of their belief values in control interval m, i.e, O,, = [1...N]. Assuming {@y}r<m-1 =
{Q) }<m—1 and recalling the definition of state vector Sy from Section III, we rewrite the net expected
reward from (3) as follows

vm(ﬂ-ma {CLm, {ﬁk}kgm—l}) - Wm(am> + Z PSm\ﬂm(Sm|7Tm>Vm—1(Sm7 Om—l)u

Sm

where Vm_l is the expected future reward conditioned on the state vector in control interval m. The
hat on this quantity emphasizes the use of the greedy policy in all & < m — 1. Pg, |x,. (Sn|Tn) is the
conditional probability of the current state vector S, given the belief vector 7,,. Note that the schedule
order vector O,,_; is only a function of O,, and the state S,,(a,,), thus maintaining consistency with the
amount of information available for scheduling decision in the actual problem setup. We now proceed
to compare the net expected reward when a,,, = n and a,, =n+1 where n € {1... N —1}. Let Y and
X be random binary vectors of lengths n — 1 and N —n — 1 (empty when the length is non-positive)
respectively. Then,

Vin (T {@m = n, {Bebesm 1))
= () + > Psim,([Y 00 X]|m)Viuot (Y 0 0 X, [{Oy, — 1} n])

+ 3" Py (1Y 0 1 X[m0 Vit ([Y 0 1 X],[{O — n} 1))
+ 3" Py (1Y 10 X[m0 Vit ([Y 10 X, [0 {0, — n}])
+ 3 Pomn (Y 11 X]m) Vot ([Y 11X, [0 {0, = }]), ©)

where O,,, — O,,,_1 evolution follows (7). Since the Markov channel statistics are identical across the
users, we have the following symmetry property: for any & > 1,

Vi(Sit1, Or) = Vi(Sie1, Op) if Spi1(Ok(3)) = Spsr(Ok(d)) Vie {1...N}. (10)

Expanding V,, (7, {am = n+1, {@k}kgm_l}) along the lines of (9), and using the preceding symmetry
property, with further mathematical simplification ([28]), we can evaluate the difference in the net



expected reward as follows,
Vm(ﬂ—ma {a'm =n, ﬁk,k’gm—l}) - Vm(”m; {am =n-+ 17 ﬁk,kgm—l})
= (ﬁm(n) — T(n + 1)) X
(1 -y [Vm_l([y 1X0),[1...N]) = Voot (1Y 0 X], [1...N])] X

Y, X
Ps, i ([Sm(1) ... Sp(n — 1)] = Y|7) Py ([Sm(n + 2) ... Siu(N)] = X|7Tm)). (1)

Proposition 3: A sufficient condition for the optimality of the greedy policy is given as follows,
[Vm_l([y 1 X 0),[1...N])) = Vit (LY 0 X], 1. .N])] <1, (12)

Vm>1,né€ {J ...N —1},Y, X being random binary vectors of length n — 1 and N —n — 1 and
{gk}kgm—l = {gk}kgm—l-

Proof: The proof uses (11) along with an induction argument. The reader is referred to [28] for
details. [ ]

B. Optimality of the Greedy Policy with N = 3 Users

Proposition 4: When N = 3 users, the greedy policy satisfies the sufficient condition in Proposition 3
and hence is optimal.
Proof: With N = 3, n € {1,2}. The sufficient condition in Proposition 3 becomes, ¥V m > 1,

[Vm_l(u X 0),123]) = Voot (110 X],[12 3])} <1 whenn=1
Vo (Y 100,11 23]) = Vit (1Y 0], 1123])| <1 when n =2 (13)

where X, Y are binary numbers and {@}r<pm-1 = {@k}kgm_l. The proof of (13) is available in [28].
|

Due to the complex relationship between the scheduling decision in a control interval and the reward
expected in the future intervals, an analysis of the optimality of the greedy policy for the general N-
user case appears difficult. But with support from simulation results, we conjecture that the sufficient
condition in Proposition 3 is satisfied for any value of N, thus suggesting the optimality of the greedy
policy for any N. Fig. 1 plots the values of V,,,_;([Y 1 X 0],[1...N]) = V,,_1([1 Y 0 X],[1...N])

) 0.6324 0.3676

for various values of n € {1...N — 1} when N = 5, P = 0975 9025 |- In each of the four
subplots, Y and X are allowed to take on every possible binary word of length n —1 and N —n — 1,

respectively.

VI. SuM CAPACITY OF THE MARKOV-MODELED DOWNLINK

With the greedy policy established as the sum-throughput maximizing scheduling policy for N = 2
users, the sum capacity of the system is given by the sum throughput under the greedy policy. We now
give the following result.

