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Abstract—For noncoherent communication over fading chan-
nels, pilot-aided transmission is a practical scheme whichal-
lows the receiver to compute channel estimates for subsequent
use in coherent decoding. We propose an improved scheme
whereby the transmitter interleaves several pilot substreams
with independently-coded data substreams to facilitate successive
decoding and channel re-estimation at the receiver. In particular,
an initial pilot-aided channel estimate is used to coherently decode
the first data substream, which is then used to refine the channel
estimate before coherently decoding the next data substream, and
so on. Assuming knowledge of the channel statistics, the pilots
and the rates of the data substreams can be chosen to ensure
reliable decoding. While similar schemes have been proposed for
channels that are either time-selective or frequency-selective, ours
is focused on doubly selective channels. We derive a lower bound
on the achievable rate of our strategy and further characterize
the achievable rate at high SNR. When the channel satisfies
a complex-exponential basis expansion model, we show that
the pre-log factor of the high-SNR achievable rate expression
coincides with that of the ergodic capacity expression. Forthe
same channel, we propose a pilot/data power allocation strategy
that maximizes a lower bound on the achievable rate.1

I. I NTRODUCTION

Practical wireless communication is noncoherent in that the
channel state is never known a priori to the transmitter nor
receiver. As a result, practical wireless transmissions must be
designed with a structure that facilitates reliable reception in
the absence of channel state information (CSI). Pilot-aided
transmission (PAT) [1], [2] is perhaps the most common means
of providing this structure.

With PAT, “one-shot” schemes are common, whereby the
receiver computes a pilot-aided channel estimate and subse-
quently uses it for coherent data decoding. In this case, channel
estimation error acts as additional noise which degrades decod-
ing performance and thus the rate of reliable communication
[3]. Though channel estimation can be improved by allocating
more transmission resources (e.g., rate and power) to pilots,
doing so limits the resources that remain for data transmission.
Hence, information-theoretic analysis are useful to understand
the optimal allocation of resources between pilots and data.
Several information-theoretic analyses of PAT with one-shot
estimation/decoding have appeared, e.g., in [4]–[10].
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As an improvement to one-shot estimation/decoding of
PAT, several authors have considered iterative (i.e., “turbo”)
estimation/decoding strategies, whereby soft decoder outputs
are employed to refine channel estimates, which can then
be used for improved decoding, and so on [11]–[14]. Such
systems are generally suboptimal and difficult to analyze.

More recently, the use of block interleaving with successive
decoding has been proposed as a more structured approach to
joint estimation/decoding of PAT [15], [16]. There the idea
is to split the information stream into independently coded
substreams and decode them successively. While a pilot-aided
channel estimate is used to decode the first substream, reliably
decoded symbols can be employed to refine the channel esti-
mates used by later decoding stages. For long coding blocks
and properly chosen substream rates (e.g., assuming known
channel statistics), each substream can be reliably decoded,
greatly simplifying the design and analysis of such systems.
PAT with successive decoding has been used successfully in
time-selective and frequency-selective SISO channels [16] as
well as time-selective MIMO channels [15].

In this paper, we propose a scheme for noncoherent com-
munication over doubly (i.e, time- and frequency-) selective
fading channels that uses successive decoding and channel
re-estimation at the receiver. Assuming perfect decoding of
each stream, we calculate an achievable-rate lower-bound and
use it to infer a set of substream rates which are sufficient to
ensure perfect decoding. We also characterize the high-SNR
spectral efficiency of the proposed communication strategy. To
highlight certain design issues, we consider the special case of
doubly selective channel which satisfies a complex-exponential
basis expansion model (CE-BEM). For this channel, we design
a suitable pilot pattern and through it verify that the pre-log
factor of the high-SNR achievable rate expression coincides
with that of the ergodic capacity [10], [17]. We also propose
a pilot/data power allocation strategy that maximizes a lower
bound on the achievable rate.

The paper is organized as follows: A description of the
system model appears in Section II, the reception strategy
is described in Section III, and achievable-rate expressions
are derived in Section III-B. The specific case of the doubly
selective CE-BEM channel is considered in Section IV, and
conclusions are drawn in Section V.

Notation: In the manuscript,(·)T denotes transpose,(·)∗ de-



notes conjugate, and(·)H denotes conjugate-transpose.[B]m,n

denotes the element in themth row andnth column of B,
where row and column indices begin with zero.0m×n denotes
them×n zero matrix,IK denotes theK×K identity matrix,
ande

(q)
K denotes theqth column ofIK . For matricesA andB,

A ≥ B means thatA−B is positive semi-definite. The trace
of a matrix is denoted bytr(·), and the Kronecker product of
two matrices is denoted by⊗. Also, δl denotes the Kronecker
delta sequence,〈·〉 denotes the modulo operator, andC the set
of all complex numbers. Expectation is denoted byE(·) and
auto-covariance byΣb := E(bbH) − E(b) E(bH).

