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Abstract— This paper considers block transmissions over
single-antenna doubly selective channels that obey a complex-
exponential basis expansion model. We consider the noncoherent
case, when the channel fading coefficients are not known at both
transmitter and receiver. We characterize the spectral efficiency
of the channel when the inputs are chosen from continuous
distributions. Then, we study several pilot aided transmissions
(PAT) over the doubly selective channels. We establish thatall
the PAT schemes designed to minimize the channel estimation
error variance are spectrally inefficient. We also design novel
spectrally efficient PAT schemes.

Index Terms— Noncoherent channels, doubly selective chan-
nels, spectral efficiency, channel capacity, achievable rates, pilot
symbols, channel estimation, optimal training, minimum mean
squared error.

I. I NTRODUCTION

Wireless channels which exhibit multipath fading are typ-
ically modeled as a linear transformation parameterized by
random fading coefficients. The scenario when the knowledge
of the fading coefficients is available at the transmitter and/or
at the receiver is commonly referred as coherent scenario.
The capacity of the coherent channels are well studied and
several efficient coherent coding and decoding techniques have
been developed in terms of complexity and performance. In
many practical scenarios, however, neither the transmitter nor
the receiver has this channel state information (CSI), which
is commonly referred as noncoherent scenario. In this paper,
we study the capacity limits of noncoherent doubly selective
channels and develop simple and efficient communication
techniques for those channels.

For wireless channels, the delay spread (in seconds)τ ,
caused by the multiple propagation paths between the transmit-
ter and the receiver, governs the frequency selective nature of
the channel. Similarly, the Doppler spread (in Hz)2fD, caused
by the mobility between the transmitter and the receiver,
governs the time selectivity. The product2fDτ quantifies the
channel variation across time and frequency. The channels for
which 2fDτ < 1 are referred as underspread channels.

The capacities of noncoherent multiple-input multiple-
output (MIMO) flat, single-input single-output (SISO) time-
selective, and SISO frequency-selective block-fading channels
have been obtained in the high signal-to-noise ratio (SNR)
regime in [1], [2], and [3], respectively. Referring to the
pre-log factor of the high-SNR capacity expression as the
achievable spectral efficiency, it has been shown that the
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achievable spectral efficiency of the noncoherent case is less
than that of the perfect-receiver-CSI case [1]–[3], henceforth
referred to as thecoherentcase. In fact the capacity of the
overspread channel (for which2fDτ ≥ 1) has been shown to
grow only double-logarithmically with SNR [4]. For MIMO
time-varying channels, the relation between channel capacity,
rate of channel variation, and SNR was recently analyzed in
[5].

In this paper, we study the achievable spectral efficiency
of block transmissions over noncoherent underspread doubly
selective channels (DSC) which can be characterized by a
complex-exponential basis expansion model (CE-BEM). Due
to the limitations on the velocity of the moving objects, the
time variation of the DSC is band-limited. For large enough
block size, a band-limited random sequence can be approxi-
mated to any degree of accuracy by its Fourier expansion using
the coefficients within the band, usually referred as truncated
Fourier series. Using this CE-BEM model, we establish that,
for an underspread DSC the capacity grows logarithmically
with SNR. In particular, we show that, with a continuous input
distribution, the DSC’s spectral efficiency is approximately
equal to1 − 2fDτ . For such channels, the rapid variation in
time and frequency can be seen to limit the achievable spectral
efficiency.

Pilot-aided transmission (PAT) is a well-known and practical
noncoherent communication strategy, whereby the transmitter
embeds known pilot (i.e., training) signals that the receiver can
use to estimate the channel. The estimated channel coefficients
can then be used by coherent coding and decoding techniques.
Cavers [6] authored one of the first analytical studies of PAT.
Since then, there has been a growing interest in PAT design.
See [7] for a recent comprehensive overview. We say that a
given noncoherent scheme isspectrally efficientif it attains
the achievable spectral efficiency of the channel. PAT schemes
designed to minimize channel estimation error variance are
often referred to as minimum mean-squared error (MMSE)
PAT schemes. Spectrally efficient MMSE-PAT schemes have
been established for MIMO flat, SISO frequency-selective, and
SISO time-selective fading channels [1]–[3]. In this paper,
we study MMSE-PAT schemes for the CE-BEM DSC and
establish thatnoneof them are spectrally efficient. We also
design novel spectrally efficient (non-MMSE) PAT schemes
for the DSC.

The paper is organized as follows. Section II outlines
the modeling assumptions, Section III analyzes the spectral
efficiency of the DSC, Section IV examines several PAT
schemes for the DSC, and Section V concludes.

Notation: Hermitian, transpose and conjugate are denoted
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by (·)H, (·)⊤, and(·)∗ respectively. The notation[·]n,m extracts
the(n, m)th element of a matrix, where the indicesn, m begin
with 0. The expectation, trace, Kronecker delta, Kronecker
product and modulo-N operations are denoted byE{·}, tr{·},
δ(·), ⊗ and〈·〉N , respectively. TheN ×N identity matrix and
unitary discrete Fourier transform matrices are denoted byIN

andF N respectively.

