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_Abstract— This paper considers block transmissions over achievable spectral efficiency of the noncoherent casess le
single-antenna doubly selective channels that obey a corept  than that of the perfect-receiver-CSI case [1]-[3], heoxtkf
exponential basis expansion model. We consider the noncobkat referred to as theoherentcase. In fact the capacity of the

case, when the channel fading coefficients are not known at to d ch | (f hi > 1) has b h t
transmitter and receiver. We characterize the spectral effiiency overspread channel (for whichfp7 > 1) has been shown to

of the channel when the inputs are chosen from continuous 9row only double-logarithmically with SNR [4]. For MIMO
distributions. Then, we study several pilot aided transmisions time-varying channels, the relation between channel dgpac

(PAT) over the doubly selective channels. We establish thall  rate of channel variation, and SNR was recently analyzed in
the PAT schemes designed to minimize the channel estimation [5].

error variance are spectrally inefficient. We also design neel

spectrally efficient PAT schemes. In this paper, we study the achievable spectral efficiency

of block transmissions over noncoherent underspread goubl
o . : : selective channels (DSC) which can be characterized by a
nels, spectral efficiency, channel capacity, achievable tes, pilot . . .
symbols, channel estimation, optimal training, minimum men comple?(-gxp_onentlal basis expansion model_(CE-BEM). Due
squared error. to the limitations on the velocity of the moving objects, the
time variation of the DSC is band-limited. For large enough
block size, a band-limited random sequence can be approxi-
mated to any degree of accuracy by its Fourier expansiomgusin
Wireless channels which exhibit multipath fading are typthe coefficients within the band, usually referred as trtedta
ically modeled as a linear transformation parameterized Byurier series. Using this CE-BEM model, we establish that,
random fading coefficients. The scenario when the knowledfgg an underspread DSC the capacity grows logarithmically
of the fading coefficients is available at the transmitted/an with SNR. In particular, we show that, with a continuous inpu
at the receiver is commonly referred as coherent scenamstribution, the DSC's spectral efficiency is approxinhate
The capacity of the coherent channels are well studied aggual tol — 2fp7. For such channels, the rapid variation in
several efficient coherent coding and decoding technigares htime and frequency can be seen to limit the achievable sgectr
been developed in terms of complexity and performance. dfficiency.
many practical scenarios, however, neither the transmitie Pilot-aided transmission (PAT) is a well-known and praaitic
the receiver has this channel state information (CSI), Whiqoncoherent communication strategy, whereby the tratsmit
is commonly referred as noncoherent scenario. In this papembeds known pilot (i.e., training) signals that the reeesan
we study the capacity limits of noncoherent doubly selectiuse to estimate the channel. The estimated channel coefficie
channels and develop simple and efficient communicatiean then be used by coherent coding and decoding techniques.
techniques for those channels. Cavers [6] authored one of the first analytical studies of. PAT
For wireless channels, the delay spread (in seconds) Since then, there has been a growing interest in PAT design.
caused by the multiple propagation paths between the tiinsrgee [7] for a recent comprehensive overview. We say that a
ter and the receiver, governs the frequency selective @atur given noncoherent scheme spectrally efficientf it attains
the channel. Similarly, the Doppler spread (in 27}, caused the achievable spectral efficiency of the channel. PAT sesem
by the mobility between the transmitter and the receivalesigned to minimize channel estimation error variance are
governs the time selectivity. The produfy quantifies the often referred to as minimum mean-squared error (MMSE)
channel variation across time and frequency. The chanaels PAT schemes. Spectrally efficient MMSE-PAT schemes have
which 2fp7 < 1 are referred as underspread channels. been established for MIMO flat, SISO frequency-selectind, a
The capacities of noncoherent multiple-input multipleSISO time-selective fading channels [1]-[3]. In this paper
output (MIMO) flat, single-input single-output (SISO) time we study MMSE-PAT schemes for the CE-BEM DSC and
selective, and SISO frequency-selective block-fadingnaleés  establish thanone of them are spectrally efficient. We also
have been obtained in the high signal-to-noise ratio (SNRgsign novel spectrally efficient (non-MMSE) PAT schemes
regime in [1], [2], and [3], respectively. Referring to thefor the DSC.
pre-log factor of the high-SNR capacity expression as theThe paper is organized as follows. Section Il outlines
achievable spectral efficiencyt has been shown that thethe modeling assumptions, Section Ill analyzes the sdectra
_ _efficiency of the DSC, Section IV examines several PAT
2015 Neil Avenue, Columbus, OH 43210. E-mail: .
{kannu, schni t er }@ce. osu. edu schemes for the DSC, and Section V concludes.
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by ()1, ()T, and(-)* respectively. The notatiof,, ,, extracts where the CE-BEM coefficient§\(k, ¢)} are uncorrelated
the (n, m)'" element of a matrix, where the indicesm begin zero-mean circular Gaussian with positive variance. The CE
with 0. The expectation, trace, Kronecker delta, Kroneck&EM (4) has been widely used to model time-varying commu-
product and moduldv operations are denoted B/}, tr{-}, nication channels (e.g., [2], [8], [10]) and can be intetpdeas
4(+), ® and(-) 5, respectively. ThéV x N identity matrix and an N-term truncated Fourier-series approximation of each of

