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Abstract— In fading MIMO channels, there is a tradeoff
between the time (or energy) spent gathering CSI and
the remaining time in which to transmit data before the
channel loses coherence. The tradeoff is more pronounced
in multiuser systems as the number of users- hence the
number of channel vectors to be estimated- increases,
and is inherently coupled with multiuser scheduling. We
consider a multiple access block fading channel with
coherence time T , n independent users, each with one
transmit antenna and the same average power constraint
ρavg, and a base station with M receive antennas and
no a priori channel state information. We construct a
training-based communication scheme and jointly optimize
the training and user selection: we find the optimal number
of users to be trained, Lopt, and the optimal number to be
scheduled for transmission out of those trained, in order
to maximize sum rate. The optimal duration of training is
shown to be equal to Lopt symbol times. We also show the
necessary and sufficient condition for training sequences
to satisfy. This optimized training-based scheme achieves
the same scaling law with increasing SNR as the non-
coherent capacity of a single user n×M MIMO channel:
Lopt

(
1 − Lopt

T

)
log2(ρavg) + O(1) as ρavg → ∞, where

Lopt = min(n, M, bT
2
c). We show this is also the scaling law

of the sum capacity of the associated non-coherent SIMO
uplink, hence our scheme is scaling-law optimal. Finally,
the asymptotic behavior of sum rate and throughput per
user under increasing n, M or T is explored.

Index Terms– non-coherent capacity, training, muliple-
access channel, multiuser scheduling.

I. INTRODUCTION

It is important for multiple-input multiple-output
(MIMO) transceivers to be robust to varying degrees
of channel state information (CSI.) While large
capacity gains are possible with MIMO architec-
tures when the channel response is known at the
receiver (see, e.g. [1]–[3],) learning the channel
often requires the transmitters to allocate some
time and energy to send known training sequences
to the receiver. When channel variation is slow,
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hence the coherence time long, learning the channel
coefficients may be a good investment of time and
energy. On the other hand, when the coherence time
is relatively short, there is a tradeoff between how
much time (or energy) is used to learn channel
coefficients and how much time remains in which
to transmit data. This tradeoff has been explored
for a single-user MIMO channel by Hassibi and
Hochwald [4], where, under some assumptions, the
optimal fraction of the coherence interval to be used
for training has been found under different values
of signal to noise ratio (SNR) and other parameters.

The problem is more challenging in multiuser
MIMO channels, where training is inherently tied
to user selection (scheduling.) The multiuser setting
is of practical interest for the design of existing
and proposed communication networks such as
broadband wireless described by the IEEE 802.16
standard. Thus for concreteness, we will describe
the problem in the context of a wireless multiple-
antenna uplink, while the results could equally well
apply to other MIMO multiple access channels.

Specifically, in this paper, we will address the
joint optimization of training and scheduling in a
multiple access channel with n users where each
user has an average power constraint ρavg. Each
user (transmitter) has a single antenna and the base
station (BS) has M antennas. We assume block-
fading with a coherence time of T , where the BS
knows the channel statistics but has no a priori
information about current realizations. We ask the
following broad set of questions: For a given M
and T , how much time should be spent on training
and how many users should be trained within a
coherence interval? How many of those trained
should be selected to transmit data? How does the
sum capacity scale with the number of users and
SNR?

Our approach is constructive: we design a training
scheme where each coherence interval is divided



into two phases. In the training phase, a (randomly)
selected group of L users send training symbols,
upon reception of which the BS estimates their
channel vectors. In the data transmission phase, a
subset of size K ≤ L out of the trained users are
scheduled to transmit data. We consider the maxi-
mization of sum rate by optimally setting parameters
such as the time and power allocated to each phase,
and the values of L and K. In order to do this, we
obtain a lower bound on the sum rate by extending
to the multiple access SIMO channel a non-coherent
channel capacity lower bound introduced in [5] and
also used in [4].