II. SYSTEM MODEL

A. Block Transmission Model

Equation (1) relates the sampled complex-baseband DSC
output {y(i)} to the input signal{x(i)}, where {v(i)}
is a zero-mean unit-variance circular white Gaussian noise
(CWGN) process andh(i, ℓ) is the time-i channel response
to an impulse applied at timei − ℓ.

y(i) =
√

ρ

Nt−1∑

ℓ=0

h(i, ℓ)x(i − ℓ) + v(i), (1)

Here,Nt denotes the discrete channel length, i.e., the channel’s
delay spreadτ normalized by the sampling intervalTs; by con-
vention, we assume thath(i, ℓ) = 0 for ℓ /∈ {0, . . . , Nt − 1}.
To avoid interference from the preceding block, each length-
N transmission block1 is separated from it’s neighbors by a
guard interval of lengthNt−1. In cyclic prefix (CP) systems,
x
(
i + (N + Nt − 1)z

)
= x

(
i + N + (N + Nt − 1)z

)
for i ∈

{−Nt+1, . . . ,−1} and allz ∈ Z, while in zero prefixed (ZPr)
systems,x

(
i+(N +Nt−1)z

)
= 0 for i ∈ {−Nt+1, . . . ,−1}

and allz ∈ Z. Assuming a stationary channel, we can, without
loss of generality, focus on the block with indexz = 0,
whose input samples (excluding the guard portion) are given
by {x(i)}N−1

i=0 . We assume that this block is demodulated from
the received vectory = [y(0), . . . , y(N − 1)]⊤, from which it
is evident that the guard samples have been discarded.

With x = [x(0), ..., x(N − 1)]⊤ and v = [v(0), ..., v(N −
1)]⊤, the block transmission structure applied to (1) implies
that

y =
√

ρHx + v, (2)

whereH ∈ CN×N is the matrix of channel coefficients. For
CP systems,H is given element-wise as[H ]n,m = h(n, 〈n−
m〉N ) and for ZPr systems,H is a lower triangular matrix
with [H]n,m = h(n, 〈n − m〉N ), for m ≤ n. The inputs are
assumed to obey the power constraint

1

N
E{‖x‖2} = 1. (3)

B. Doubly Selective Channel Model

The following CE-BEM [8, p. 65], [9] will be used to de-
scribe the channel response over theN -length block duration.
For i ∈ {0, . . . , N − 1} and ℓ ∈ {0, . . . , Nt − 1}, we assume
that

h(i, ℓ) =
1√
N

(Nf−1)/2
∑

k=−(Nf−1)/2

λ(k, ℓ)ej 2π
N

ki, (4)

1When we refer to a “transmission block of lengthN ,” we do not include
the contribution from the guard portion.

where the CE-BEM coefficients{λ(k, ℓ)} are uncorrelated
zero-mean circular Gaussian with positive variance. The CE-
BEM (4) has been widely used to model time-varying commu-
nication channels (e.g., [2], [8], [10]) and can be interpreted as
anNf -term truncated Fourier-series approximation of each of
theNt coefficient trajectories{h(0, ℓ), . . . , h(N − 1, ℓ)}Nt−1

ℓ=0 .
The application of truncated Fourier series can be motivated
by the bandlimited nature of coefficient trajectories that results
from finite mobile velocities. Specifically, path lengths which
vary by at mostvmax meters per second imply a maximum
single-sided Doppler spread offD = 2vmax/λc Hz, whereλc

denotes the carrier wavelength [8]. Since the use ofNf =
2⌊fDTsN⌋+ 1 terms in the Fourier series yields a reasonably
accurate approximation to each trajectory, we assume this
value ofNf throughout. We allow CE-BEM coefficients with
possibly unequal variances in order to model arbitrary delay
profiles and Doppler spectra. See [2] for a thorough discussion
on the validity of the CE-BEM.

Defining the N × Nf matrix F̄ element-wise
as [F̄ ]n,m = 1√

N
ej 2π

N
n(m−(Nf−1)/2), and noticing

that F̄
H
F̄ = INf

, the definitions U = INt
⊗ F̄ ,

λℓ = [λ(−Nf−1
2 , ℓ), . . . , λ(

Nf−1
2 , ℓ)]⊤, λ =

[λ⊤
0 · · · λ⊤

Nt−1]
⊤ ∈ CNf Nt , allow (4) to be written

compactly as

h = Uλ. (5)

Note that, becauseUHU = INf Nt
and becauseRλ =

E{λλH} is diagonal and positive definite, (5) gives the
Karhunen-Loeve (KL) expansion ofh. We assume that the
DSC has average energy gain of unity, so that1

N E{‖h‖2} =
1
N tr{Rλ} = 1. For this energy preserving channel, we define
the SNRE{‖√ρx‖2}/ E{‖v‖2} = ρ.

In the sequel, we refer toNt as the “discrete time spread”
and to Nf as the “discrete frequency spread.” In addition,
we refer tofDTs as the “normalized Doppler spread” and to
γ = 2fDτ ≈ NtNf/N as the channel’s “spreading index.”
We restrict our focus to the underspread case, i.e.,γ < 1, so
thatNtNf , the number of independent channel parameters per
block, is less than the block lengthN .

III. SPECTRAL EFFICIENCY OFDOUBLY SELECTIVE

CHANNELS

We study the ergodic capacity of the channel (2), assuming
the channel fading coefficientsλ fade independently from
block to block, which can be attained by interleaving of
blocks. The ergodic capacity per-channel-use of the DSC (2)
is expressed as [11]

C(ρ) = sup
x:E{‖x‖2}=N

1

N
I(y; x), (6)

where I(y; x) is the mutual information between random
vectorsy andx and the supremum is taken over all the input
random vectors satisfying the power constraint.

We define theachievable spectral efficiencyη of the channel
as the pre-log factor in the high-SNR expression for the
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channel capacity. Precisely, we have

η = lim
ρ→∞

C(ρ)

log ρ
. (7)

For Rayleigh-fading SISO channels (flat, frequency-selective,
or time-selective), in the coherent case, i.e., perfect receiver
CSI, the achievable spectral efficiency is unity. But in the non-
coherent case, the achievable spectral efficiency is generally
less than unity. The loss in achievable spectral efficiency has
been shown to be proportional to the channel’s time spreadNt

and frequency spreadNf for frequency-selective and time-
selective channels, respectively [2], [3]. In this paper, we
establish that, for a DSC with inputs generated according
to a continuous distribution, the loss in achievable spectral
efficiency is proportional to the channel’s spreading index
γ ≈ Nf Nt

N .
In general, the random vectorx which achieves the capacity

(6) is a function ofρ. The following theorem characterizes the
achievable spectral efficiency of the DSC when the channel
input is a continuous random vector.

