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Abstract—For noncoherent communication over fading chan- ~ As an improvement to one-shot estimation/decoding of
nels, pilot-aided transmission is a practical scheme whictal-  PAT, several authors have considered iterative (i.e.btlr
lows the receiver to compute channel estimates for subsequte estimation/decoding strategies, whereby soft decodeyutsit

use in coherent decoding. We propose an improved scheme | d t fi h | estimat hich h
whereby the transmitter interleaves several pilot substrams are employed fo refine channel eslimates, which can then

with independently-coded data substreams to facilitate stccessive b€ used for improved decoding, and so on [11]-[14]. Such
decoding and channel re-estimation at the receiver. In paitular, systems are generally suboptimal and difficult to analyze.

an initial pilot-aided channel estimate is used to coheremy decode More recently, the use of block interleaving with successiv
the first data substream, which is then used to refine the charei decoding has been proposed as a more structured approach to

estimate before coherently decoding the next data substreg and . . : . . .
S0 on. Assuming knowle)clzlge of thg channel statistics, the ptb joint estimation/decoding of PAT [15], [16]. There the idea

and the rates of the data substreams can be chosen to ensureS t0 split the information stream into independently coded
reliable decoding. While similar schemes have been propogdor  substreams and decode them successively. While a pilettaid

channels that are either time-selective or frequency-setive, ours  channel estimate is used to decode the first substreanmlyelia
is focused on doubly selective channels. We derive a lower tnad decoded symbols can be employed to refine the channel esti-

on the achievable rate of our strategy and further characteize . .
the achievable rate at high SNR. When the channel satisfies mates used by later decoding stages. For long coding blocks

a complex-exponential basis expansion model, we show thatand properly chosen substream rates (e.g., assuming known
the pre-log factor of the high-SNR achievable rate expressn channel statistics), each substream can be reliably ddcode

coincides with that of the ergoQic capacity expressiqn. Fothe greatly simplifying the design and analysis of such systems
same channel, we propose a pilot/data power allocation sttegy  pAT with successive decoding has been used successfully in
that maximizes a lower bound on the achievable raté. . . .
time-selective and frequency-selective SISO channelp 436
well as time-selective MIMO channels [15].
|. INTRODUCTION In this paper, we propose a scheme for noncoherent com-
Practical wireless communication is noncoherent in that timunication over doubly (i.e, time- and frequency-) selexti
channel state is never known a priori to the transmitter néading channels that uses successive decoding and channel
receiver. As a result, practical wireless transmissionstrbe re-estimation at the receiver. Assuming perfect decodihg o
designed with a structure that facilitates reliable reioepin  each stream, we calculate an achievable-rate lower-bouthd a
the absence of channel state information (CSI). Pilotéridese it to infer a set of substream rates which are sufficient to
transmission (PAT) [1], [2] is perhaps the most common measasure perfect decoding. We also characterize the high-SNR
of providing this structure. spectral efficiency of the proposed communication stratégy
With PAT, “one-shot” schemes are common, whereby theghlight certain design issues, we consider the specsd oa
receiver computes a pilot-aided channel estimate and subseubly selective channel which satisfies a complex-expiaen
quently uses it for coherent data decoding. In this caseywia basis expansion model (CE-BEM). For this channel, we design
estimation error acts as additional noise which degradesdde a suitable pilot pattern and through it verify that the prg-|
ing performance and thus the rate of reliable communicatifeictor of the high-SNR achievable rate expression coirscide
[3]. Though channel estimation can be improved by allocatirwith that of the ergodic capacity [10], [17]. We also propose
more transmission resources (e.g., rate and power) tospild pilot/data power allocation strategy that maximizes aelow
doing so limits the resources that remain for data transanss bound on the achievable rate.
Hence, information-theoretic analysis are useful to ustdeid  The paper is organized as follows: A description of the
the optimal allocation of resources between pilots and.dagystem model appears in Section Il, the reception strategy
Several information-theoretic analyses of PAT with onetshis described in Section lll, and achievable-rate expressio
estimation/decoding have appeared, e.g., in [4]-[10]. are derived in Section IlI-B. The specific case of the doubly