The high SNR regime is one where a training-
based scheme performs best, and consequently this
regime is of interest to us. We will show that
setting L = K = Lopt = min(n, M, bT

2
c) is

optimal, resulting in a sum rate (bits/channel use)
of Lopt

(

1 − Lopt

T

)

log2(ρavg) + O(1) as ρavg → ∞.
This sum rate has the same rate of increase in
SNR as that in a non-coherent, single user, n × M
channel [6]. Also, we show that the sum capacity
of the non-coherent uplink also scales at the same
rate with SNR, implying that our scheme is scaling-
law optimal. The prelog factor, Lopt

(

1− Lopt

T

)

, has
the physical interpretation as the number of parallel,
non-interfering point-to-point channels available for
data communication, and happens to be equal to
the degrees of freedom of the non-coherent single
user n × M channel [6]. Thus we prove that the
non-coherent n × M uplink channel has the same
degrees of freedom as its single user counterpart.

At high SNR, and as the coherence time of the
channel grows, we will find that the prelog factor of
the sum rate of our scheme approaches min(n, M),
the degrees of freedom available to a multiple access
channel with perfect CSI at the receiver. Again, as
the SNR, the number of users n or the number of BS
antennas grows, the scheduling gain vanishes (i.e.,
L = K becomes optimal) due to several factors that
will be discussed. In this regime, the optimal num-
ber of users to be trained (and allowed to transmit)
will be shown to be Lopt = min(n, M, bT

2
c).

Meanwhile, we will observe that the throughput
per user strictly decreases with n. This is in contrast
to the coherent SIMO multiple access channel where
the per user throughput remains a constant for n ≤
M and drops with n only for n > M .

The organization of the rest of the paper is as
follows. We begin by describing the problem setup

more precisely in Section II. Next, in Section III, we
derive the sum capacity lower bound, to be used
as the main performance metric. We discuss the
optimal design of various parameters involved in
our scheme in Section IV. Section V contains the
asymptotic results. This is followed by conclusions
in Section VI.

II. PROBLEM SETUP

Channel Model: There are n users, each with
one antenna and the same average power constraint,
ρavg, and a base station with M antennas. The fading
coefficients linking the users to the BS antennas are
i.i.d. CN (0, 1). The channel is block-fading, i.e., the
channel coefficients remain constant for a discrete
coherence interval T ≥ 2 after which it changes to
an independent realization. The BS does not know
the realization of H , but knows its distribution.
Noise is Gaussian and independent across receive
antennas and time.

We shall restrict our attention to a training-
based non-coherent communication scheme consis-
tent with the scheme adopted in [4] for a single user
MIMO channel. According to this scheme, within
every coherence interval T , there are two phases:
training, followed by transmission. Let c ∈ Z be
the index of a coherence interval.

Training Phase: In coherence interval c, L ≤ n
users are allowed to train. Since the BS does not
have any information about the current channel
state, it chooses the L users on a random or round-
robin basis and these users transmit for Tτ symbol
times (we assume the existence of a feedback chan-
nel on which the BS can inform the users of the
selection using negligible time and power.)

Each user transmits a vector of length Tτ , so the
vectors transmitted by all L users can be summa-
rized as the training symbol matrix Sτ,c ∈ CTτ×L

such that tr[S∗

τ,cSτ,c] ≤ LTτ (A∗ indicates the
Hermitian of the matrix A throughout this paper.)
Received signals at each of the M antennas for the
duration of training can be written in the form of a
matrix Xτ,c ∈ CTτ×M :

Xτ,c =
√

ρτSτ,cHτ,c + Vτ,c, (1)

where Vτ,c ∈ CTτ×M is an AWGN matrix with
i.i.d. CN (0, 1) entries, independent of Hτ,c. ρτ is
the training power level of each of the L active
users, giving the total training energy spent by all
the active users, in any coherence time, as ρτLTτ .



At the end of the training phase, the BS finds the
minimum mean square error (MMSE) estimate of
Hτ,c as follows:

Ĥτ,c =

√
1

ρτ

(IL

ρτ

+ S∗

τ,cSτ,c

)−1

S∗

τ,cXτ,c, (2)

with H̃τ,c := Hτ,c − Ĥτ,c being the zero mean
channel estimation error.