unitary discrete Fourier transform matrices are denotedipy the N, coefficient trajectorie$h (0, ¢),..., h(N —1,¢) é\’;gl.
and F'y respectively. The application of truncated Fourier series can be motivate
by the bandlimited nature of coefficient trajectories tleestults
Il. SYSTEM MODEL from finite mobile velocities. Specifically, path lengthsialn
A. Block Transmission Model vary by at mostuy,.x meters per second imply a maximum

. ingle-sided Doppler spread @ = 2vmax/Ac Hz, wherel,
Equation (1) relates the sampled complex-baseband Dsgr?otes the cafr?er wgvelengﬁ] [8].vSin{:e the useNgf —

putput {y(1)} to the mput &gpal{x(z)},_ where {1.}(2)} .2ngTsNJ + 1 terms in the Fourier series yields a reaisonably
is a zero-mean unit-variance circular white Gaussian noiS

R Lo accurate approximation to each trajectory, we assume this
Eg\;anil:?pEIr;)eczspspl?g(?ézt’ é)m:_tf;e time# channel response value of Ny throughout. We allow CE-BEM coefficients with

possibly unequal variances in order to model arbitrary yela

. Ne—1 _ _ _ profiles and Doppler spectra. See [2] for a thorough disounssi
y(i) = vp Y h(i, O)a(i — ) + (i), (1) on the validity of the CE-BEM.
=0 Defining the N x N; matrix F element-wise
Here, N, denotes the discrete channel length, i.e., the channeis [F), .. = ﬁej%n(m*(fol)/Q), and noticing

delay spread normalized by the sampling interval; by con-
vention, we assume that(i,¢) =0 for £ ¢ {0,..., N, — 1}.
To avoid interference from the preceding block, each Ie~ngtﬁ4T 3 2 (. )
N transmission blockis separated from it's neighbors by d*0 - An,1l € C7/7%, allow (4) to be written
guard interval of lengtiV, — 1. In cyclic prefix (CP) systems, compactly as
2(i+(N+ N —1)z) =x(i+ N+ (N+N,—1)z) fori e
{—N;+1,...,—1} and allz € Z, while in zero prefixed (ZPr)
Syzterl?W(iJr(NJrNt_l)z) ;Oforii{—JVltJrl,...,—l.}h Note that, becaus&/"U = Iy,n, and becauseR, =
ﬁ)nss aofz gee%.egsli?;ﬂglgui S(:itl?r?:rzlgcinvr\]/ﬁr’\ V:’: d@niwg o4t AN"} is diagonal and positive definite, (5) gives the
’ — 7 Karhunen-Loeve (KL) expansion di. We assume that the
whose input samples (excluding the guard portion) are givﬁécuhas aver;ge(en)erg))(/pgair: of unity, so t%al:i{|\h|\2} _
b DIV W that this block is d dulated f ; ; i
thye{fe(cl:ze}i\z/z(a Vecetof;siug(eo) a ;S(NO_C1)I]ST ?rrcr:r(% vl:/r?iceh itrOmN tr{ Ry} a 1. FC|.|r2§,h/IS ?ﬂ]eﬁg)}/ preserving channel, we define
. ) N i T the SNRE{||,/pz E{||v||*} = p.
'S S\\//i'tﬂeztih?; (Bh)e guxa(rg] S_aT)?ITeZ:;Z}efTE&)d'Scir((j\?d_' In the sequel, we refer tdV; as the “discrete time spread”
1)]T, the block transmission structure applied to (1) im[i)lieffl'and to Ny as the d|sc[ete frequency spread.’ In ?ddmon,
that we refer to fpTs as the “normalized Doppler spread” and to
v = 2fpT &~ N,N;/N as the channel’'s “spreading index.”
y = VpHz + v, (2) We restrict our focus to the underspread case, 4.6<, 1, SO

. . - that NV, N, the number of independent channel parameters per
NxN fo
whereH € C is the matrix of channel coefficients. Forblock, is less than the block lengf.