A _ _ . selective CE-BEM channel is considered in Section IV, and
This work supported by Motorola Inc., the National Sciencrirfdation luSi d in Secti v
under CAREER grant 237037, and the Office of Naval Researderugrant conclusions are drawn In section V.
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notes conjugate, and)” denotes conjugate-transpoB,,, , be written in vector form ay(i) = [yo(i),. .., yn—1(3)]7,
denotes the element in the!” row andn*" column of B, where

where row and column indices begin with ze@g, »,, denotes

them x n zero matrix,I i denotes thé{ x K identity matrix, y(i) = H(i)s(i) + w(i) (8)
andeﬁg) denotes thg'" column of I x. For matricesA andB,

A > B means thatd — B is positive semi-definite. The tracefor w(i) = [wo(é), ..., wy_1(i)]" and

of a matrix is denoted byr(-), and the Kronecker product of

two matrices is denoted by. Also, §; denotes the Kronecker ho,0(%)

delta sequencé;) denotes the modulo operator, aidhe set : .

of all complex numbers. Expectation is denotedHiy) and N ; ;
auto-covariance by, := E(bb") — E(b) E(b™). H() 1,810 i) - O)

Il. SYSTEM MODEL

A. Transmission Model

Consider a scheme in which information is transmitteHOtice that the channel model suffices to describe either
through N, substreams, each of which uses the chanvigl single-carrier or multi-carrier transmission. In the daig
S L]

times. In particular, say that, (i) denotes thé'” sample of the carrier case, (7) Correspor!ds_ f, blocks of (Ny — 1)- _
k'h substream. The firs, substreams (i e{sk(z‘)}N”’l for zero-paddedv,-block transmission through a doubly selective
' - o =0 ading channel with time-varying inter-symbol interfecen

k=0...N,— 1) are dedicated to pilots while the remainin £l h h it . d
N, — N, substreams (i.e{,sk(z')}f\ﬁgl fork=N,...N,—1) ISI) of length Ny,. In the mu ti-carrier case, (7) corresponds
|Nb symbols of anN-subcarrier system withV, active

are dedicated to data. The data substreams are indepwd%‘étb : q . or interf c ¢
encoded at rates that ensure reliable decoding, as will carriers and an inter-carrier interference (ICI) resgoo

hv—1,n,—1(%)

discussed later. For this, we assume that the transmittavkn Iength_Nh. ] . ]
the channel statistics, but not the channel state. It will sometimes be convenient to write the system model
The average transmission power is constrainedFig as
Joules per-channel-usg, of which is allocated to pilots and _ o _
the remainder of which is divided equally among the data y(i) = S@h(i) +w(i) (10)
substreams. Thus, each data substream has power , .
with k(i) € CN+Nn such that
o2 = M_ (1)
5 Ns_Np h(l) = [hoﬁ(i),...,hNS_170(Z'),h171(Z'),...,hNS,l(i),"'
For analytical tractability, we assume the use of i.i.d. San A1 —1()s - A1 v -1 ()] (11)
codebooks. With this assumption, the power constraintdean
expressed as and with
Np—1 s0(7) 0o --- 0 0 0
Yo Ise@) = B, Vi ) s0(i)
k=0 ) = sn (i 0 0
E{sy, (i1)sy, (i2)"} = 02In,-n,0i i, (3) S0 = gt sn.-1(i) so(i)
: : 0 - 0
where 0 - 0 0 - 0 sn.1(d)
§k(i) = [Sk(i)v"'szs—l(i)]T' 4)

In the sequel, we make use ofy,(7) =
In the sequel, we will also make frequent use of the notatidm, (), ..., yx—1(3)]7, wr(i) = [wo(i),...,wr_1(3)]7,
and Sy (i), the latter defined as the matrix formed by the first

su(i) = [s0(d),- -, s (D))" ®G) . fS(i). Note that
S(0) = [snli)e s (T = [T sy OTT6) o Note e
B. Channel Model (i) = Sk(i)h(i) + we(i) 12)

We assume that the receiver observes the n%'liyl NtGlrere the entries il¥; (¢) come froms;,(¢) but not froms,, (7).