Data Transmission Phase: Having found the
channel estimate Ĥτ,c, the BS uses it as if it were ac-
curate during the data transmission phase and treats
the estimation error as additive noise. It chooses a
subset of K users from these L users (according
to a performance criterion to be introduced soon.)
Let this subset be indexed by i and ρd be the data
power level of each of the K active users. Then, the
received signal on all M antennas during the data
transmission phase of length Td := T − Tτ can be
written as a matrix X i

d,c ∈ CTd×M :

X i
d,c =

√
ρdS

i
d,cH

i
d,c + V i

d,c

=
√

ρdS
i
d,cĤ

i
d,c +

√
ρdS

i
d,cH̃

i
d,c + V i

d,c
︸ ︷︷ ︸

V̄ i
d,c

, (3)

where H i
d,c ∈ CK×M is constructed from the rows

of Hτ,c corresponding to these K users, S i
d,c ∈

CTd×K is the data symbol matrix that satisfies
E tr[Si∗

d,cS
i
d,c] ≤ KTd, and V i

d,c ∈ CTd×M is an
AWGN matrix with i.i.d. CN (0, 1) entries. In (3),
X i

d,c has been explicitly written in terms of the
MMSE estimate Ĥ i

d,c ∈ CK×M of (the correspond-
ing portion of) the channel matrix, and H̃ i

d,c =

H i
d,c − Ĥ i

d,c, which is the zero-mean channel es-
timation error. Since all statistical quantities are
stationary across the coherence intervals, the suffix
c will hereafter be dropped w.l.o.g.

Note that the total data energy spent by all the
K active users in any coherence time is ρdKTd.
Since ρavg is the average power constraint of each
user, with equal total energy (data and training of
all users) allotted to all coherence times, the total
energy spent in any coherence time is ρavgnT thus
giving the relation ρavgnT = ρdTdK + ρτTτL.
Also, by the symmetry of the random/round-robin
selection of users, each user ends up spending the
same average power, ρavg.

Note that using the channel estimate as if it
were perfect is not necessarily an optimal approach.
Nevertheless, the scheme we described, which is an

extension of the single-user training-based scheme
of [4], is interesting because it is practical, analyz-
able, and, as will be shown, scaling-law optimal.

In the next section, a capacity lower bound will be
presented. This bound will serve as a performance
metric upon which we shall study the effects of
various parameters like the training sequence (Sτ ),
the training period (Tτ ), power allocation between
the training and data phases, the number of users to
be trained (L) and the number of users to be allowed
to transmit data (K).

III. PERFORMANCE METRIC

The performance metric we will use is a lower
bound on the sum capacity of the non-coherent
uplink, Csum, which is a straightforward extension
of the non-coherent channel capacity lower bound
first introduced in [5] and applied to the MIMO
channel in [4].

Consider the channel in (3) for one symbol time
given by

x
i
d =

√
ρds

i
dĤ

i
d + v̄

i
d. (4)

where s
i
d, x

i
d and v̄

i
d correspond to one row (i.e., one

channel use) of Si
d, X i

d and V̄ i
d in (3) respectively.

Let I i be the mutual information between s
i
d and x

i
d

given Ĥ i
d, i.e., I(si

d; x
i
d|Ĥ i

d). Then the lower bound
is given by, (see Appendix I in [7] for its derivation):

CLB(R
v̄

i
d
, R

s
i
d
) = E inf

p
v̄

i
d
,∀i

sup
p

s
i
d
,∀i

max
i

T − Tτ

T
.

I i(p
v̄

i
d
, p

s
i
d
, R

v̄
i
d
, R

s
i
d
) (5)

The mutual information I i has been written as
a function of the signal and noise PDFs and also
explicitly as a function of the respective correlation
matrices R

s
i
d

and R
v̄

i
d

which are derived as follows:
The signal correlation matrix is R

s
i
d

= E[si∗
d s

i
d].