CP systemsH is given element-wise g€}, ,, = h(n, (n—
m)yy) and for ZPr systemsH is a lower triangular matrix

that F'F = Iy,, the definitonsU = Iy, @ F,
= DEEE0AESE T, A =

h=UA. (5)

with [H],, m = h(n,(n —m)n),for m < n. The inputs are I1l. SPECTRALEFFICIENCY OFDOUBLY SELECTIVE
assumed to obey the power constraint CHANNELS
1 E{|z|*} = 1. 3) We study the ergodic capacity of the channel (2), assuming
N

the channel fading coefficientx fade independently from
block to block, which can be attained by interleaving of

B. Doubly Selective Channel Model blocks. The ergodic capacity per-channel-use of the DSC (2)
The following CE-BEM [8, p. 65], [9] will be used to de- s expressed as [11]

scribe the channel response over ffidength block duration.

Forie {0,...,N —1} and/ € {0,...,N; — 1}, we assume Clp) = sup iI(y;m), (6)
that o E{|z|2}=N N
1 WD/ where I(y;x) is the mutual information between random

) = —— 357 ki . )
h(i, £) = /N Z Ak, Q)e’ ¥, ) vectorsy andx and the supremum is taken over all the input
h==(N;=1)/2 random vectors satisfying the power constraint.
1When we refer to a “transmission block of leng¥h,” we do not include We define theachievalgle spectral eﬁiCien@NOf the.Channel
the contribution from the guard portion. as the pre-log factor in the high-SNR expression for the



channel capacity. Precisely, we have x can not increase the prelog factor of the capacity since they
C(p) can only increase the effective SNR through noise averaging
(7) which affects the term inside the logarithm. Mathematicall
we havel(y,y,;z) = I(y;x) + I(y.;x|y). Using the co-
For Rayleigh-fading SISO channels (flat, frequency-silect herent scenario to bound the mutual information, we have
or time-selective), in the coherent case, i.e., perfectivec 1(y_:x|y) < I(y_; x|y, H, H.). Since H is full rank with
CSl, the achievable spectral efficiency is unity. But in than probability 1, we havey, = H.H 'y—H.H 'v+wv,. De-
coherent case, the achievable spectral efficiency is géneraoting the differential entropy by(-), I(y.; x|y, H,H ) =
less than unity. The loss in achievable spectral efficieray hh(y_|y, H, H.)—h(y. |y, H,H ., z) = h(v.—H.H 'v)—
been shown to be proportional to the channel's time spféad h(v.) = O(1), asp — oo. Sincey, does not change the

and frequency spread’; for frequency-selective and time-spectral efficiency, we ignore it in the rest of the manuscrip
selective channels, respectively [2], [3]. In this papee w

establish that, for a DSC with inputs generated according IV. PILOT AIDED TRANSMISSIONS

to a continuous distribution, the loss in achievable spéctra  paT System Model

efficign%)/ is proportional to the channel’'s spreading index
FAVt

! Tn (Javneral the random vectaerwhich achieves the capacit known pilot (i.e., training) signals that the receiver cae wo
9 ’ P yestimate the channel. The estimated channel coefficiemts ca

(6) is a function ofp. The following theorem characterizes th : . .
achievable spectral efficiency of the DSC when the chan%}fn be used by coherent coding and decoding techniques. In

. . . T, the channel input in (2) is generated as
input is a continuous random vector.

Theorem 1 (Achievable Spectral Efficiency)For transmis- z =ptd (10)
sions obeying (2)-(3) over the CE-BEM DSC, any sequensberep is a deterministic pilot vector and is zero-mean
of continuous random input vectofe*’ } indexed by SNR, data. We assume that the data veaforesults from linearly
and converging in distribution to a continuous random vectonodulating Ns;(< N) information bearing symbols =
x>, yields [5(0),...,s(Ns —1)]T according to
1 - n(p) —
lim sup iy z) < N Nth. (8) d = Bs, (11)
p—00 log p N using a “data modulation matrixB € CN*N: with or-
Proof of Theorem 1 for CP systems appears in Appendithonormal columns. We refer t; = rank(B) as the “data
and for ZPr systems the proof follows a similar approacHimension” of the PAT scheme. Defining, = [/p|* and
The following lemma specifies a fixed input distribution whic Es = E{[|d||*} = E{]|s|*}, we require that, > 0, E, > 0,
achieves equality in (8). and +(E, + E;) = 1.
We use the linear-MMSE (LMMSE) estimate bfgiven the