II. SYSTEM MODEL

A. Transmission Model

Consider a scheme in which information is transmitted
throughNs substreams, each of which uses the channelNb

times. In particular, say thatsk(i) denotes theith sample of the
kth substream. The firstNp substreams (i.e.,{sk(i)}Nb−1

i=0 for
k = 0 . . .Np − 1) are dedicated to pilots while the remaining
Ns−Np substreams (i.e.,{sk(i)}Nb−1

i=0 for k = Np . . . Ns−1)
are dedicated to data. The data substreams are independently
encoded at rates that ensure reliable decoding, as will be
discussed later. For this, we assume that the transmitter knows
the channel statistics, but not the channel state.

The average transmission power is constrained toEtot

Joules per-channel-use,Ep of which is allocated to pilots and
the remainder of which is divided equally among the data
substreams. Thus, each data substream has power

σ2
s =

Etot − Ep

Ns −Np
. (1)

For analytical tractability, we assume the use of i.i.d. Gaussian
codebooks. With this assumption, the power constraints canbe
expressed as

Np−1
∑

k=0

|sk(i)|2 = Ep ∀i (2)

E{sNp
(i1)sNp

(i2)
H} = σ2

sINs−Np
δi1−i2 (3)

where

sk(i) := [sk(i), . . . , sNs−1(i)]
T . (4)

In the sequel, we will also make frequent use of the notation

sk(i) := [s0(i), . . . , sk−1(i)]
T (5)

s(i) := [s0(i), . . . , sNs−1(i)]
T = [sk(i)T , sk(i)T ]T .(6)

B. Channel Model

We assume that the receiver observes the noisy inter-
substream-interference (ISSI) corrupted samples{yk(i)}Nb−1

i=0 ,
for k ∈ {0, . . . , N − 1}, where

yk(i) =

Nh−1∑

l=0

hk,l(i)sk−l(i) + wk(i). (7)

Here,N := Ns +Nh − 1, whereNh denotes the ISSI length,
andsk(i) := 0 for k /∈ {0, . . . , Ns −1}. The observations can

be written in vector form asy(i) = [y0(i), . . . , yN−1(i)]
T ,

where

y(i) = H(i)s(i) + w(i) (8)

for w(i) = [w0(i), . . . , wN−1(i)]
T and

H(i) =











h0,0(i)
...

. . .
hNh−1,Nh−1(i) hNs−1,0(i)

. . .
...

hN−1,Nh−1(i)











. (9)

Notice that the channel model suffices to describe either
single-carrier or multi-carrier transmission. In the single-
carrier case, (7) corresponds toNb blocks of (Nh − 1)-
zero-paddedNs-block transmission through a doubly selective
fading channel with time-varying inter-symbol interference
(ISI) of lengthNh. In the multi-carrier case, (7) corresponds
to Nb symbols of anN -subcarrier system withNs active
subcarriers and an inter-carrier interference (ICI) response of
lengthNh.

It will sometimes be convenient to write the system model
as

y(i) = S(i)h(i) + w(i) (10)

with h(i) ∈ CNsNh such that

h(i) := [h0,0(i), . . . , hNs−1,0(i), h1,1(i), . . . , hNs,1(i), · · ·
hNh−1,Nh−1(i), . . . , hN−1,Nh−1(i)]

T
, (11)

and with

S(i) :=












s0(i) 0 · · · 0 0 · · · 0
. . . s0(i) · · ·

...
...

sNs−1(i)
. . . 0 · · · 0

0 · · · 0 sNs−1(i) s0(i)
...

... 0 · · · 0 · · · . . .
0 · · · 0 0 · · · 0 sNs−1(i)












.

In the sequel, we make use ofyk(i) :=
[y0(i), . . . , yk−1(i)]

T , wk(i) := [w0(i), . . . , wk−1(i)]
T ,

andSk(i), the latter defined as the matrix formed by the first
k rows of S(i). Note that

yk(i) = Sk(i)h(i) + wk(i) (12)

where the entries inSk(i) come fromsk(i) but not fromsk(i).
We assume that the channel coefficients

h(i) are zero-mean circular Gaussian with
E{h(i)h(i)H} = Σh, where rank(Σh) = Nm < Ns and
wheretr(Σh) = Ns (i.e., the channel is energy-preserving).
Similarly, we assume that the noise coefficients are zero-
mean circular Gaussian withE{w(i)w(i)H} = σ2IN and
independent acrossi.



III. N ONCOHERENTPILOT-AND-DATA -A IDED

COMMUNICATION

A. Description of Scheme

We now summarize the noncoherent communication
scheme, elaborating on the details after the summary.