Since the users cannot cooperate and since we do
not perform power control across space or time
(other than multiuser scheduling), R

s
i
d

= IK , ∀i
(where IK is the K × K identity matrix). The
correlation matrix of the zero-mean noise, v̄

i
d, is

given by

R
v̄

i
d

= E(
√

ρds
i
dH̃

i
d + v

i
d)

∗(
√

ρds
i
dH̃

i
d + v

i
d)

= ρd E[H̃ i∗
d H̃ i

d] + IM . (6)

For brevity we will refer to this capacity lower
bound as CLB hereafter. For the channel in (4),



by identifying the best case signal and worst case
additive noise (considering the mutual information
I i) as Gaussian ( [4], [7]), it can be proved that,
with I i

lb = T−Tτ

T
log det(IM + ρdR

−1
v̄

i
d

Ĥ i∗
d Ĥ i

d),

CLB = E max
i

I i
lb (7)

Also, we show in the Appendix I of [7] that CLB

is also a lower bound on the maximum sum rate
achievable within the two-phased training scheme
described earlier, under worst noise and best signal
design conditions. Let us call this rate Rmax

worst, and
record this fact below.

CLB ≤ Rmax
worst ≤ Csum (8)

Note that CLB is influenced by the training se-
quence used, the energy shared between the training
and the data transmission phases and the duration of
training. We consider the roles of these parameters
and how to set them in the following section.

IV. PARAMETER DESIGN

Within the training based scheme described in
Section II, the following three are design choices:
Training sequence Sτ , Training power ρτ , and Train-
ing period Tτ .

In the light of the analysis in the preceding
section, it is tempting to choose these parameters
to maximize CLB. However, from (7), the effect
of these parameters on the capacity lower bound
is highly convoluted. For analytical tractability, we
relax the objective function and limit consideration
to a certain solution space. In particular, we do the
following:

• From (7), CLB = E maxi I
i
lb ≥ E I

q
lb, for any

fixed q. In the rest of this section, E I
q
lb, for a

fixed q, will be the objective function.
• Sτ is restricted to the class of training se-

quences that render symmetry in the esti-
mation error variance across the user sub-
sets, i.e., σ2

H̃i
d

= σ2
H̃

j

d

, ∀i, j where σ2
H̃i

d

:=
1

MK
E tr[H̃ i∗

d H̃ i
d], ∀i.

Training Sequence, Sτ : We now design the training
sequence by identifying an effective SNR term
that affects the objective function. Specifically, we
proceed by normalizing the noise correlation and the
channel estimate matrices in I

q
lb as follows: Define

R̈
v̄

q

d
:= 1

σ2

v̄
q
d

R
v̄

q

d
, where

σ2
v̄

q

d
:=

1

M
tr[R

v̄
q

d
] = 1 + Kρdσ

2
H̃

q

d

. (9)

Let Ḧ
q
d := 1

σ
Ĥ

q
d

Ĥ
q
d with σ2

Ĥi
d

:= 1
MK

E tr[Ĥ i∗
d Ĥ i

d], ∀i.
Therefore,

E I
q
lb =

T − Tτ

T
E log det(IM + ρ

q
effR̈−1

v̄
q

d

Ḧ
q∗
d Ḧ

q
d),(10)

where ρ
q
eff is the effective SNR for the subset q given

by

ρ
q
eff =

ρdσ
2
Ĥ

q

d

1 + Kρdσ
2
H̃

q

d

=
1

K

[ 1 + Kρd

1 + Kρdσ
2
H̃

q

d

− 1
]

(11)

since σ2
H̃

q

d

+σ2
Ĥ

q

d

= σ2
H

q

d

= 1. As argued in [4], since
the training sequence primarily affects the objective
function in (10) through ρ

q
eff , we choose to maximize

ρ
q
eff by minimizing σ2

H̃
q

d

. Let,

σ2
H̃τ

:=
1

ML
E tr[H̃∗

τ H̃τ ] =
1

ML

L∑

a=1

M∑

b=1

var[H̃τ ]a,b

(12)
where var[H̃τ ]a,b indicates the variance of the
(a, b)th element of H̃τ . Observe that, if Q is the
number of subsets of K users formed from the L

trained users, i.e. Q =

(
L
K

)

, then
∑Q

i=1 σ2
H̃i

d

MK

has QKM entries made up of variances of LM
elements in the H̃τ matrix. Since the subsets we
form are symmetric with respect to all the users
and hence to all H̃τ entries, each element has QK