Theorem 1 (Achievable Spectral Efficiency). For transmis-
sions obeying (2)-(3) over the CE-BEM DSC, any sequence
of continuous random input vectors{x(ρ)} indexed by SNRρ,
and converging in distribution to a continuous random vector
x(∞), yields

lim sup
ρ→∞

1
N I(y; x(ρ))

log ρ
≤ N − NfNt

N
. (8)

Proof of Theorem 1 for CP systems appears in Appendix I
and for ZPr systems the proof follows a similar approach.
The following lemma specifies a fixed input distribution which
achieves equality in (8).

Lemma 1 (Achievability). For transmissions obeying (2)-(3)
over the CE-BEM DSC, i.i.d. inputs chosen from the zero-mean
circular Gaussian distribution, i.e.,x ∼ CN(0, I), yield

lim
ρ→∞

1
N I(y; x)

log ρ
=

N − NfNt

N
. (9)

See Appendix II for proof of the above Lemma.
From Theorem 1 and Lemma 1, we see that, for continuous

inputs, the achievable spectral efficiency of the noncoherent
DSC is (approximately) equal to1 − γ, whereγ denotes the
channel’s spreading index. Sinceγ = 2fDτ , largerγ implies
more channel dispersion in time and/or frequency. Our result,
which shows that channel dispersion limits the achievable
spectral efficiency, is intuitively satisfying. For relatively small
γ, the achievable spectral efficiency will be close to unity,
i.e., that of the coherent case. A channel with smallγ could
be interpreted as one with few unknown parameters, and thus
one which does not demand much training overhead. Similar
observations were made for flat and singly selective fading
channels [1], [2], [12].

A note on the ZPr systems: We ignored the observations
during the guard interval portionyz = [y(N), ..., y(N +
Nt − 2)]⊤. Let yz =

√
ρHzx + vz, for suitably constructed

channel coefficient matrixHz and the CWGN vectorvz.
Intuitively, these “additional” observations of the “same” input

x can not increase the prelog factor of the capacity since they
can only increase the effective SNR through noise averaging,
which affects the term inside the logarithm. Mathematically,
we haveI(y, yz; x) = I(y; x) + I(yz; x|y). Using the co-
herent scenario to bound the mutual information, we have
I(yz; x|y) ≤ I(yz; x|y, H, Hz). SinceH is full rank with
probability1, we haveyz = HzH

−1y−HzH
−1v+vz. De-

noting the differential entropy byh(·), I(yz; x|y, H, Hz) =
h(yz |y, H, Hz)−h(yz|y, H , Hz, x) = h(vz−HzH

−1v)−
h(vz) = O(1), as ρ → ∞. Sinceyz does not change the
spectral efficiency, we ignore it in the rest of the manuscript.

IV. PILOT A IDED TRANSMISSIONS

A. PAT System Model

In pilot aided transmission (PAT), the transmitter embeds
known pilot (i.e., training) signals that the receiver can use to
estimate the channel. The estimated channel coefficients can
then be used by coherent coding and decoding techniques. In
PAT, the channel inputx in (2) is generated as

x = p + d, (10)

where p is a deterministic pilot vector andd is zero-mean
data. We assume that the data vectord results from linearly
modulating Ns(≤ N) information bearing symbolss =
[s(0), . . . , s(Ns − 1)]⊤ according to

d = Bs, (11)

using a “data modulation matrix”B ∈ CN×Ns with or-
thonormal columns. We refer toNs = rank(B) as the “data
dimension” of the PAT scheme. DefiningEp = ‖p‖2 and
Es = E{‖d‖2} = E{‖s‖2}, we require thatEp ≥ 0, Es > 0,
and 1

N (Ep + Es) = 1.
We use the linear-MMSE (LMMSE) estimate ofh given the

knowledge of{y, p} and the knowledge of the second-order
statistics of{h, d, v} [13],

ĥ = RH
y,hR−1

y y, (12)

where Ry,h = E{yhH} and Ry = E{yyH}. The channel
estimation errorh̃ = h − ĥ has varianceσ2

e = E{‖h̃‖2}.
Notice that we consider only non-data-aided estimators which
use only the second-order statistics of data.

There have been many studies on developing powerful
encoding and decoding techniques for the coherent case of
perfect receiver CSI. In general, for coherent channels, the
capacity-achieving input distribution is continuous. In fact,
for coherent channels, when the additive noise is Gaussian,
the capacity-optimal input distribution is also Gaussian.One
of the main advantages of PAT schemes is that they enable
the use of coherent communication techniques in noncoherent
scenarios. So, in our study of PAT schemes, we restrict our
focus to continuously distributeds. Motivated by Theorem 1,
the characterization of achievable spectral efficiency forthe
CE-BEM DSC with continuous inputs, we make the following
definition.

Definition 1. A PAT scheme is calledspectrally efficientif
its achievable rateR(ρ) over the CE-BEM DSC satisfies
limρ→∞

R(ρ)
log ρ =

N−Nf Nt

N .
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Recall that, a rateR(ρ) is said to beachievableby a PAT
scheme if the probability of decoding error, with some encod-
ing and decoding strategy, can be made arbitrarily small when
communicating at that rate. For the case of flat or frequency-
selective channels, PAT schemes designed to minimize the
channel estimation error variance have been shown to be
spectrally efficient [1], [3], [14]. Here we study MMSE-PAT
schemes for CE-BEM DSC and establish that they arenot
spectrally efficient. We also design spectrally efficient PAT
schemes for the CE-BEM DSC.

B. Spectral efficiency of MMSE-PAT

In our study of MMSE-PAT schemes, we restrict our at-
tention to CP transmissions since they render the design and
analysis of MMSE-PAT for DSC tractable. CP-MMSE-PAT
schemes for the CE-BEM DSC have been characterized and
their achievable rates studied in [15]. We briefly review those
results and present new results about the spectral efficiency of
CP-MMSE-PAT.