substream-interference (ISSI) corrupted samgplgsi)};", We assume  that  the channel  coefficients
for k € {0,..., N — 1}, where ) ; . .
h(7) are  zero-mean  circular  Gaussian  with
, Nn—1 . . , E{h(i)h(i)!} = =}, whererank(X,) = N,, < N, and
yi(i) = Z P, () sk—1(2) + wie (7). ) wheretr(3,) = N, (i.e., the channel is energy-preserving).
=0 Similarly, we assume that the noise coefficients are zero-
Here, N := N, + Nj, — 1, where N, denotes the 1SSI length, mean circular Gaussian witB{w(i)w(i)#} = o?Ix and
ands (i) := 0 for k ¢ {0,..., Ny —1}. The observations canindependent across



[1I. NONCOHERENTPILOT-AND-DATA-AIDED CNx(N:=k=1) "g0 that (8) becomes
COMMUNICATION _ . . ; .
N y(i) = Hy()s(i) + hi(i)si (i)
A. Description of Scheme + H o (1)854 (1) +w(5). (15)
We now summarize the noncoherent communication (k) (k)
scheme, elaborating on the details after the summary. (k)
from A (i), in the same way that we construct&fi*) (;)

0. The MMSE estlmate of(i) from yy, () 'S COM™  fom ™ (i), and we make the corresponding partition
puted for eachi € {0,...,N, — 1}, leveraging the ") (k) () (k)
fact that yy (i) is a function of the pilotssy, (i) H (1) = [Hy (@), by (i), H,.,,(i)]. The first stage of
but not the unknown dataN (i ) Denoting this pilot- decodmg involves interference cancellation and lineam-co

qn addition, we construcH " (i) from b (i), and " (1)

binin
aided channel estimate bty (2), the first data sub- i

stream{sy, (i )} 1 is then coherently decoded using r(k)(i) = y(i) — ﬁgf) (1)s5 (i) (16)
the pilot-aided channel estimafe(Np)(') With large (i) = P @)Hr®) (i), (17)

enoughN, and suitable choice of code rate, this data
substream can be reliably decoded. Recall that we have assumed that, at the time of decoding

Np—1
1. Using the decoded substream in conjunction with pI|0t£SIk ke (tjhe substrealrrt{sské i)}iZo 15are lc;ncl)\évn throu%hth
1
a refined MMSE channel estlmale( o )(i) is com- @ e ecoding or as pilots. Using (15) and (16), we sa

puted fromyy (i) for eachi € {0,...,N, — 1}, r® @) = A ()sn(i) + o™ (), (18)
leveraging the fact thatyy (i) is not a function *) (k) (k) . .
of the not-yet-decoded data. The next data substream v (i) = H, L (0)841(6) + H O (i)s(i) + w(i) (19)

Nb 1
{sn,+1(1)};= ~ is then coherently decoded using thgom which the post-combining SINR(™*) (i) becomes

Np+1)
refined channel estimath (7). With a suitable (k)
choice of code rate, this second data substream can also k) ;) _ ) (i) hy, (i) |20 (20)
be reliably decoded. O A I )

2. Using the two decoded substreams in conjunctlon with ’ "
pilots, the refined MMSE channel estimdte” (i) is  for = w09 i) on (0),AD () = E{v® (i)v® (i) |s1.(i), b (i) }.
computed fromy y . ,(i) for eachi € {0 Ny — 1} The combiner output can then be written as
The next data substrea{nNﬁQ( e tis then coher- N ) . )
ently decoded using the most recent channel estimate (i) = gu(@)sn(0) + mi(0), (21)

N, ~
R )( ), where decoding can be made reliable vitor g (i) := c(’“)(z‘)Hh;k)(z‘) and ng (i) := c® (@) "o®)(5).
proper rate selection. After {z;(i)}; " and {gx(i)} ;' have been computed,

*. The procedure continues this way until aN, data coherent decoding based on (21) can be applied.