L

representations in this summation. Therefore, we
have

Q
∑

i=1

σ2
H̃i

d

MK =
L∑

a=1

M∑

b=1

var[H̃τ ]a,b

QK

L
(13)

and (12) becomes,

σ2
H̃τ

=
1

Q

Q
∑

i=1

σ2
H̃i

d

= σ2
H̃

q

d

, (14)

where the last equality arises from our assumption
on Sτ that ensures σ2

H̃i
d

= σ2
H̃

j

d

for all i, j. We
therefore minimize σ2

H̃
q

d

by minimizing σ2
H̃τ

. The
following condition on the training sequence is
necessary and sufficient for minimizing σ2

H̃τ
(see

Appendix II in [7]):

S∗

τ Sτ = TτIL. (15)

Observe that we need Tτ ≥ L to achieve (15). This
constraint is intuitive because, during training, every
transmission gives us M equations. There are LM



unknowns, thus at least L transmissions are needed
in the training phase. With Tτ ≥ L, we can prove
that,

RH̃
q

d
:= E

[
(vec H̃

q
d)(vec H̃

q
d)

∗
]

=
1

1 + ρτTτ

IKM

σ2
H̃

q

d

=
1

1 + ρτTτ

(16)

Also, since RH̃
q

d
+ RĤ

q

d
= IKM , RĤ

q

d
:=

E
[
(vec Ĥ

q
d)(vec Ĥ

q
d)

∗
]

= ρτ Tτ

1+ρτ Tτ
IKM . Thus, Ḧ

q
d =

1
σ

Ĥ
q
d

Ĥ
q
d has independent CN (0, 1) entries. We will

use this property later. From (6) and (9),

R̈
v̄

q

d
=

1

σ2
v̄

q

d

[ ρdK

1 + ρτTτ

IM + IM

]

= IM . (17)

ρ
q
eff =

ρdρτTτ

1 + ρτTτ + Kρd

. (18)

Note that (16) applies to all q, thus Sτ renders
symmetry in the estimation error variance across
the user subsets. This is consistent with the as-
sumption we made in the beginning of this section
on Sτ . In fact, all the equations from (14) through
(18) apply equally well to any subset i leading to
E I i

lb = E I
j
lb, ∀i, j. Defining Ilb := I

q
lb, the objective

function can be rewritten as the following where
ρeff = ρi

eff , ∀i:

E Ilb =
T − Tτ

T
E log det(IM + ρeffḦ i∗

d Ḧ i
d)

(19)

Power allocation, α: The energy consumed by the
active users in any coherence time is composed of
the energy used in the training phase and that in the
data transmission phase. It is possible to maximize
ρeff by appropriate power allocation between these
phases. In each coherence time, the total energy
consumed by all the users is ρavgnT = ρτTτL +
ρdTdK, where, recall that ρavg is the average power
constraint of each user. Let ρdTdK = αρavgnT for
some α ∈ (0, 1]. Then

ρeff =
(ρavgnT )2

TdK

α(1 − α)

L + ρavgnT − αρavgnT (1 − L
Td

)

(20)

The value of α that maximizes ρeff is derived in
Appendix III of [7] to be the following:

αopt =







1
2

Td = L

γ −
√

γ(γ − 1) Td > L

γ +
√

γ(γ − 1) Td < L

, where

γ =
L + ρavgnT

ρavgnT [1 − L
Td

]
(21)

The intuition behind (21) will be apparent after we
discuss the design of the training period.
Training period design, Tτ : We now derive the train-
ing period Tτ that maximizes E Ilb. It can be proven
(see Appendix IV of [7]) that E Ilb monotonically
increases with Td for 0 < Td ≤ T − L. From
this, combined with the fact that Tτ ≥ L (from the
argument following (15)), we conclude the value of
Tτ that maximizes E Ilb is Tτ,opt = L.

With Tτ = L, using the result in (21), it can
easily be proven that ρτL > ρavgn > ρdK when
Td > L and ρτL < ρavgn < ρdK when Td <
L, thus giving the intuitive physical interpretation
that, when more time is spent on data transmission
relative to training, less total power should be spent
on data and vice versa.