0. The MMSE estimate ofh(i) from yNp
(i) is com-

puted for eachi ∈ {0, . . . , Nb − 1}, leveraging the
fact that yNp

(i) is a function of the pilotssNp
(i)

but not the unknown datasNp
(i). Denoting this pilot-

aided channel estimate bŷh
(Np)

(i), the first data sub-
stream{sNp

(i)}Nb−1
i=0 is then coherently decoded using

the pilot-aided channel estimatêh
(Np)

(i). With large
enoughNb and suitable choice of code rate, this data
substream can be reliably decoded.

1. Using the decoded substream in conjunction with pilots,

a refined MMSE channel estimatêh
(Np+1)

(i) is com-
puted fromyNp+1(i) for each i ∈ {0, . . . , Nb − 1},
leveraging the fact thatyNp+1(i) is not a function
of the not-yet-decoded data. The next data substream
{sNp+1(i)}Nb−1

i=0 is then coherently decoded using the

refined channel estimatêh
(Np+1)

(i). With a suitable
choice of code rate, this second data substream can also
be reliably decoded.

2. Using the two decoded substreams in conjunction with

pilots, the refined MMSE channel estimateĥ
(Np+2)

(i) is
computed fromyNp+2(i) for eachi ∈ {0, . . . , Nb − 1}.
The next data substream{sNp+2(i)}Nb−1

i=0 is then coher-
ently decoded using the most recent channel estimate

ĥ
(Np+2)

(i), where decoding can be made reliable via
proper rate selection.

*. The procedure continues this way until allNs data
substreams have been decoded.

Next we elaborate on the channel estimation and data decoding
procedures. Rate allocation will be detailed in Section III-B.

The MMSE channel estimatêh
(k)

(i), i.e., the estimate of
h(i) from yk(i) given perfect knowledge ofSk(i), can be
written as [18]

ĥ
(k)

(i) = ΣhSk(i)H

×
(
Sk(i)ΣhSk(i)H + σ2Ik

)−1
yk(i). (13)

Conditioned onsk(i), the estimation error̃h
(k)

(i) := h(i) −
ĥ

(k)
(i) has covariance [18]

Σ
h̃

(k)
(i)|sk(i)

= Σh − ΣhSk(i)H

×
(
Sk(i)ΣhSk(i)H + σ2Ik

)−1
Sk(i)Σh.(14)

Now we describe the decoding of data substream
{sk(i)}Nb−1

i=0 for k ∈ {Np, . . . , Ns − 1}. In doing so, we
make use of the partitionH(i) = [Hk(i),hk(i),Hk+1(i)],
where Hk(i) ∈ CN×k, hk(i) ∈ CN×1, and Hk+1(i) ∈

C
N×(Ns−k−1), so that (8) becomes

y(i) = Hk(i)sk(i) + hk(i)sk(i)

+ Hk+1(i)sk+1(i) + w(i). (15)

In addition, we construct̂H
(k)

(i) from ĥ
(k)

(i), andH̃
(k)

(i)

from h̃
(k)

(i), in the same way that we constructedH(k)(i)
from h

(k)(i), and we make the corresponding partition

Ĥ
(k)

(i) = [Ĥ
(k)

k (i), ĥ
(k)

k (i), Ĥ
(k)

k+1(i)]. The first stage of
decoding involves interference cancellation and linear com-
bining:

r(k)(i) = y(i) − Ĥ
(k)

k (i)sk(i) (16)

zk(i) = c(k)(i)Hr(k)(i). (17)

Recall that we have assumed that, at the time of decoding
{sk(i)}Nb−1

i=0 , the substreams{sk(i)}Nb−1
i=0 are known through

reliable decoding or as pilots. Using (15) and (16), we see that

r(k)(i) = ĥ
(k)

k (i)sk(i) + v(k)(i), (18)

v(k)(i) = Ĥ
(k)

k+1(i)sk+1(i) + H̃
(k)

(i)s(i) + w(i) (19)

from which the post-combining SINRγ(k)(i) becomes

γ(k)(i) =
|c(k)(i)H ĥ

(k)

k (i)|2σ2
s

c(k)(i)HΣ
v(k)(i)|sk(i),ĥ

(k)
(i)

c(k)(i)
(20)

for Σ
v(k)(i)|sk(i),ĥ

(k)
(i)

:= E{v(k)(i)v(k)(i)H |sk(i), ĥ
(k)

(i)}.
The combiner output can then be written as

zk(i) = gk(i)sk(i) + nk(i), (21)

for gk(i) := c(k)(i)H ĥ
(k)

k (i) and nk(i) := c(k)(i)Hv(k)(i).
After {zk(i)}Nb−1

i=0 and {gk(i)}Nb−1
i=0 have been computed,

coherent decoding based on (21) can be applied.