substreams have been decoded.
B. Achievable-Rate Analysis
Next we elaborate on the channel estimation and data degodin . )
Notice that, fork € {N,,..., N, — 1}, the effective noise

procedures. Rate allocation will be detailed in SectiorBllI G _
(R ) nk(i) is non-Gaussian:
The MMSE channel estimate™ " (i), i.e., the estimate of

h(i) from y, (i) given perfect knowledge oF (i), can be ne(i) = e®@E)H (Hl(c-zl( 0)851 ()
written as [18] (k)
" + H " (i)s(i) +w(i)). (22)
h (Z) = EhSk(i)H non-Gaussian

x (Sk()ZRSk(i)" + 1))~ yk( ). (13) Medard [3] and Hassibi [4] showed that the worst-case noise
distribution with respect to mutual information is the Gsias

(i) := h(i) — oOne. Additionally, the achievable rate for Gaussian sigigah
the presence of Gaussian distributed noise can be expriessed
terms of the post-combining SINR [19]. Therefore, assuming

Conditioned ons(i), the estimation erroh "
7™ (i) has covariance [18]

S = Sp— SpSii) adequately largéV,, the achievable rate across data substream
R (@lsk () » k € {N,,...,Ns — 1} can be bounded from below, in units
x (Sk())ZRSk(i)" + 0%I))  Si(i)Eh.(14)  of nats-per-(scalar)-channel-use, as
Now we describe the decoding of data substream R, > E {10g(1 + V(k)(i))} ; (23)

{sr(@)}Ns* for k € {N,,...,N, — 1}. In doing so, we .
make use of the partitioH (i) = [H (i), hy (i), H,, ()], where the SINRy*) (i) was given in (20) argg) the expectation
where H (i) € CN**, hy(i) € CN*1, and H, (i) € in(23)is taken over the joint distribution & (i) andsy (7).



Note that the bound in (23) holds for general linear comlsiner The condition under which the covariance of the estimation

c®) (7). The tightest bound can be obtained by choosing tlaaerorzﬁ(k)(ms @) vanishes with increasing SNR is given by

max-SINR combiner the following lemma.
Py = 2t .ﬁ;k)(,'), (24) Lemma 1. Let the colums of B € CVnV:xNm pe the
v (@)1 (1), ) eigenvectors corresponding to non-zero eigenvalues of j,.
in which case the bound (23) becomes Then there exists o-invariant A such that, for every & €
i) {Np,...,Ns —1},
Ry > E{log(l + O'Shk (2) Eﬁ(k)(i)‘sk(i) < c2A Vo > 0 (30)
-1 A if and only if
Ev(k)(i)|sk(i),ﬁ““)(i)hk (z))} (25) Y
. ] ) rank (S, (i)B) = Np,. (31)
leading to the following bound on the overall achievable rat )
given in nats-per-channel-use. Proof: See Appendix A N u
In the sequel, we refer to condition (31) as the “rank
Ng—1 g ” H
1°< or (B, g condition.” Lemma 1 says that th#,, pilot substreams must
Biot > N Z E{log(1+ashk (4) excite all N,, channel modes in order to obtain channel
k=Ny estimates whose error vanishes with increasing SNR.
_ - (k) . .
Emlk)(i)\sk(i) RO (2))}- (26) Theorem 1. For the class of channels that enable pilots

Sn,, (i) toyield rank (S, (i1)B) = N,,,, the achievable rate
To facilitate reliable decoding, the data substream ratesls of our scheme obeys

be chosen in accordance with (25). Reot(p) N _N
(0] s m

. ] . im = . (32)
C. Asymptotic Achievable-Rate Analysis p—oo logp N
Proof: See Appendix B ]

In this section, we analyze the achievable r&tg at high
SNR. For this, we define the SNR := Lo and examine IV. | LLUSTRATIVE EXAMPLE

No?
Riot(p) asp — oo. We now consider the specific case of a doubly selective

_TO provide some intuition on the high-SNR behavior, C_Orrading channel which obeys a complex-exponential basis ex-
sg)er' for t?ke) moment choosing a zero-forcing (ZF) combingfy ngjon model (CE-BEM) [20], [21]. In particular, the chahn
(@), [l (@)l = 1, such that coefficients inh(i) are parameterized b,, = (2D + 1) N,