With this, we have optimized the parameters for
our scheme with the exception of L and K. To
summarize,

Signal Design: Gaussian symbols, i.i.d. across
space and time, with variance ρd.
Training Period: Tτ = L, where L is the number
of users trained.
Training Sequence: Designed such that
S∗

τ Sτ = Tτ IL. Since Tτ = L, the standard L
dimensional basis vectors (scaled by

√
ρτTτ ) can

be used as training sequences for the L users. This
gives the interesting physical interpretation that,
during training phase, each participating user gets
exactly one channel use to train its channel.
Power Share: The total energy spent on data is
ρdTdK = αρavgnT and the total energy spent on
training is ρτTτL = (1−α)ρavgnT , where α = αopt

is given in (21).
User Selection Protocol:

• In each coherence time, during the training
phase, L users are selected either randomly
or by a round-robin technique to train their
channel.

• At the BS, after training is complete, a subset,
imax, of users is chosen such that imax =



arg maxi I
i
lb (or to maximize the mutual in-

formation if the signal and additive noise dis-
tributions are known and non-Gaussian) and
scheduled to transmit data, over a low rate
feedback channel.

Due to the inherent symmetry established by this
protocol, each user gets the same ergodic rate.
Since we may be dealing with possibly short
coherence times, interleaving of data symbols
across coherence intervals may be necessary to
achieve the promised ergodic rate. Thus each
user maintains a codebook of rate T

n(T−L)
CLB and

interleaves its codewords across the coherence
intervals in which it transmits data.

Before concluding this section, using the de-
signed parameters, we update CLB and ρeff as fol-
lows,

CLB =
T − L

T
E max

i
log det(IM + ρeffḦ i∗

d Ḧ i
d)

(22)

with ρeff in (20) rewritten as,

ρeff =







(ρavgn)2

K(1+2ρavgn)
T = 2L

ρavgnT

K(T−2L)
(
√

γ −√
γ − 1)2 T > 2L

ρavgnT

K(2L−T )
(
√−γ −√

1 − γ)2 T < 2L

where γ =
L + ρavgnT

ρavgnT

T − L

T − 2L
. (23)

The remaining question is: What are the optimum
numbers of users to be trained (L) and allowed to
transmit data (K)? We explore this in the following
section.

V. ASYMPTOTIC ANALYSIS

In this section, we address the design of L and
K in regimes where various parameters such as the
SNR (ρavg), the number of users in the system (n)
and the number of receive antennas (M ) are large.
We also derive the scaling-law (w.r.t SNR) for the
sum capacity of the non-coherent multiuser channel
and prove that our scheme is scaling-law optimal.

Theorem 1: With T, n, M fixed,

CLB =
T − L

T
min(K, M) log(ρavg) + O(1)

as ρavg → ∞ (24)

and this rate of increase is maximized when L =
K = Lopt = min(n, M, bT

2
c).

Proof: We omit the details of the proof (see
[7]) in the interest of space. The proof proceeds
by performing an Eigen value decomposition of the
argument of log det in (22) and then bounding the
resulting terms w.r.t ρavg.

Note that the non-coherent capacity (C) of a
single user n × M channel is derived in [6] as,

C =
T − n∗

T
n∗ log(ρavg) + O(1)

as ρavg → ∞ (25)

with n∗ = min(n, M, bT
2
c). Also, coding across

antennas is not ruled out in deriving the non-
coherent capacity of this single user MIMO channel.
Therefore C acts as an upper bound to the sum ca-
pacity of our multiple access SIMO channel where
users cannot cooperate. Thus we have the following
corollary to Theorem 1.

Corollary 1: With CLB acting as a lower bound
and C as an upper bound to the sum capacity (Csum)
of the non-coherent, multiple access SIMO channel,
from Theorem 1 and [6],

Csum =
T − n∗

T
n∗ log(ρavg) + O(1)

as ρavg → ∞ (26)

giving the non-coherent multiple access SIMO
channel the same degrees of freedom as the non-
coherent single user MIMO channel. Note that our
scheme is thus scaling-law optimal with the same
prelog factor as Csum.