B. Achievable-Rate Analysis

Notice that, fork ∈ {Np, . . . , Ns − 1}, the effective noise
nk(i) is non-Gaussian:

nk(i) = c(k)(i)H
(
Ĥ

(k)

k+1(i)sk+1(i)

+ H̃
(k)

(i)s(i)
︸ ︷︷ ︸

non-Gaussian

+w(i)
)
. (22)

Medard [3] and Hassibi [4] showed that the worst-case noise
distribution with respect to mutual information is the Gaussian
one. Additionally, the achievable rate for Gaussian signaling in
the presence of Gaussian distributed noise can be expressedin
terms of the post-combining SINR [19]. Therefore, assuming
adequately largeNb, the achievable rate across data substream
k ∈ {Np, . . . , Ns − 1} can be bounded from below, in units
of nats-per-(scalar)-channel-use, as

Rk ≥ E
{

log
(
1 + γ(k)(i)

)}

, (23)

where the SINRγ(k)(i) was given in (20) and the expectation

in (23) is taken over the joint distribution of̂h
(k)

(i) andsk(i).



Note that the bound in (23) holds for general linear combiners
c(k)(i). The tightest bound can be obtained by choosing the
max-SINR combiner

c(k)(i) = Σ
−1

v(k)(i)|sk(i),ĥ
(k)

(i)
ĥ

(k)

k (i), (24)

in which case the bound (23) becomes

Rk ≥ E

{

log
(

1 + σ2
s ĥ

(k)

k (i)H

× Σ
−1

v(k)(i)|sk(i),ĥ
(k)

(i)
ĥ

(k)

k (i)
)}

(25)

leading to the following bound on the overall achievable rate,
given in nats-per-channel-use.

Rtot ≥ 1

N

Ns−1∑

k=Np

E

{

log
(

1 + σ2
s ĥ

(k)

k (i)H

× Σ
−1

v(k)(i)|sk(i),ĥ
(k)

(i)
ĥ

(k)

k (i)
)}

. (26)

To facilitate reliable decoding, the data substream rates should
be chosen in accordance with (25).

C. Asymptotic Achievable-Rate Analysis

In this section, we analyze the achievable rateRtot at high
SNR. For this, we define the SNRρ := Etot

Nσ2 and examine
Rtot(ρ) asρ→ ∞.

To provide some intuition on the high-SNR behavior, con-
sider for the moment choosing a zero-forcing (ZF) combiner
c(k)(i), ||c(k)(i)|| = 1, such that

c(k)(i)HĤ
(k)

k+1(i) = 0 (27)

which implies thatgk(i) = c(k)(i)H ĥ
(k)

k (i) and (via (22))

nk(i) = c(k)(i)H
(
H̃

(k)
(i)s(i) + w(k)(i)

)
. (28)

Note that this ZF combiner exists w.p.1. We reason that, for a
“well-designed” channel estimation procedure, the covariance
of the channel estimation errorΣ

h̃
(k)

(i)|sk(i)
(defined in (14))

should vanish asσ2 → 0. In particular, there should exist a
pilot patternsNp

that, for fixedEtot andNp < Ns, guarantees
the existence ofσ-invariantA such thatΣ

h̃
(k)

(i)|sk(i)
≤ σ2A

for all σ > 0 and for all k ∈ {Np, . . . , Ns − 1}. When
this is the case, the use of a zero-forcing combiner ensures

thatσ2

nk(i)|sk(i),ĥ
(k)

(i)
:= E

{
|nk(i)|2

∣
∣sk(i), ĥ

(k)
(i)

}
will also

vanish asσ2 → 0 for each information substream. In particu-
lar, there will existσ-invariantα such thatσ2

nk(i)|sk(i),ĥ
(k)

(i)
≤

σ2α for all σ > 0 and for allk ∈ {Np, . . . , Ns −1}. Then we

see thatγ(k)(i) ≥ |gk(i)|2σ2
s

ασ2 = |gk(i)|2N
α(Ns−Np) (1 − Ep

Etot
)ρ for each

k ∈ {Np, . . . , Ns − 1}. When this is the case, (23) implies

lim
ρ→∞

Rtot(ρ)

log ρ
≥ Ns −Np

N
. (29)

We now make these statements more precise.

The condition under which the covariance of the estimation
error Σ

h̃
(k)

(i)|sk(i)
vanishes with increasing SNR is given by

the following lemma.

Lemma 1. Let the columns of B ∈ CNhNs×Nm be the
eigenvectors corresponding to non-zero eigenvalues of Σh.
Then there exists σ-invariant A such that, for every k ∈
{Np, . . . , Ns − 1},

Σ
h̃

(k)
(i)|sk(i)

≤ σ2A ∀σ > 0 (30)

if and only if

rank
(
SNp

(i)B
)

= Nm. (31)

Proof: See Appendix A
In the sequel, we refer to condition (31) as the “rank

condition.” Lemma 1 says that theNp pilot substreams must
excite all Nm channel modes in order to obtain channel
estimates whose error vanishes with increasing SNR.