A PAT parameter pair(p, B) which jointly minimizes
the channel estimate MSEσ2

e is referred as an MMSE-PAT
scheme. We now recall the design requirements of CP-MMSE-
PAT for DSC [15].

Lemma 2 ( [15]). For CP-PAT over the DSC described in
Section II-B, with the non-data-aided estimator (12), the total
channel estimation error varianceσ2

e obeys

σ2
e ≥ tr

{(

R−1
λ +

ρEp

N
INf Nt

)−1
}

, (13)

where equality in (13) occurs if and only if the following
conditions hold:∀k ∈ {−Nt +1, ..., Nt − 1}, ∀m ∈ {−Nf +
1, ..., Nf − 1}, we require

N−1∑

i=0

p(i)p∗(i + k)e−j 2π
N

mi = Epδ(k)δ(m) (14)

N−1∑

i=0

bq(i)p
∗(i + k)e−j 2π

N
mi = 0, ∀q ∈ {0, ..., Ns − 1}(15)

wherebq denotesqth column ofB.

The requirement (15) has the interpretation that the pilots
and data should be multiplexed in a way that ensures their
orthogonality at the channel output, and the requirement (14)
has the interpretation that the pilots should be constructed so
that all the channel modes are excited with equal energy [15].
To design an MMSE-PAT, first we need to get a pilot vector
p which satisfies (14). Then the data basis are chosen to meet
the requirement (15). A general procedure to design(p, B)
which meet the above requirements has been given in [15].

CP-MMSE-PAT examples from [15] are given below, using
the (p, B) parameterization.

Example 1 (TDKD). Assuming N
Nf

∈ Z, with the pilot index

setP (l)

t = {l, l + N
Nf

, ..., l +
(Nf−1)N

Nf
} and the guard index

setG(l)

t =
⋃

k∈P(l)
t

{−Nt + 1 + k, ..., Nt − 1 + k}, an N -block

CP-MMSE-PAT scheme for the CE-BEM DSC is given by

p(k) =

{√
Ep

Nf
ejθ(k) k ∈ P (l)

t

0 k /∈ P (l)

t

(16)

and byB constructed from the columns ofIN with indices
not in the setG(l)

t . Both l ∈ {0, . . . , N
Nf

− 1} and θ(k) ∈ R

are arbitrary. The corresponding data dimension isNs = N−
Nf (2Nt − 1).

Example 2 (FDKD). AssumingN
Nt

∈ Z, with the pilot index

set P (l)

f = {l, l + N
Nt

, ..., l + (Nt−1)N
Nt

} and the guard index
set G(l)

f =
⋃

k∈P(l)
f

{−Nf + 1 + k, ..., Nf − 1 + k}, an N -

block CP-MMSE-PAT scheme for the CE-BEM DSC is given
by p = F H

N p̆, with

p̆(k) =

{√
Ep

Nt
ejθ(k) k ∈ P (l)

f

0 k /∈ P (l)

f

(17)

and byB constructed from the columns of the IDFT matrix
F H

N with indicesnot in the setG(l)

f . Both l ∈ {0, . . . , N
Nt

−
1} and θ(k) ∈ R, are arbitrary. The corresponding data
dimension isNs = N − Nt(2Nf − 1).

Example 3 (Superimposed Chirps). Assuming evenN , an N -
block CP-MMSE-PAT scheme for the CE-BEM DSC is given
by

p(k) =

√

Ep

N
ej 2π

N

Nf
2 k2

(18)

[B]k,q =
1√
N

ej 2π
N

(q+Nf Nt)kej 2π
N

Nf
2 k2

, (19)

for k ∈ {0, . . . , N − 1} and q ∈ {0, . . . , Ns − 1}, where the
data dimensionNs = N − 2NfNt + 1.

From the achievable rate analysis of CP-MMSE-PAT in
[15], we have the following result about the spectral efficiency
of CP-MMSE-PAT.

Lemma 3 ( [15]). For an N -block CP-MMSE-PAT(p, B)
over the CE-BEM DSC with the data dimensionrank(B) =
Ns, the achievable rateR(ρ) satisfies,

lim sup
ρ→∞

R(ρ)

log ρ
≤ Ns

N
. (20)

Also, equality in (20) is achieved with an i.i.d. Gaussian
distribution for s.

For strictly doubly selective channels (i.e.,Nt > 1 and
Nf > 1), the three MMSE-PAT Examples 1-3 yieldNs < N−
NfNt, and are clearly not spectrally efficient. But does there
exist some other CP-MMSE-PAT scheme whichis spectrally
efficient over the CE-BEM DSC? The answer is given in the
following theorem.

Theorem 2. In CE-BEM DSC withNt > 1 and Nf > 1,
the data dimensionNs of any CP-MMSE-PAT scheme(p, B)
satisfying the necessary requirements given in Lemma 2, is
strictly bounded asNs < N − NfNt.

Proof. See Appendix III.
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Combining the results from Theorem 2 and Lemma 3, we
have the following result.

Corollary 1 (Spectral Inefficiency). No CP-MMSE-PAT
scheme is spectrally efficient over the CE-BEM DSC with
Nt > 1 and Nf > 1.

C. Spectrally Efficient PAT

Note that there areNfNt independent unknown BEM
coefficients in eachN -length block. All the CP-MMSE-PAT
schemes are shown to sacrifice more thanNfNt dimensions
for pilots, leavingNs < N − NfNt dimensions for data
symbols, and hence are spectrally inefficient. Hence, to get
a spectrally efficient PAT, we need to relax the MMSE
requirements in Lemma 2. Since we are considering non-data-
aided estimators, the pilot-data orthogonality at the channel
output (15) is desirable, otherwise the channel estimationwill
suffer interference from data and the channel estimates will not
be perfect even in the absence of noise (i.e., asymptotically
as ρ → ∞). Thus, a PAT scheme which preserves pilot-
data orthogonality at the channel output, and which can yield
perfect channel estimates in the absence of noise using only
NfNt pilot dimensions, is a candidate for spectrally efficient
PAT. We give one such example and establish its spectral
efficiency.