Lemma 1 (Achievability). For transmissions obeying (2)-(3) knowledge of{y, p} and the knowledge of the second-order
over the CE-BEM DSC, i.i.d. inputs chosen from the zero-megfsistics of{h,d, v} [13]

circular Gaussian distribution, i.ex ~ CN(0, I), yield )
| h = R, Ry, (12)
I ~l(y;®)  N-NiN, ©) " T "
oo logp N : Wh_ere Ryh = E{yh"} and R, = E{yy }. The channel
estimation errorh = h — h has variances? = E{||h|?}.

See Appendix I for proof of the above Lemma. . Notice that we consider only non-data-aided estimatorghwvhi
From Theorem 1 and Lemma 1, we see that, for continuoys,, only the second-order statistics of data

inputs, the achievable spectral efficiency of the noncaitere There have been many studies on developing powerful

DhSC |s|,(apprOX|crjr_1ate_ly()j equg_l tb_72’ Whelr97 den_otesl_ the encoding and decoding techniques for the coherent case of
channets spreading ndex. snGe= for, largery implies erfect receiver CSI. In general, for coherent channels, th
more channel dispersion in “”.‘e and/or frequency. Our_ t'esgapacity-achieving input distribution is continuous. lac
which shoyvg that_chanrjgl dlspe.rsm_n limits the achieva &r coherent channels, when the additive noise is Gaussian,
spectral eff_|C|ency, IS |ntU|t|ver_s§t|sfy|ng_. For relaly small . the capacity-optimal input distribution is also Gaussi@me

7, the achievable spectral efficiency will be close to UNIYt the main advantages of PAT schemes is that they enable

€., that of the coheren_t case. A channel with smatiould the use of coherent communication techniques in noncoheren
be interpreted as one with few unknown parameters, and t ®narios. So, in our study of PAT schemes, we restrict our
one which does not demand much training overhead. Similar

b . de for fi 4 sinal lective fad cus to continuously distributesl Motivated by Theorem 1,
observations were made for flat and singly selective fadinge cparacterization of achievable spectral efficiencytifer
channels [1], [2], [12].

. . CE-BEM DSC with continuous inputs, we make the following
A note on the ZPr systems: We ignored the Observat'oﬂﬁfinition

during the guard interval portioy, = [y(N),...,y(N +

N, —2)|T. Lety, = VPH .x + v, for suitably constructed Definition 1. A PAT scheme is calledpectrally efficientif
channel coefficient matrixtf, and the CWGN vectow,. its achievable rateR(p) over the CE-BEM DSC satisfies
Intuitively, these “additional” observations of the “sahgput  lim,_. Rlp) _ NNy %

log p N

In pilot aided transmission (PAT), the transmitter embeds




Recall that, a rat&R(p) is said to beachievableby a PAT CP-MMSE-PAT scheme for the CE-BEM DSC is given by
scheme if the probability of decoding error, with some encod B otk l
ing and decoding strategy, can be made arbitrarily smaliwhe (k) = Ve ® kep? (16)
communicating at that rate. For the case of flat or frequency- 0 k¢ P®
selective channels, PAT schemes designed to minimize the o
channel estimation error variance have been shown to &ed by B cons(tlr)ucted from the CO“JJVm”S dfy with indices
spectrally efficient [1], [3], [14]. Here we study MMSE-PATNOtin the setg,”. Bothl € {0,..., 5> — 1} and6(k) € R
schemes for CE-BEM DSC and establish that they mpe are arbitrary. The corresponding data dimension\Vs = N —
spectrally efficient. We also design spectrally efficienfrPANf (2N: — 1).
schemes for the CE-BEM DSC. Example 2 (FDKD). Assumingg- € Z, with the pilot index
setPy = {l,l+ 4, ...l + W} and the guard index
B. Spectral efficiency of MMSE-PAT setG;) = Upcpw{—Ng +1+k,... Ny — 1+ k}, an .N— .
In our study of MMSE-PAT schemes, we restrict our at2lock CP-MMSE-PAT scheme for the CE-BEM DSC is given

H v .
tention to CP transmissions since they render the design &p = Fvp, with

analysis of MMSE-PAT for DSC tractable. CP-MMSE-PAT B, io(k) o
schemes for the CE-BEM DSC have been characterized and p(k) = {\/ N € k€ Py (17)
their achievable rates studied in [15]. We briefly reviewsio 0 k¢ Py

results and present new results about the spectral efficiginc
CP-MMSE-PAT.