Now we proceed to analyze how the mul-
tiuser scheduling gain behaves as SNR grows. If
CLB(L, K) indicates the lower bound in (22), then
the baseline case (i.e., no mulituser scheduling)
occurs with L = K as,

CLB(L, L) =
T − L

T
E log det(IM + ρeffḦ i∗

d Ḧ i
d)

(27)

with i = 1 since we have only one subset now.
Following the proof of Theorem 1, we can see that

CLB(L, L) =
(T − Lopt

T

)

Lopt log(ρavg) + O(1)

as ρavg → ∞ (28)

with Lopt = min(n, M, bT
2
c). Thus we see that,

lim
ρavg→∞

maxL,K CLB(L, K)

maxL CLB(L, L)
= 1 (29)



An intuitive explanation for this is: at high SNR,
the power gain obtained by exploiting the statistical
diversity available within the trained group of users
(i.e., with K < L) shows inside the log function.
This gain could not compensate for the loss in the
prelog factor (due to K < L). Thus as SNR grows,
trying to tap the scheduling gain in the system and
hence selecting a subset of trained users to transmit
data is suboptimal. Hence K = L becomes optimal
at high SNR.

Theorem 2: With n, M fixed,

CLB = min(n, M) log(ρavg) + O(1)

as ρavg → ∞, T → ∞ (30)

and L = K = Lopt = n.
For details of the proof see [7]. Note that (30)

has the same prelog factor as that of the capacity
expression of the coherent multiuser uplink [6],
[8], i.e., capacity under perfect channel knowledge.
As coherence time increases, the sum rate of our
scheme approaches the coherent sum rate. This is
because, as T grows, the finite training overhead
(recall L ≤ n) becomes negligible. This is illus-
trated by Fig.1(a). In fact, using an argument similar
to that of Corollary 1, we have the quite intuitive
result that as T → ∞, and ρavg → ∞, the non-
coherent sum capacity increases at the same rate as
coherent capacity.

Csum = min(n, M) log(ρavg) + O(1)

as ρavg → ∞, T → ∞. (31)

Theorem 3: With T , M , ρavg fixed,

CLB =
T − L

T
min(K, M) log(n) + O(1)

as n → ∞ (32)

and CLB is maximized when L = K = Lopt =
min(M, bT

2
c) giving a prelog factor equal to the

degrees of freedom of the non-coherent uplink ob-
tained in Corollary 1.

The proof ( [7]) follows that of Theorem 1.
An interesting physical interpretation is, at high
values of n, every time the number of users in the
system doubles, the sum rate, in bits per channel
use, increases by the channel’s degrees of freedom.
This is illustrated in Fig.1(b). This is because every
additional user to the system brings along its own
average power constraint, thus effectively increasing
the total SNR. This is unlike the case of a downlink

with a total power constraint at the BS that does not
increase with the number of users.

The increase in the sum rate with n is not
without cost: the per-user throughput monotonically
decreases in the number of users, n. The result is
made precise in the following theorem (proof found
in [7]).

Theorem 4: For fixed M and T , as ρavg → ∞,
CLB

n
, monotonically decreases with n. Similarly, the

per user capacity Csum

n
also decreases with n. Since

the per user rate of our scheme is sandwiched
between CLB

n
and Csum

n
, it also decreases with n.

It is instructive to compare this result with the
coherent channel case. Here, as ρavg → ∞, the
per user capacity is min(n,M)

n
log(ρavg) + O(1) [8],

[6], which remains constant for n ≤ M and starts
to decrease with n only when n > M . The cost
of learning the channel is the sole reason for the
monotonic decrease in non-coherent per user ca-
pacity versus n. Note also that, as the coherence
period (T ) of the channel grows, at high SNR, the
non-coherent channel’s per user capacity resembles
that of the coherent channel.