Example 4 (SEKD). With the pilot index setPs =
{0, Nt, ..., (Nf − 1)Nt} and the guard index setGs =
{0, ..., NfNt − 1}, an N -block ZPr MMSE-PAT scheme for
the CE-BEM DSC is given by

p(k) =

{√
Ep

Nf
ejθ(k) k ∈ Ps

0 k /∈ Ps

(21)

and byB constructed from the columns ofIN with indices
not in the setGs. θ(k) ∈ R is arbitrary.

In the above PAT, the firstNfNt time slots are used by
the pilots and the remaining time slots are used for data
transmission. The spectral efficiency of the PAT is established
in the following lemma.

Lemma 4. For the SEKD PAT from Example 4, achievable
rate R(ρ) at SNR levelρ satisfieslimρ→∞

R(ρ)
log ρ =

N−Nf Nt

N
and hence the PAT scheme is spectrally efficient.

In general, any PAT scheme which preserves pilot-data
orthogonality and which can perfectly estimate the BEM
coefficients in the absence of noise while sacrificing only
NfNt pilot dimensions can be shown to be spectrally efficient.
Spectrally efficient PAT schemes are guaranteed to yield higher
achievable rate than CP-MMSE-PAT schemes in the high-SNR
regime.

V. CONCLUSION

In this paper, the achievable spectral efficiency of the nonco-
herent CE-BEM DSC with continuous input distributions and
was shown to be approximately1 − 2fDτ , wherefD denotes
single-sided Doppler spread andτ denotes delay spread of the

channel. In addition, this paper established that CP-MMSE-
PAT schemes are spectrally inefficient, and discussed the
design of spectrally efficient PAT schemes.

APPENDIX I
PROOF FORTHEOREM 1

Defining the two vectorsys = [y(0), ..., y(NfNt−1)]⊤ and
yr = [y(NfNt), ...., y(N − 1)]⊤, and using the chain rule for
mutual information [11], we haveI(y; x(ρ)) = I(ys; x

(ρ)) +
I(yr; x

(ρ)|ys). Using the coherent capacity to bound the
second term, we haveI(yr; x

(ρ)|ys) ≤ I(yr; x
(ρ)|ys, H) =

(N − NfNt) log ρ + O(1).

What remains to be shown is thatlimρ→∞
I(ys;x(ρ))

log ρ = 0.
Using the chain rule for mutual information again, we have

I(ys; x
(ρ)) = I(y(0); x(ρ))

+

Nf Nt−1
∑

i=1

I(y(i); x(ρ)|y(0), ..., y(i − 1))(22)

≤ I(y(0); x(ρ))

+

Nf Nt−1
∑

i=1

I(y(i); x(ρ), y(0), ..., y(i − 1)).(23)

We shall analyze each term in (23) separately. We define the
vectorsx(ρ)

i = [x(ρ)(i), ..., x(ρ)(i−Nt + 1)]⊤ and their “com-
plements”x̄(ρ)

i , which are composed of elements ofx(ρ) not in
x

(ρ)

i . With these definitions, the first term in (23) can be written
I(y(0); x(ρ)) = I(y(0); x(ρ)

0 ) + I(y(0); x̄(ρ)

0 |x(ρ)

0 ). Conditioned
on x

(ρ)

0 , the uncertainty iny(0) is due to channel coefficients
and additive noise which are independent ofx̄

(ρ)

0 . Hence,
I(y(0); x̄(ρ)

0 |x(ρ)

0 ) = 0. Now, I(y(0); x(ρ)

0 ) corresponds to a
overspread channel (i.e., one observation withNt unknown
channel coefficients) and, using the result from [4], we have
I(y(0); x(ρ)

0 ) ≤ log log ρ+O(1). Hencelimρ→∞
I(y(0);x(ρ))

log ρ =
0. Now considering the general term inside the summation of
(23),

I(y(i); x(ρ), y(0), ..., y(i − 1))

= I(y(i); x(ρ)

i )
︸ ︷︷ ︸

≤log log ρ+O(1)

+ I(y(i); x̄(ρ)

i |x(ρ)

i )
︸ ︷︷ ︸

=0

+ I(y(i); y(0), ..., y(i − 1)|x(ρ))
︸ ︷︷ ︸

Ti

,

it remains to be shown thatlimρ→∞
Ti

log ρ = 0.
Recall thaty and h are jointly Gaussian conditioned on

x(ρ). In terms of differential entropies,I(y(i); y(0), ..., y(i −
1)|x(ρ)) = h(y(i)|x(ρ)) − h(y(i)|x(ρ), y(0), ..., y(i − 1)). It
easily follows that

h(y(i)|x(ρ)) = E{log(1 + ρ

Nt−1∑

ℓ=0

E{|h(i, ℓ)|2}|x(ρ)(i − ℓ)|2)},
(24)

where the expectation is with respect tox(ρ). Now, given
{y(0), ..., y(i − 1)}, we split y(i) into MMSE estimate and
error asy(i) = E{y(i)|y(0), ..., y(i− 1)}+ ỹ(i), and we have
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h(y(i)|y(0), ..., y(i − 1), x(ρ)) = E log(E |ỹ(i)|2). Defining
hi = [h(i, 0), ..., h(i, Nt − 1)]⊤ and denoting the covariance
of hi − E{hi|y(0), ..., y(i − 1)} by R̃i, we haveE |ỹ(i)|2 =
1+ρx