(k) (N H N uncorrelated Gaussian random variabls,, (i) : m €
() Hyopa (1) = 0 @D D, .Dyie{o,....N,—1}} via
which implies thatg, (i) = ¢ ()2 h\" (i) and (via (22)) L2 I
) M) = 5= 3 onal D (39)
ni(i) = M@ (H 7 (1)s(i) +w™ (). (28) S m=—D
Note that this ZF combiner exists w.p.1. We reason that, for:: é\)rriabI:IsmT:bCIty’(')} we h:jzum: ualthaf/ari;rTSe rlir;?](():g]
“well-designed” channel estimation procedure, the carare m A\ fmd q '

of the channel estimation err& - ). . (defined in (14)) E[@”l’ll (1) &7, 1, (i2)] - (2D~]:ig)Nh, 6ml_m2611._125i1_.i2'

) ) R (1)] sk (1) ] In (33), D =~ [fpTsN,| where fpT; is the single-sided
should vanish ag“ — 0. _In particular, there should exist 8n0rmalized Doppler spread. For this CE-BEM channel, the
pilot patterns .y, that, for fixedEie and N, < N, guarathees eigenvector matrixB (defined in Lemma 1) has the form

the existence of-invariant A such thatzfl(k)(i)sk(ii <0"A p_ Iy, ® F, where theN, x (2D + 1) matrix F is defined

forall o > 0 and for allk € {N,,...,N, — 1}. When element-wise a$F]| — L g¥Fmi(m2-D)

o : ; . mi,mz /N, . . .
this is the case, the use of a zero—forcmgﬁ)combmer ensureye first address the issue of choosing a suitable pilot

thato—i Olae @A E{|n(i)[*|s(i),h (i)} will also pattern for this example. Estimating the channel coefftsien
. e (0)]8(8), ; . . N No+Hi—1 : : Lo

vanish as>? — 0 for each information substream. In particu{/x.1(i)}z=" ' for eachl is equivalent to estimating the

lar, there will existo-invarianta such that2 < (2D + 1) random variables ¢y, i },,—_p. This can be ac-

i ()]s (8), ™ (1) =

o2 for all o > 0 and for allk € {N,,,..., N.~1}. Then we complished by exciting the channel with a set(@D + 1)

Iy o (8)| 202 ok (V2N E, impulse sequences of lengfti, — 1. This motivates the use
see thaty™ (i) > =05 = Jix—wy (1 — ) for each of the N, = N, = (2D + 1)Nj,-length pilot pattern
k € {N,,..., Ny —1}. When this is the case, (23) implies E

. h
Rtot(p) > Ns - Np (29) Sk(l) = Nmp(S(k)Nh’ 0< k< Nm (34)
The proposed scheme, in conjunction with this pilot paftern
We now make these statements more precise. leads to the following achievable-rate characterization.

T
Pir{olo logp — N




Proposition 1. For the CE-BEM doubly selective fading V. CONCLUSION

channel, the achievable rate of our scheme obeys In this paper, we designed and analyzed a communication
scheme for the doubly dispersive channel based on pilot-
= (35) aided transmission and successive decoding with channel re
p—oo logp N estimation. We derived a lower bound on the achievable
) rate and characterized the pre-log factor of the high-SNR
Proof:. See Appendix C. . ®  achievable rate expression. For the special case of the CE-
Interestingly, [10], [17] has shown that, under continUpusggnm doubly selective fading channel, we found the proposed
distributed inputs, the maximum spectral efficiency than cgommunication system to be spectrally efficient. Finallg w
be achieved on the CE-BEM doubly selective block-fadingesigned a pilot/data power allocation strategy based en th
channel is ®=3=. Thus, using the pilot pattern (34), themaximization of an achievable-rate lower-bound.
proposed scheme becomes “spectrally-efficient”.
Next, we tackle the issue of power allocation between pilot APPENDIXA
and data substreams. L&}, = a, Fi for somea,, € (0,1). PROOF FORLEMMA 1
Theno? = (1—ay)Eiot/(Ns — N,). We propose a “minimax”  We know thatrank(Xs) = N,,, so thats, = BA, B for
approach whereby we choosg to maximize a lower-bound some positive definite diagonal matrix;,, € CV»*Nm_ \We
on the achievable rate of the weakest data substream. Thoggh then expresh(i) using the Karhunen-Loeve transform as
this power allocation strategy can be used with an arbiyrari
chosen pilot pattern, we restrict ourselves to the pilotgpat h(i) = BA(i), (39)
(34) for simplicity. Recall that the channel estimate isrredi

i i 1 where)(i) € CV~ is a zero-mean complex Gaussian random
after decoding each data substream, thereby increasing \iigyqr \vith covariance ,,. Furthermore, there exists a unitary