Theorem 1. For the class of channels that enable pilots
SNm

(i) to yield rank (SNm
(i)B) = Nm, the achievable rate

of our scheme obeys

lim
ρ→∞

Rtot(ρ)

log ρ
=

Ns −Nm

N
. (32)

Proof: See Appendix B

IV. I LLUSTRATIVE EXAMPLE

We now consider the specific case of a doubly selective
fading channel which obeys a complex-exponential basis ex-
pansion model (CE-BEM) [20], [21]. In particular, the channel
coefficients inh(i) are parameterized byNm = (2D + 1)Nh

uncorrelated Gaussian random variables
{
φm,l(i) : m ∈

{−D, . . . ,D}, l ∈ {0, . . . , Nh − 1}
}

via

hk,l(i) =
1√
Ns

D∑

m=−D

φm,l(i) e
j 2π

Ns
m(k−l). (33)

For simplicity, we assume that the random
variables {φm,l(i)}m,l have equal variance. Hence
E

[
φm1,l1(i1)φ

∗
m2,l2

(i2)
]

= Ns

(2D+1)Nh
δm1−m2δl1−l2δi1−i2 .

In (33), D ≈ ⌈fDTsNs⌉ where fDTs is the single-sided
normalized Doppler spread. For this CE-BEM channel, the
eigenvector matrixB (defined in Lemma 1) has the form
B = INh

⊗F , where theNs × (2D+1) matrix F is defined
element-wise as[F ]m1,m2

= 1√
Ns
ej 2π

Ns
m1(m2−D).

We first address the issue of choosing a suitable pilot
pattern for this example. Estimating the channel coefficients
{hk,l(i)}Ns+l−1

k=l for each l is equivalent to estimating the
(2D + 1) random variables{φm,l}D

m=−D. This can be ac-
complished by exciting the channel with a set of(2D + 1)
impulse sequences of lengthNh − 1. This motivates the use
of theNp = Nm = (2D + 1)Nh-length pilot pattern

sk(i) =

√

NhEp

Nm
δ〈k〉Nh

, 0 ≤ k < Nm. (34)

The proposed scheme, in conjunction with this pilot pattern,
leads to the following achievable-rate characterization.



Proposition 1. For the CE-BEM doubly selective fading
channel, the achievable rate of our scheme obeys

lim
ρ→∞

Rtot(ρ)

log ρ
=

Ns −Nm

N
. (35)

Proof: See Appendix C.
Interestingly, [10], [17] has shown that, under continuously

distributed inputs, the maximum spectral efficiency than can
be achieved on the CE-BEM doubly selective block-fading
channel is Ns−Nm

N . Thus, using the pilot pattern (34), the
proposed scheme becomes “spectrally-efficient”.

Next, we tackle the issue of power allocation between pilot
and data substreams. LetEp = αpEtot for someαp ∈ (0, 1).
Thenσ2

s = (1−αp)Etot/(Ns−Np). We propose a “minimax”
approach whereby we chooseαp to maximize a lower-bound
on the achievable rate of the weakest data substream. Though
this power allocation strategy can be used with an arbitrarily
chosen pilot pattern, we restrict ourselves to the pilot pattern
(34) for simplicity. Recall that the channel estimate is refined
after decoding each data substream, thereby increasing the
effective SINR. Thus, the first data substream{sNp

(i)}Nb−1
i=0

must be the weakest. Recalling thate
(Np)
N denotes theN th

p

column ofIN , we have the following result.

Proposition 2. For the CE-BEM doubly selective fading
channel, the pilot power allocation

αp,∗ = arg max
αp∈(0,1)

σ̂2
Np
σ2

s

σ̃2
Np
σ2

s + σ2
, (36)

where

σ̂2
Np

:=
[
Σ

ĥ
(Np)

(i)|sNp (i)

]

Np,Np
(37)

σ̃2
Np

:=
[
Σ

h̃
(Np)

(i)|sNp (i)

]

Np,Np
, (38)

maximizes a lower-bound on the achievable-rate of the weak-
est data substream, in particular, the lower bound that follows
from the use of the (sub-optimal) combiner c(Np)(i) = e

(Np)
N

in (23).

Proof: See Appendix D
Figure 1 plots the power allocation parameterαp,∗ versus

SNR for single-carrier transmission withNs = 128 substreams
across the CE-BEM doubly selective fading channel with
Nh = 8 taps of ISSI andD ∈ {1, 2}. These parameters
correspond to, e.g., a channel with bandwidth1.5 MHz, carrier
frequency60 GHz, delay spread5.4 µs, and mobile and
reflector velocities of{69, 138} km/hr, in a “triple Doppler”
scenario [22]. Figure 1 suggests that, at low values of SNR,
additive noise level dictates performance and more power is
allocated to the data substreams. However, as the SNR grows,
the effect of channel estimation error on performance becomes
more pronounced, and the pilots are given more power to keep
the estimation error in check.