(ρ)H
i R̃ix

(ρ)

i . Let µmax,i denote the maximum eigenvalue
of R̃i and qi denote the corresponding eigenvector. Now
defineκmax,i = infx(ρ)∈CN µmax,i. For i ∈ {1, ..., NfNt−1},
all the elements ofhi can not be estimated perfectly, even
in the absence of noise (ρ = ∞), since{y(0), ..., y(i − 1)}
correspond to a projection ofλ onto a subspace of smaller
dimension, and henceκmax,i > 0. Now, E |ỹ(i)|2 ≥ 1 +

ρκmax,i|
∑Nt−1

k=0 qi(k)x(ρ)(i − k)|2, and hence

h(y(i)|x(ρ), y(0), ..., y(i − 1)) ≥

E{log(1 + ρκmax,i|
Nt−1∑

k=0

qi(k)x(ρ)(i − k)|2)}.(25)

Combining (24) and (25), we have Ti ≤
E log

1+ρ
PNt−1

ℓ=0 E{|h(i,ℓ)|2}|x(ρ)(i−ℓ)|2

1+ρκmax,i|
PNt−1

k=0 qi(k)x(ρ)(i−k)|2
. Since x(ρ) is a

sequence of continuous random vectors with‖x(ρ)‖2 = N
converging to a continuous random vector,
limρ→∞ |∑Nt−1

k=0 qi(k)x(ρ)(i − k)|2 > 0 with probability 1,
and limρ→∞

Ti

log ρ = 0.

APPENDIX II
PROOF FORLEMMA 1

Using the chain rule for mutual information, we have

I(y; x) = I(y; x, H) − I(y; H|x) (26)

≥ I(y; x|H) − I(y; H|x). (27)

Now, I(y; x|H) corresponds to coherent case of perfect re-
ceiver CSI and sinceH is full rank with probability1, we
have,

I(y; x|H) = E{log det[IN + ρHHH]} (28)

= N log(ρ) + O(1). (29)

Now, for appropriately constructed matrixX using the input
samples{x(i)}N−1

i=0 , (2) can be written as

y =
√

ρXh + v.

Using the BEM model (5), we havey =
√

ρXUλ+v. Since
λ captures all the degrees of freedom of DSC over a block,
we haveI(y; H|x) = I(y; λ|x) = I(y; λ|X). Conditioned on
X, y andλ are jointly Gaussian and hence using the statistics
of λ, we have

I(y; λ|X) = E log det[I +
ρN

NfNt
(XU)HXU ] (30)

Let {αi}Nf Nt−1
0 be eigen values of(XU)HXU . For both

CP and ZPr systems, from the structure ofX and U , with
ϕN =

∑N−1
n=0 |x(n)|2, we have

Nf Nt−1
∑

i=0

αi ≤ NfNt

N
ϕN . (31)

Notice thatϕN is chi-squared distributed with2N degrees of
freedom. Now,

log det[I +
ρN

NfNt
(XU)HXU ] = log

Nf Nt−1
∏

i=0

(1 +
ρN

NfNt
αi)

(32)

≤ log

Nf Nt−1
∏

i=0

(1 + ρ
ϕN

NfNt
)

(33)

where the above inequality follows from maximizing right
hand side of (32) using the method of Lagrange multipliers
with the constraint (31). So,

I(y; H |x) ≤ NfNt E log(1 + ρ
ϕN

NtNf
)} (34)

= NfNt log(ρ) + O(1). (35)

Using (29) and (35) in (27), we have the desired result.

APPENDIX III
PROOF OFTHEOREM 2

We use modulo-N indexing throughout this proof. First
definee(k,m) = 1√

Ep

[p(k)ej 2π
N

m.0, p(k + 1)ej 2π
N

m.1, ...p(k +

N−1)ej 2π
N

m(N−1)]⊤, which are normalized to have unit norm,
for convenience. We also define the sets,Nt = {−Nt +
1, ..., Nt − 1} and Nf = {−Nf + 1, ..., Nf − 1}. Let W

be a matrix whose columns are constructed from the set
{e(k,m), k ∈ Nt, m ∈ Nf}. Now, the orthogonality
requirement (15) can be written asW HB = 0 and hence the
number of information symbols in each blockNs = rank(B)
is equal to the dimension of the null space ofW H.

We proof the theorem by contradiction. We assume there are
MMSE-PAT schemes for whichrank(B) = N − NfNt and
find the necessary requirements on their pilot vectors. Thenwe
establish that the pilot vectors satisfying these requirements
does not yieldrank(B) = N − NfNt.

Let (p, B) correspond to a MMSE-PAT withrank(B) =
N−NfNt. We proceed to establish the necessary requirements
for p. To start with, optimal excitation (14) is necessary
for MMSE-PAT and let p be any vector which satisfies
(14). For convenience, defineD =

Nf−1
2 . Figure 1 gives a

pictorial representation of the elements of the set{e(k,m), k ∈
Nt, m ∈ Nf} arranged in a grid.

We define the quantity

r(k,m) :=
1

Ep

N−1∑

i=0

p(i)p∗(i + k)e−j 2π
N

mi (36)

= < e(0,0), e(k,m) > (37)

where< x, y >= yHx denotes the inner product betweenx

andy. From (14), note that

r(k,m) = δ(k)δ(m) for k ∈ Nt, andm ∈ Nf . (38)

It easily follows that

< e(k1,m1), e(k2,m2) > = ej 2π
N

(m2−m1)k1r(k2−k1,m2−m1).
(39)
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W o

W
1 e

· · · · · ·

· · ·

e(−Nt+1,Nf−1)e(−Nt+1,D+1)e(−Nt+1,D)e(−Nt+1,D−1)· · ·e(−Nt+1,−D)e(−Nt+1,−D−1)e(−Nt+1,−Nf+1)

e(−Nt+2,−Nf+1) e(−Nt+2,−D−1) e(−Nt+2,−D) · · · e(−Nt+2,D−1) e(−Nt+2,D) e(−Nt+2,D+1) · · · e(−Nt+2,Nf−1)

.