. . AV Np—1
effective SINR. Thus, the first data (sub)streamqp (D)}iZo " matrixU (i) and positive semi-definite diagonal matfx, (i)
must be the weakest. Recalling tha{'”’ denotes theN’" gych thatB” Sy (i) Sy, (i)B = U(i)An,(i)U(i)". Us-

column OfIN, we have the fO||OWing result. |ng A/(’L) = U(’L)HA(’L), the Observation%Np(i) can be
Proposition 2. For the CE-BEM doubly selective fading expressed as
channel, the pilot power allocation Yn, (i) = Sn,(i)h(i) +wn, (i) (40)
OA_?V 0_2 - SNP(Z)BA(Z) +'LUNP(Z) (41)
— __ s L . .
Gpr = B a,flel?o),(l) 512vp o+ o2’ (36) = AR, (DX (i) + wn, (7). (42)
We first show that the rank condition is a necessary condi-

where tion. Realize from (40)-(42) that estimatirtgi) is equivalent

A2 to estimating\’(i). Let rank(Sy,B) = N}, < N,. Then

ON, = [Eﬁmp)(i)‘s%(i)]]vap (37) w.l.o.g. the first N, entries along the diagonal oky, (i)

(38) are positive and the rest are zero. Consequently, the MMSE
estimates of the lastv,, — N/ components of\’(i) are

. _ identically zero and the estimation error for theSg, — N/,
maximizes a lower-bound on the achievable-rate of the weak- components OA’(i) does not depend on the noise varianée

est data substream, in particglar, thelovyer bound that fO”((])VW)S Then there is no hope of finding &invariant A satisfying

from the use of the (sub-optimal) combiner cNo) (i) = ely” 0o (1) < 02A when rank(Sy, B) = N/, < N,.

n (23). This esztai)leﬁsﬁes that the rank condition is a necessaryicond
Proof: See Appendix D m tion.

Figure 1 plots the power allocation parametey, versus We now show that the rank condition is a sufficient condi-
SNR for single-carrier transmission witfi, = 128 substreams tion. We first write the estimation error from (14) as

=2
IN, T [EEWP)(z‘)\sNP(i)]Np,Np’

across the CE-BEM doubly selective fading channel with2~(N) — S~ ShSy. ()
N, = 8 taps of ISSI andD € {1,2}. These parameters ~ " (Dlsn, () P
correspond to, e.g., a channel with bandwitlthMHz, carrier X (SNp (i)ZhSn, ()" + UQINP)_ISNP ()%

frequency 60 GHz, delay spread.4 ps, and mobile and I N , I NH
reflector velocities of 69, 138} km/hr, in a “triple Doppler” = B[Ah — AyB" Sy, (i)" (S, (i) BALB" S, (i)
scengrio [22]. Figure _1 suggests that, at low values of SNR, ey )_ISN (i)BAh}BH

additive noise level dictates performance and more power is P P )

allocated to the data sul_astrgams. However, as the SNR grows,_ g (A,jl + 072BHSNP (,L-)HSNP (i)B) B, (43)

the effect of channel estimation error on performance be&som

more pronounced, and the pilots are given more power to keEipe last step above is an application of the matrix inversion
the estimation error in check. lemma [23]. Realize thaBHSNP (i)" S, (i)B is o-invariant,



positive definite and invertible ifank(Sy,B) = N,. We substreams or as pilots). There is no interference from yet-

choose A’ = (BHSN ()2 Sy, (i )B)*l, and apply the to-be-decoded substreams. It can be shown that the combiner
matrix inversion lemma on (43) to obtain output is
(k). ) .
B R () s () 2k (i) = (R, (8)]ksk (i) + ni(i) (50)
B (c?A' — o' A'(Ay +02A) A ) BT (44) ni(i) = 3:(0) 7R (i) + wi (i), (51)
Then for the choiced = BA'B*, (44) shows that where 5;(i)" is the k""-row of S(i). First, we bound the
) variance of the noise term in (51). In doing so, we can make
TR a7 A S0 (45) use of Lemma 1 since we have assumed that a suitable pilot
pattern that satisfies the rank criterion is used. Then we can
This shows that the rank condition is sufficient flor= . E[|n ()28 (), h( )( )] as
It remains to be shown that the rank condition is suff|C|er\1’¥ nk(z)\sk(z VA @) k k k