V. CONCLUSION

In this paper, we designed and analyzed a communication
scheme for the doubly dispersive channel based on pilot-
aided transmission and successive decoding with channel re-
estimation. We derived a lower bound on the achievable
rate and characterized the pre-log factor of the high-SNR
achievable rate expression. For the special case of the CE-
BEM doubly selective fading channel, we found the proposed
communication system to be spectrally efficient. Finally, we
designed a pilot/data power allocation strategy based on the
maximization of an achievable-rate lower-bound.

APPENDIX A
PROOF FORLEMMA 1

We know thatrank(Σh) = Nm, so thatΣh = BΛhBH for
some positive definite diagonal matrixΛh ∈ CNm×Nm . We
can then expressh(i) using the Karhunen-Loeve transform as

h(i) = Bλ(i), (39)

whereλ(i) ∈ CNm is a zero-mean complex Gaussian random
vector with covarianceΛh. Furthermore, there exists a unitary
matrixU(i) and positive semi-definite diagonal matrixΛNp

(i)

such thatBHSNp
(i)HSNp

(i)B = U(i)ΛNp
(i)U(i)H . Us-

ing λ′(i) := U(i)Hλ(i), the observationsyNp
(i) can be

expressed as

yNp
(i) = SNp

(i)h(i) + wNp
(i) (40)

= SNp
(i)Bλ(i) + wNp

(i) (41)

= Λ
1
2

Np
(i)λ′(i) + wNp

(i). (42)

We first show that the rank condition is a necessary condi-
tion. Realize from (40)-(42) that estimatingh(i) is equivalent
to estimatingλ′(i). Let rank(SNp

B) = N ′
m < Nm. Then

w.l.o.g. the firstN ′
m entries along the diagonal ofΛNp

(i)
are positive and the rest are zero. Consequently, the MMSE
estimates of the lastNm − N ′

m components ofλ′(i) are
identically zero and the estimation error for theseNm −N ′

m

components ofλ′(i) does not depend on the noise varianceσ2.
Then there is no hope of finding aσ-invariant A satisfying
Σ

h̃
(Np)

(i)|sNp (i)
≤ σ2A when rank(SNp

B) = N ′
m < Nm.

This establishes that the rank condition is a necessary condi-
tion.

We now show that the rank condition is a sufficient condi-
tion. We first write the estimation error from (14) as

Σ
h̃

(Np)
(i)|sNp (i)

= Σh − ΣhSNp
(i)H

×
(
SNp

(i)ΣhSNp
(i)H + σ2INp

)−1
SNp

(i)Σh

= B
[

Λh − ΛhBHSNp
(i)H

(
SNp

(i)BΛhBHSNp
(i)H

+ σ2INp

)−1
SNp

(i)BΛh

]

BH

= B
(

Λ
−1
h + σ−2BHSNp

(i)HSNp
(i)B

)−1

BH . (43)

The last step above is an application of the matrix inversion
lemma [23]. Realize thatBHSNp

(i)HSNp
(i)B is σ-invariant,



positive definite and invertible ifrank(SNp
B) = Nm. We

choose A′ =
(
BHSNp

(i)HSNp
(i)B

)−1
, and apply the

matrix inversion lemma on (43) to obtain

Σ
h̃

(Np)
(i)|sNp(i)

=

B
(
σ2A′ − σ4A′(Λh + σ2A′)−1A′) BH . (44)

Then for the choiceA = BA′BH , (44) shows that

Σ
h̃

(Np)
(i)|sNp (i)

− σ2A ≤ 0. (45)

This shows that the rank condition is sufficient fork = Np.
It remains to be shown that the rank condition is sufficient
for eachk > Np. Let s̆k(i)H be thekth row of S(i), so that
Sk+1(i) = [Sk(i)H s̆k+1(i)]

H . Then

Σ
h̃

(k+1)
(i)|sk+1(i)

= B
(

Λ
−1
h + σ−2BHSk+1(i)

HSk+1(i)B
)−1

BH

= B
[

Λ
−1
h + σ−2BHSk(i)HSk(i)B

+ σ−2BH s̆k+1(i)s̆k+1(i)
HB

]−1

BH

= Σ
h̃

(k)
(i)|sk(i)

− σ2
Σ

h̃
(k)

(i)|sk(i)
s̆k+1(i)s̆k+1(i)

H
Σ

h̃
(k)

(i)|sk(i)

1 + σ2s̆k+1(i)HΣ
h̃

(k)
(i)|sk(i)

s̆k+1(i)
, (46)

where (46) results from applying the matrix inversion lemma
to the penultimate expression and then substituting (43) (with
indicesk instead ofNp). This clearly implies that

Σ
h̃

(k+1)
(i)|sk+1(i)

− Σ
h̃

(k)
(i)|sk(i)

≤ 0. (47)

We conclude from (45) and (47) that

Σ
h̃

(k)
(i)|sk(i)

≤ σ2A, Np ≤ k ≤ Ns − 1, (48)

which establishes that the rank criterion is also a sufficient
condition and completes the proof.