Proposition 5: When N = 2, the sum capacity of the given Markov-modeled downlink equals that
of a genie-aided Markov-modeled downlink where, at the end of every control interval, the base station
learns the state of the channels in that control interval. The sum capacity is given as

r

Csum =psp+ (1 - ps)ps with Ps = T—FT —>
1—(p—r)



where p, is the probability that the channel of user 1 (or 2) is ON in steady state. The greedy policy
achieves the sum capacity of both systems.

Proof: 'We begin with the sum throughput of the greedy policy in the genie-aided system. With
Tss(1) = ms(2) = ps (the steady state ON probability of the Markov channels), it can be proved ([28])
that,

HENe (A his1) = pap + (1 — po)ps, (14)

with p, = ﬁ. We now proceed to prove that the sum throughput of the greedy policy in the original
system equals that of the greedy policy in the genie-aided system. Consider the scheduling problem
for the original system in control interval k£ under the greedy policy. When the user scheduled in the
previous control interval a;,; sends back an ACK, the scheduling decision is retained in the current
interval, i.e., ar = axy1. Otherwise, the other user is scheduled in k. This procedure is evident from
the structure of the greedy policy discussed in Section IV. We can interpret this decision logic as follows:

When at least one of the users had an ON channel in the previous control interval, that user? is identified
for scheduling in the current control interval k, leading to an expected current reward Ry = p. Reward
Ry, = r is accrued only when both the channels were in OFF state.

From this observation we see that, under the greedy policy, no improvement in sum throughput can be
achieved even if the channel states of both the users in control interval £ + 1 were available for the
scheduling decision in control interval k. This establishes the equivalence between the original system
and the genie-aided system in terms of the sum throughput achieved by the greedy policy. We have
already proved the sum throughput optimality of the greedy policy in the original system when N = 2,
in Section III. Thus the sum capacity of the original system is given by (14).

We now proceed to prove that (14) is the sum capacity of the genie-aided system as well by examining
the sum throughput optimality of the greedy policy in the genie-aided system. For any control interval
m, we rewrite the net expected reward from 3 for the genie aided system below.

vygenie(ﬂ_m’ {gk}kgm) - Rm(ﬂ-ww am) + E[Vng;ilie(ﬂm—la {gk}kgm—l) |7Tm> am]‘

Note that since the current channel state of both the users (5,,(1) and 5,,(2)) are available at the base
station at the end of the control interval m, the belief vector 7, and hence the expected future reward
E[VE™"] are independent of the scheduling decision a,,. Therefore, in any control interval, the net
expected reward is maximized by the greedy policy. This establishes the sum throughput optimality of
the greedy policy in the genie-aided system as well. The proposition thus follows. [ ]
Insights on the result in Proposition 5 can be obtained by examining the fundamental trade-off involved
in the scheduling decisions in the Markov-modeled downlink. Transmission to a scheduled user and

eventually obtaining ARQ feedback from that user accomplishes the following two objectives:

o data transmission in the current slot, which influences the current reward .
« probing the channel of a user for future scheduling decisions, which influences the expected reward
in future control intervals.
The optimal schedule strikes a balance between these two objectives (that need not always contradict
each other).

From the discussion in the proof of Proposition 5, we see that, in the original system, the choice of
the user whose channel is probed becomes irrelevant as far as the future reward is concerned*. That
explains the result in Corollary 2 and why the greedy policy is optimal in the sum throughput sense.
Considering the genie-aided system, since the channel state information of both the users are freely

3User ag1 is given higher priority if both channels were ON.
4As long as one of the users is probed.



available to the scheduler at the end of the control interval, there is no need to probe the channel of
any user to help with future scheduling decisions. This makes the greedy policy the sum throughput
optimal for the genie-aided system as well.

VII. CONCLUSION

We have addressed the problem of scheduling using ARQ feedback in a Markov-modeled downlink.
Using POMDP formulation, we have shown that, for N < 3 users, a simple greedy policy that maximizes
the current reward is optimal in terms of sum throughput. We have shown that the greedy policy can be
implemented by a simple round-robin based algorithm does not require the statistics of the underlying
Markov chain, thus establishing the attractiveness of the greedy policy from a practical point of view.
We have also derived a sufficient condition for the optimality of the greedy policy in the general N user
case. We conjectured that the greedy policy satisfies this condition and hence is optimal for any number
of users in the system. By establishing an equivalence with a genie-aided system, a simple expression
for the sum capacity of the Markov-modeled downlink system has been derived when N = 2. Before
we conclude, note that our problem is a special case of the restless multi-armed bandit problem [26].
This problem has been shown to be PSPACE-hard to solve in general [27]. Thus our result on the
optimality of the greedy policy may be of importance in understanding the properties of the optimal
policy in the general restless multi-armed bandit processes.
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Fig. 1. Illustration showing Vm_l([Y 1X0,[1...N]) — Vm_l([l Y 0 X],[1...N]) <1Vne{l...N —1} with N = 5 users.