for eachk > N,,. Let 3, (i) be thek*" row of S(i), so that

. v s \NH g (e 2
Skt1(i) = [Sk() 8,+1(1)]"". Then O e @lon(@h®P @ — P [sk(l) ZR0 (5 (1) 5K (z)} to
2y H
Eﬁ(k+1)(i)|s ) < E [G sk( ) Ask( )] + U
o - < oy, (52)
= B(A + o~ QBHSkJrl() Spt1(i )B) B - . L . .
for some positive semi-definite-invariant matrix A and o-
= B [A +072B"8,(i)S,(i)B invariantay, > 1. Then (52) can be used to express the SINR
as
+ 02 B 51 ()31 ()" B] | BY )
"(k) . 2
~ s [1h” )| o2
IAOIENG! FBGE) > (53)
H lopde7®
e Eh(’”(m; <z>5’“+1£1)5’“+1() R ()l () (46) (1-Loy w2
L+ 02851 ()T B w5y 5, 041 (1) = ﬁ [hy, (Z)]k‘ p- (54)

where (46) results from applying the matrix inversion lem
to the penultimate expression and then substituting (48h(w
indicesk instead of/N,)). This clearly implies that

MPhen for the class of channels that enable pilBts, (i) to
yield rank(Sy, (i)B) = N,,, we first show that

.. . Rip)

. -y 1 f——= > 1 Vk Ny,--- ,Ng—1}. (65
B Glain () T ZEO @l S 0 (40) e logp = & s R

We conclude from (45) and (47) that e . ~
(45) “7) In this direction, we define), = [h,(ck)(z')];C and g, =

Eﬁ“‘)(ms @ < 0%*A, N, <k<N,—1, (48) % to simplify the notation. With these definitions,
§ we can say that

which establishes that the rank criterion is also a sufficien )

condition and completes the proof. Bi(p) _ Elog(l + ak[Ve["p) (56)
logp — log p
APPENDIX B Elog(p~' + qx|vn]?)

PROOF FORTHEOREM 1 > 1+ log p : (57)

We f|rst show that the spectral eff|C|ency of the proposed (K ) .

criterion holds. Recall that sian distributed. Then
) -1 2
Ri(p) = E{log(1++M)}. (49) t 08T Fall) Y0 kA0 g
poo log p ~1, =0
Our approach will be to show that the required spectral =0 wpl. (59)

efficiency can be achieved by using a sub-optimal zero fgrcin

combinerc® (i) = e, the k*" column of Iy. Recall that Taking limit infimum on both sides of (57), we see that
we also used this combiner to split transmit power between 1 5

pilot and data substreams. This choice of combiner implieS}im inf =22 Ri(p) 1 + lim inf Elog (p + ai Vx| )
that only observation$yy.(i)}\’, ' are used in decoding the =~ #~ log p P log p

Y

kth data substream. Recall from the system model thét) > 14+ E (liminf log(p~" + qx|vn]?)
is influenced by symbolgs,, (i)} _,_y, ;. of which the - p—00 log p
symbols excepts; (i) are known (from previously decoded > 1. (60)



In the above, the penultimate step is an application of Fatounatrices and the final step is a result/af being a full rank
Lemma [24] and the last step applies (59). Using (60) and tvandermonde matrix.

fact that Then applying Lemma 1 and Theorem 1 we see that when
1 Nzt the proposed communication strategy is used for singleecarr
Rit(p) = ~ Z Ri(p), (61) transmission over doubly selective fading channels,
k=N,
" . Rtot(ﬂ) Ns - Nm

we obtain plingo logp N (70)

lim Bl N = N (62) This concludes the proof.

p—00 logp - N
Thus the proposed communication strategy attains a spectra APPENDIXD
efficiency of at least (62). PROOF FORPROPOSITION2