APPENDIX B
PROOF FORTHEOREM 1

We first show that the spectral efficiency of the proposed
communication strategy isat least Ns−Nm

N when the rank
criterion holds. Recall that

Rk(ρ) ≥ E
{

log
(
1 + γ(k)(i)

)}

. (49)

Our approach will be to show that the required spectral
efficiency can be achieved by using a sub-optimal zero forcing
combinerc(k)(i) = e

(k)
N , the kth column of IN . Recall that

we also used this combiner to split transmit power between
pilot and data substreams. This choice of combiner implies
that only observations{yk(i)}Nb−1

i=0 are used in decoding the
kth data substream. Recall from the system model thatyk(i)
is influenced by symbols{sm(i)}k

m=k−Nh+1, of which the
symbols exceptsk(i) are known (from previously decoded

substreams or as pilots). There is no interference from yet-
to-be-decoded substreams. It can be shown that the combiner
output is

zk(i) = [ĥ
(k)

k (i)]ksk(i) + nk(i) (50)

nk(i) = s̆k(i)H h̃
(k)

(i) + wk(i), (51)

where s̆k(i)H is the kth-row of S(i). First, we bound the
variance of the noise term in (51). In doing so, we can make
use of Lemma 1 since we have assumed that a suitable pilot
pattern that satisfies the rank criterion is used. Then we can

write σ2

nk(i)|sk(i),ĥ
(k)

(i)
:= E

[
|nk(i)|2|sk(i), ĥ

(k)

k (i)
]

as

σ2

nk(i)|sk(i),ĥ
(k)

(i)
= E

[

s̆k(i)H
Σ

h̃
(k)

(i)|sk(i)
s̆k(i)

]

+ σ2

≤ E
[
σ2s̆k(i)HAs̆k(i)

]
+ σ2

≤ σ2αk, (52)

for some positive semi-definiteσ-invariant matrixA and σ-
invariantαk > 1. Then (52) can be used to express the SINR
as

γ(k)(i) ≥

∣
∣
∣[ĥ

(k)

k (i)]k

∣
∣
∣

2

σ2
s

σ2αk
(53)

=
(1 − Ep

Etot
)

(Ns −Np)αk

∣
∣
∣[ĥ

(k)

k (i)]k

∣
∣
∣

2

ρ. (54)

Then for the class of channels that enable pilotsSNm
(i) to

yield rank(SNm
(i)B) = Nm, we first show that

lim inf
ρ→∞

Rk(ρ)

log ρ
≥ 1 ∀k ∈ {Np, · · · , Ns − 1}. (55)

In this direction, we defineψk := [ĥ
(k)

k (i)]k and qk :=
(1−Ep/Etot)
(Ns−Np)αk

to simplify the notation. With these definitions,
we can say that

Rk(ρ)

log ρ
≥ E log(1 + qk|ψk|2ρ)

log ρ
(56)

≥ 1 +
E log(ρ−1 + qk|ψk|2)

log ρ
. (57)

Notice that the estimateψk = [ĥ
(k)

k (i)]k is zero-mean Gaus-
sian distributed. Then

lim
ρ→∞

log(ρ−1 + qk|ψk|2)
log ρ

=

{

0, ψk 6= 0

−1, ψk = 0
(58)

= 0 w.p.1 . (59)

Taking limit infimum on both sides of (57), we see that

lim inf
ρ→∞

Rk(ρ)

log ρ
≥ 1 + lim inf

ρ→∞

E log
(
ρ−1 + qk|ψk|2

)

log ρ

≥ 1 + E

(

lim inf
ρ→∞

log(ρ−1 + qk|ψk|2)
log ρ

)

≥ 1. (60)



In the above, the penultimate step is an application of Fatou’s
Lemma [24] and the last step applies (59). Using (60) and the
fact that

Rtot(ρ) =
1

N

Ns−1∑

k=Nm

Rk(ρ), (61)

we obtain

lim
ρ→∞

Rtot(ρ)

log ρ
≥ Ns −Nm

N
. (62)

Thus the proposed communication strategy attains a spectral
efficiency of at least (62).

On the other hand, consider that perfect CSI is available at
the receiver through a genie. In this situation, well known
results in [19], [25] dictate that the spectral efficiency of
a communication strategy that transmits(Ns − Nm) data
substreams overN channel-uses cannot exceedNs−Nm

N even
with optimal joint decoding. The proposed communication
strategy has poorer performance than the genie aided strategy
since it uses imperfect CSI, and can only have a poorer spectral
efficiency. This observation leads us to conclude that

lim
ρ→∞

Rtot(ρ)

log ρ
=

Ns −Nm

N
. (63)

This completes the proof.