.

. · · · .
.
.

.

.

. · · · .
.
.

.

.

.
.
.
. · · · .

.

.

e(0,Nf−1)· · ·e(0,D+1)e(0,D)e(0,D−1)· · ·e(0,−D)e(0,−D−1)· · ·e(0,−Nf+1)

e(1,−Nf+1) · · · e(1,−D−1) e(1,−D) · · · e(1,D−1) e(1,D) e(1,D+1) · · · e(1,Nf−1)

.

.

.· · ·.
.
.

.

.

.
.
.
.· · ·.

.

.
.
.
.· · ·.

.

.

e(Nt−1,−Nf+1) · · · e(Nt−1,−D−1) e(Nt−1,−D) · · · e(Nt−1,D−1) e(Nt−1,D) e(Nt−1,D+1) · · ·

W 2
e

e(Nt−1,Nf−1)

2Nf − 1

m

−k

2Nt − 1

Fig. 1. Elements of the set{e(k,m), k ∈ Nt, m ∈ Nf} arranged in a grid

From (38) and (39), all the elements in Fig. 1within any
rectangle of heightNt and width Nf are orthonormal. We
also have,

r∗(k,m) = < e(k,m), e(0,0) > = e−j 2π
N

mkr(−k,−m).(40)

We use the following intermediate result.

Lemma 5. WhenB is of rankN−NfNt, we have|r(0,Nf )| =
1 or |r(Nt,0)| = 1.

Proof. Since rank(B) = N − NfNt is the null space
dimension of W H, it follows that rank(W ) = NfNt.
Let W o be a matrix whose columns are from the set
{e(k,m) : k ∈ {0,−1, ...,−Nt + 1}, m ∈ {−D, ..., D}},
and letW 1

e = [e(−1,−D−1), ..., e(−Nt+2,−D−1)] and W 2
e =

[e(1,−D), ..., e(1,D−1)]. (See Fig. 1.) From (14),(38) and (39),
the NfNt columns ofW o are orthonormal and, sinceW
is of rank NfNt, we have the following basis expansion:
∀k ∈ Nt, ∀m ∈ Nf ,

e(k,m) =

Nt−1∑

i=0

D∑

j=−D

< e(k,m), e(−i,j) > e(−i,j), (41)

=

Nt−1∑

i=0

D∑

j=−D

ej 2π
N

(j−m)kr(−i−k,j−m)e(−i,j). (42)

Since any two elements inside the rectangle of heightNt and
width Nf are orthogonal ((38),(39)), for the columns ofW 1

e,
we have

[e(0,−D−1), e(−1,−D−1), ..., e(−Nt+2,−D−1)]

= [e(0,D), e(−1,D), ..., e(−Nt+1,D)]M1

whereM1 ∈ CNt×Nt−1 is given by

M1 =








r(0,Nf ) · · · e−j 2π
N

Nf (Nt−2)r(Nt−2,Nf )

r(−1,Nf ) · · · e−j 2π
N

Nf (Nt−2)r(Nt−3,Nf )

... · · ·
...

r(−Nt+1,Nf) · · · e−j 2π
N

Nf (Nt−2)r(−1,Nf )








.

Similarly, we have the following expansion for the columns
of W 2

e,

[e(1,−D), e(1,−D+1), ..., e(1,D−1)]

= [e(−Nt+1,−D), e(−Nt+1,−D+1), ..., e(−Nt+1,D)]M2

whereM2 ∈ CNf×Nf−1 is equal to







r(−Nt,0) · · · e−j 2π
N

(Nf−2)r(−Nt,−Nf+2)

ej 2π
N r(−Nt,1) · · · e−j 2π

N
(Nf−3)r(−Nt,−Nf+3)

... · · ·
...

ej 2π
N

(Nf−1)r(−Nt,Nf−1) · · · ej 2π
N r(−Nt,1)








.

Since each column ofW 1
e is orthogonal to each column

of W 2
e, from their basis expansions, we see that they have

only one common basis vectore(−Nt+1,D). So, to meet the
orthogonality requirement, we have

r(−1, Nf ) = · · · = r(−Nt + 1, Nf) = 0 (43)

or

r(−Nt, 1) = · · · = r(−Nt, Nf − 1) = 0. (44)

Using (43) in the basis expansion ofe(0,−D−1), we have

e(0,−D−1) = r(0,Nf )e(0,D). (45)

Since bothe(0,−D−1) ande(0,D) have unit norm, we have

|r(0,Nf )| = 1 ⇒ r(0,Nf ) = ejθ for someθ ∈ R. (46)

Similarly, when the condition (44) is met, we have

e(1,−D) = r(−Nt,0)e(−Nt+1,−D) (47)

and |r(−Nt,0)| = 1. So, from (40) we have

r(Nt,0) = ejθ̄ for someθ̄ ∈ R. (48)

Now we study the pilot vectorsp which satisfy (14) with
the additional constraint that|r(Nt,0)| = 1 or |r(0,Nf )| = 1.
Considering these two cases separately, we establish that there
is no suchp for which rank(B) = N − NfNt.
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A. Case I:r(0,Nf ) = ejθ

From (45), we have

p(i)(e−j 2π
N

Nf i − ejθ) = 0. (49)

Now, if θ 6= 2π
N Nfq for someq ∈ Z, thenp(i) = 0∀i, which

clearly does not satisfy the MMSE-PAT requirement (14), and
hence ruled out from consideration. Now, ifθ = 2π

N Nfq for
someq ∈ Z, from (49), p(i) may be non-zero only ifi =
q+ kN

Nf
for k ∈ Z such thatkN

Nf
∈ Z. Now, for k ∈ Z, defining

aq(k) =

{

|p(q + kN
Nf

)|2 if kN
Nf

∈ Z

0 else
(50)

then from the requirement (38), it follows that
∑Nf−1

i=0 aq(i)e
j 2π

Nf
mi

= Epδ(m), ∀m ∈ Nf , which can
be met if and only if

aq(i) =
Ep

Nf
, ∀ i ∈ {0, ..., Nf − 1}. (51)

From the definition (50), it follows that, the above requirement
can be met if and only ifN

Nf
∈ Z. If N

Nf
/∈ Z, there is no

training sequence which satisfies both (14) and (46). Now,
if N

Nf
∈ Z, from (50) and (51), the sequencep(i) is of the

form given in Example 1. For Example 1, as noted earlier
rank(B) = Ns = N − (2Nt − 1)Nf < N − NfNt. This
contradicts the initial assumption thatB is of rankNfNt.