On the other hand, consider that perfect CSl is available atRecall that the post-combining SINR for tlité’fh substream
the receiver through a genie. In this situation, well knowg

results in [19], [25] dictate that the spectral efficiency of

o ) iy (Np) .
a communication strategy that transmit&, — N,,) data LAY |C(1\[F’)(Z)H’l§vpp (i)[a2
substreams oveN channel-uses cannot excede="= even ) = C(Np)(i)sz(Np)(mSk(i) ﬁ(k)(i)c(Np)(i) (1)

with optimal joint decoding. The proposed communication
strategy has poorer performance than the genie aidedgstrate,, the sub-optimal combinee(™») (i) = ed2) the Nth
since it uses imperfect CSl, and can only have a poorer specgolumn of In N v

L ) . only observation i)}V 1 are used to
efficiency. This observation leads us to conclude that 4 Ly, (D}izo

decode theN;h substream. Recall from the system model

N 1 Np
lim Riot(p) _ Ns— Nm. (63) tha_tpr (i) is influenced by symbpl$sm(z)}m:Np_N_h+1, of
p—oo logp N which, all the symbols excepty, (i) are known as pilots. For
This completes the proof. the pilot pattern used (343 (7) = 0 for Np—Np,+1<k <
N,—1. As aresult, only the estimation error from the estimate
APPENDIXC of hn, (i) affectsyy, (i). Under these circumstances, it is
PROOF FORPROPOSITION1 straightforward to show that
We need to demonstrate thatnk(SNp(i)B) = N,, = 52 02¢
N,(2D + 1). Recall that the pilot pattern used is AN () > e o2 (72)
~ 6% 02402
_ NLE, ’
sk(i) = N,, O (k) ), » 0<k<Nm (64 | (72), ¢ is a zero-mean complex Gaussian random variable

Recalling the struct 5 d the fact that. for th with unit variance,a—fvp is the variance of the estimate of
ecalling the structure of5(i) an € tact that, tor the ; | 0(i), anda%; the variance of the corresponding estimation

CE-BEM channel,B = Iy, ® F, where the Ny x P P 9 ~9
; error. The variancegs, and gz, can be calculated as per

(21D ti’)mr?(i[zli(;‘ 's defined eIemenF-_Wlse _a{f]ml»m? ~ their definitions in (37)pand (38)v. In doing so, the covarianc
VoA - Under these conditions, it is straightformatrices of the estimates used to decode & substream
ward to show that and the corresponding estimation error for the pilot pattar
) N, E (34) and the CE-BEM channel is given by
Sy, ()B = L2 P (Iy, © M), (65)

m EA(NP) . . = Eh(l) - E~(NT_,) Ds i (73)
In (65), the (2D + 1)N}, x (2D + 1)Nj, row-permutation R @l (@) T @leny ()
matrix P is defined element-wise byP],,, m,2D+1)4ms = Eﬁ(Np>(i)\s @ = B[MINM ApFrot
[I(2D+1)Nh]m1.,m3Nh,+m2 where 0 < m; < (2D =+ 1)Nh, Np Ny 2D +1

0 <mg < N and0 < m3 < (2D + 1). Furthermore, the
(2D +1) x (2D 4 1) complex matrixM is defined element-

wise as|M ], m, = A= exp(L2rNamims ) Then,
M1 ma = 7y SP(TERE) where, the (2D + 1) x (2D + 1) matrix M is defined

rank(Sw, (i)B) = rank(P(Iy, ® M))  (66) element-wise agM]y, m, = = exp(ZZT4M12). (See

—1
XIN,L®(MHM)} B (74)

= rank(Iy, ® M) (67) Appendix C for details.) The choice, . that maximizes this
- . lower-bound on the post-combining SINR and consequently
= Ny rank(M) (68) the lower-bound on the achievable rate is
= Nu(2D +1) = N,,. (69) 5
UNPUS
In the above, (66) is obtained using (65), (67) is a result Qps = arg max (75)

; N 3 ap€(0,1) 53 02+ 02’
of P being, by definition, a permutation of the columns P
of I'upi1yn,, (68) is a standard result for block-diagonaThis completes the proof.
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