APPENDIX C
PROOF FORPROPOSITION1

We need to demonstrate thatrank
(
SNp

(i)B
)

= Nm =
Nh(2D + 1). Recall that the pilot pattern used is

sk(i) =

√

NhEp

Nm
δ〈k〉Nh

, 0 ≤ k < Nm. (64)

Recalling the structure ofS(i) and the fact that, for the
CE-BEM channel, B = INh

⊗ F , where the Ns ×
(2D + 1) matrix F is defined element-wise as[F ]m1,m2

=
1√
Ns
ej 2π

Ns
m1(m2−D). Under these conditions, it is straightfor-

ward to show that

SNp
(i)B =

√

NhEp

Nm
P (INh

⊗ M ) , (65)

In (65), the (2D + 1)Nh × (2D + 1)Nh row-permutation
matrix P is defined element-wise by[P ]m1,m2(2D+1)+m3

=
[I(2D+1)Nh

]m1,m3Nh+m2 where 0 ≤ m1 < (2D + 1)Nh,
0 ≤ m2 < Nh and 0 ≤ m3 < (2D + 1). Furthermore, the
(2D+ 1)× (2D+ 1) complex matrixM is defined element-
wise as[M ]m1,m2 = 1√

Ns
exp( j2πNhm1m2

Ns
). Then,

rank
(
SNp

(i)B
)

= rank(P (INh
⊗ M)) (66)

= rank(INh
⊗ M) (67)

= Nh rank(M) (68)

= Nh(2D + 1) = Nm. (69)

In the above, (66) is obtained using (65), (67) is a result
of P being, by definition, a permutation of the columns
of I(2D+1)Nh

, (68) is a standard result for block-diagonal

matrices and the final step is a result ofM being a full rank
Vandermonde matrix.

Then applying Lemma 1 and Theorem 1 we see that when
the proposed communication strategy is used for single carrier
transmission over doubly selective fading channels,

lim
ρ→∞

Rtot(ρ)

log ρ
=

Ns −Nm

N
. (70)

This concludes the proof.

APPENDIX D
PROOF FORPROPOSITION2

Recall that the post-combining SINR for theN th
p substream

is

γ(Np)(i) =
|c(Np)(i)H ĥ

(Np)

Np
(i)|2σ2

s

c(Np)(i)HΣ
v

(Np)(i)|sk(i),ĥ
(k)

(i)
c(Np)(i)

.(71)

For the sub-optimal combinerc(Np)(i) = e
(Np)
N , the N th

p

column of IN , only observations{yNp
(i)}Nb−1

i=0 are used to
decode theN th

p substream. Recall from the system model

thatyNp
(i) is influenced by symbols{sm(i)}Np

m=Np−Nh+1, of
which, all the symbols exceptsNp

(i) are known as pilots. For
the pilot pattern used (34),sk(i) = 0 for Np −Nh + 1 ≤ k ≤
Np−1. As a result, only the estimation error from the estimate
of hNp,0(i) affects yNp

(i). Under these circumstances, it is
straightforward to show that

γ(Np)(i) ≥
σ̂2

Np
σ2

sζ

σ̃2
Np
σ2

s + σ2
, (72)

In (72), ζ is a zero-mean complex Gaussian random variable
with unit variance,σ̂2

Np
is the variance of the estimate of

hNp,0(i), andσ̃2
Np

the variance of the corresponding estimation
error. The varianceŝσ2

Np
and σ̃2

Np
can be calculated as per

their definitions in (37) and (38). In doing so, the covariance
matrices of the estimates used to decode theN th

p substream
and the corresponding estimation error for the pilot pattern in
(34) and the CE-BEM channel is given by

Σ
ĥ

(Np)
(i)|sNp (i)

= Σh(i) − Σ
h̃

(Np)
(i)|sNp (i)

(73)

Σ
h̃

(Np)
(i)|sNp (i)

= B

[
(2D + 1)Nh

Ns
INm

+
αpEtot

2D + 1

× INh
⊗ (MHM)

]−1

BH , (74)

where, the (2D + 1) × (2D + 1) matrix M is defined
element-wise as[M ]m1,m2 = 1√

Ns
exp( j2πNhm1m2

Ns
). (See

Appendix C for details.) The choiceαp,∗ that maximizes this
lower-bound on the post-combining SINR and consequently
the lower-bound on the achievable rate is

αp,∗ = arg max
αp∈(0,1)

σ̂2
Np
σ2

s

σ̃2
Np
σ2

s + σ2
. (75)

This completes the proof.
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Fig. 1. Power allocation parameterαp,∗ at various SNRs for aNs = 128-
substream spectrally efficient transmission over a CE-BEM doubly selective
fading channel withNh = 8 taps of ISSI andD ∈ {1, 2}.