B. Case II:r(Nt,0) = ejθ̄

From (40), (47) and (48), it follows that

p(i) = ejθ̄p(i + Nt). (52)

Because of the circular symmetryp(i+N) = p(i), using (52),
we can find the largest integerL ∈ {1, ..., Nt} so thatN

L ∈ Z

andp(i) = ejθp(i + L) for someθ ∈ R. Note that, if N
Nt

∈ Z

thenL = Nt elseL < Nt. Again from the circular symmetry,
θ = 2π

N Lq for someq ∈ Z. Let p̆ denote theN -point unitary
discrete Fourier transform (DFT) ofp. For the sequencep
with the given “periodic” structure, we have

p̆(k) =
1√
N

N−1∑

i=0

p(i)e−j 2π
N

ik (53)

=
1√
N

L−1∑

i=0

p(i)e−j 2π
N

ik

N
L
−1

∑

m=0

e−j 2π
N

L(k−q)m (54)

and hencĕp(k) = 0 ∀ k /∈ {q, q + N
L , ..., q + N(L−1)

L }. Now,
the optimal excitation requirement (14) can be written in terms
of p̆ as [15],∀k ∈ Nf , ∀m ∈ Nt,

N−1∑

i=0

p̆(i)p̆∗(i − k)e−j 2π
N

mi = Epδ(k)δ(m). (55)

Defining |p̆(q+ iN
L )|2 = ăq(i), i ∈ {0, ..., L−1} and using the

MMSE-PAT requirements in the frequency domain, we require

g(m) =

L−1∑

i=0

ăq(i)e
−j 2π

N
(i N

L
+q)m = Epδ(m), ∀ m ∈ Nt.

(56)

If L < Nt, then (56) can not be satisfied sinceg(L) =
g(0)ej 2π

N
qL. So, if N

Nt
/∈ Z, there is no MMSE-PAT with

dim(W ) = NfNt. Now, if N
Nt

∈ Z, thenL = Nt and the only
sequence{ăq(i)} satisfying the requirement (56) is̆aq(i) = c
for some constantc, ∀ i. This corresponds to the equi-spaced,
equi-powered frequency domain pilot sequence of FDKD in
Example 2. Again, for this pilot sequence, from Example 2, we
haverank(B) < N −NfNt. Again, we reach a contradiction
on the initial assumption thatB is of rankNfNt.

APPENDIX IV
PROOF OFLEMMA 4

The pilot observations of the PAT scheme in Example 4,
yp = [y(0), ..., y(NfNt − 1)]⊤, can be written asyp =√

ρGλ + vp, where vp = [v(0), ..., v(NfNt − 1)]⊤, for
someG. It can be verified thatG is full rank and hence
the minimum eigen value ofGHG denoted byβmin is
positive. The covariance matrix of the estimation errorRh̃ =

E{h̃h̃
H} = U(R−1

λ + ρGHG)−1UH. Denoting the smallest
eigen value ofR−1

λ by αmin, we haveRh̃ ≤ (αmin +

ρβmin)−1UUH, in the positive semi-definite sense. Now,
constructingBd ∈ CN×N−Nf Nt using the last columnsN −
NfNt columns of identity matrix, the data observationsyd =
[y(NfNt), ..., y(N − 1)]⊤ are given byyd = BH

d HBs + vd,
wherevd = [v(NfNt), ..., v(N − 1)]⊤. The effective channel
between the observations and the data isHe = BH

dHB.
Splitting H into estimateĤ and errorH̃ components, we
have

yd = BH
dĤB

︸ ︷︷ ︸

Ĥe

s + BH
dĤBs + vd

︸ ︷︷ ︸

ve

. (57)

Orthogonality principle of MMSE estimator guarantees that
Ĥes and ve are uncorrelated. In this case, the worst case
distribution for ve (from a mutual information perspective)
is Gaussian [14]. With i.i.d. Gaussian distribution for the
information symbolss satisfying the power constraint, with
σ2

s = Es

N−Nf Nt
, we have

I(yd; s) ≥ E log det[I + ρσ2
sĤeR

−1
e Ĥ

H
e ] (58)

whereRe = E{vev
H
e }. SinceB and Bd have orthonormal

columns, it easily follows thatRe ≤ (1 +
ρNtσ2

s

αmin+ρβmin
)I, in

the positive definite sense. Using this in (58), the achievable
rate of the system obeys

R(ρ) ≥ 1

N
E log det[I + ρeĤeĤ

H
e ] (59)

where ρe =
ρσ2

s (αmin+ρβmin)
αmin+ρβmin+ρNtσ2

s
. We haveρe ≥ kρ, ∀ρ > 1

for some constantk and limρ→∞ Ĥe = He almost surely.
Using Fatou’s lemma, taking the limit inside the expectation,
we have

lim
ρ→∞

R(ρ) ≥ 1

N
E lim

ρ→∞
log det[I + ρeĤeĤ

H
e ] (60)

≥ 1

N
E log det lim

ρ→∞
[I + kρHeH

H
e ] (61)

=
N − NfNt

N
log ρ + O(1) (62)

sinceHe is full rank with probability1.
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