Theorem 5: With T , n, ρavg fixed,

CLB =
(T − L

T

)

K log(M) + O(1) as M → ∞
(33)

with the maximum at L = K = Lopt = min(n, bT
2
c)

giving a prelog factor which is the same as the
available degrees of freedom of the non-coherent
uplink channel

Proof: The proof (for further details see [7])
proceeds by using the fact that the mutual infor-
mation of the ith user subset, I i

lb (recall from (7)),
converges (in distribution) to a Gaussian [9], as
M → ∞, i.e.,

I i
lb

d
= N

((T − L

T

)

K log(1 + ρeffM),

(T − L

T

)2 K

M
log2

2 e

)

, ∀i, as M → ∞
(34)

Since CLB = E maxi I
i
lb, with further manipulation,

we prove (33).
Note that every time the number of antennas

at the receiver doubles, the sum rate (in bits per
channel use) increases by the channel’s degrees of
freedom, as illustrated in Fig.2(a). Also note that as
M → ∞, from (34), the variance of the mutual
information associated with any subset goes to



zero (channel hardening [9]) and consequently the
scheduling gain disappears (see Fig.2(b)). That is,
as M grows, maxL,K CLB(L, K)−maxL CLB(L, L)
converges to zero, where maxL CLB(L, L) corre-
sponds to the case with no multiuser scheduling.
It is interesting to compare this result with the case
when ρavg → ∞ (Theorem 1). There the scheduling
gain was still present with increasing SNR, but we
found that exploiting it is suboptimal.

VI. CONCLUSION

We designed a training based communication
scheme for a non-coherent SIMO multiple access
channel wherein training and user selection are
jointly optimized. We established that the non-
coherent SIMO multiple access channel has the
same degrees of freedom as the non-coherent single
user MIMO channel given by Lopt

(

1− Lopt

T

)

, where
Lopt = min(n, M, bT

2
c). Further, we proved that our

training-based scheme has a prelog factor equal to
the above degrees of freedom of the non-coherent
SIMO multiple access channel. This implies that our
training based scheme is scaling-law optimal. We
studied the behavior of the scheme in the asymptotic
regime, i.e., when SNR, the number of users or
the number of BS antennas grows. The multiuser
scheduling gain should not be exploited as SNR
grows, whereas as M grows, the scheduling gain
vanishes due to channel hardening effects. Conse-
quently, as SNR or the number of BS antennas
is high, all the users that are trained must be
allowed to transmit, this optimum number being
Lopt = min(n, M, bT

2
c). We also observed that

doubling n or M acts in the same way as a 3dB
increase in SNR, resulting in an increase in the
rate (bits/channel use) by the channel’s degrees of
freedom. Interestingly, at high SNR, the degrees
of freedom available per user in a non-coherent
channel monotonically decreases with n for all n ≥
1, whereas for a coherent channel, the per user
degrees of freedom remains a constant for n ≤ M
and drops with n only for n > M .

Finally, we would like to note that our model
contains mathematical similarities to the problem of
communication in non-coherent wideband channels:
Dividing a wideband channel into many narrowband
slots, one can ask questions about how many slots
to learn and how many to transmit in. The sub-
optimality of spending energy to learn too large
a number of subchannels is well known: Medard

et al. have shown [5], [10], [11] that non-coherent
channel capacity decays due to energy being spread
over a wide bandwidth. More recently, Agarwal and
Honig [12] considered optimizing the number of
frequency slots to train and the power allocation
to maximize the rate achievable with a training-
based scheme. It may be possible to transport our
results and techniques for the SIMO multiple access
channel to non-coherent wideband links: for exam-
ple, insights about the optimum number of users to
train and select for transmission may lead to insights
in the wideband problem about optimal number of
subbands to train and use.
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Fig. 1. (a) Illustration to show how the slope of sum rate achieved by the training-based scheme approaches that of coherent
channel capacity when n = M = 4. (b) CLB increases by the channel’s degrees of freedom (DoF) every time the number of
users in the system doubles. T = 10, M = 4, ρavg = 3 dB used.
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Fig. 2. (a) As M → ∞, CLB (in bits per channel use) increases by the channel’s degrees of freedom (DoF) every time the
number of receive antennas at the base station doubles. T = 10, n = 4, ρavg = 3 dB. (b) Comparison of maxL,K CLB(L, K)
with maxL CLB(L, L), where there is no multiuser scheduling. The scheduling gain vanishes as M grows due to channel
hardening effects. Here n = 8, T = 50, total power ρavgn=1.