A PAT parameter pair(p, B) which jointly minimizes
the channel estimate MSE&? is referred as an MMSE-PAT
scheme. We now recall the design requirements of CP-MMS
PAT for DSC [15]. Example 3 (Superimposed ChirpsAssuming eveV, an V-
Lemma 2 ( [15]). For CP-PAT over the DSC described inblock CP-MMSE-PAT scheme for the CE-BEM DSC is given

and by B constructed from the columns of the IDFT matrix
F' with indicesnot in the setg{’. Bothl € {0,..., 4 —

1} and 6(k) € R, are arbitrary. The corresponding data
%i[‘nension iSNs = N — N:(2Ny — 1).

Section 11-B, with the non-data-aided estimator (12), th&alt by
channel estimation error variance? obeys E, .2z N
o plk) = || el R (18)
N
PE - 1 N
o2 > tr (Rkl + T”INth) : (13) [Bl,,, = _Nej%(qwffvt)ke-f%%kz, (19)

where equality in (13) occurs if and only if the followingfor k € {0,...,N — 1} andg¢ € {0,..., Ny — 1}, where the
conditions holdvk € {—N;+1,...,N; — 1}, Vm € {—N;+ data dimensionV; = N —2N;N; + 1.

L.y Ny — 1}, we require From the achievable rate analysis of CP-MMSE-PAT in

N—-1 [15], we have the following result about the spectral efficig
p(i)p* (i + k)e I F™ = E,6(k)d(m) (14) of CP-MMSE-PAT.
Nl Lemma 3 ( [15]). For an N-block CP-MMSE-PAT(p, B)
by (i)p* (i + k)e I F™ — 0.vg € {0, ..., N, — 1(15) OVver the CE-BEM DSC with the data dimensiemk(B) =
i—o o7 (it h)e 7€ (15) N, the achievable rat&R(p) satisfies,
whereb, denotes;’" column of B. lim sup R(p) < Ns (20)

oo logp T N
The requirement (15) has the interpretation that the pilots L g ) gp. , . .
and data should be multiplexed in a way that ensures th&js0: €quality in (20) is achieved with an i.id. Gaussian
orthogonality at the channel output, and the requiremesi (1distribution for s.
has the interpretation that the pilots should be constduste  fFqor strictly doubly selective channels (i.eV, > 1 and

that all the channel modes are excited with equal energy [15}, > 1), the three MMSE-PAT Examples 1-3 yie, < N —
To design an MMSE-PAT, first we need to get a pilot vectox; v;, and are clearly not spectrally efficient. But does there
p which satisfies (14). Then the data basis are chosen to mggkt some other CP-MMSE-PAT scheme whistspectrally

the requirement (15). A general procedure to designB) efficient over the CE-BEM DSC? The answer is given in the
which meet the above requirements has been given in [15o|lowing theorem.

CP-MMSE-PAT examples from [15] are given below, usin

the (p, B) parameterization. gi’heorem 2. In CE-BEM DSC withN; > 1 and Ny > 1,

. . o the data dimensioV; of any CP-MMSE-PAT schentp, B)
Example 1 (TDKD). AssummgNﬂf € Z, with the pilot index satisfying the necessary requirements given in Lemma 2, is

setP” = {l,l+ 35, ...l + (NfN;fl)N} and the guard index Strictly bounded asV, < N — Ny N;.
setG;” = U, cpw{~Ni+1+k, ..., Ny —1+k}, an N-block  Proof. See Appendix Ill. O



Combining the results from Theorem 2 and Lemma 3, wehannel. In addition, this paper established that CP-MMSE-
have the following result. PAT schemes are spectrally inefficient, and discussed the

Corollary 1 (Spectral Inefficiency) No CP-MMSE-PAT design of spectrally efficient PAT schemes.
scheme is spectrally efficient over the CE-BEM DSC with

Ny >1and Ny > 1. APPENDIXI

PROOF FORTHEOREM 1

o Defining the two vectorg, = [y(0), ..., y(N;N;—1)] T and

C. Spectrally Efficient PAT ¥, = [y(NsNy), .....,y(N —1)]7, and using the chain rule for

Note that there areN;N; independent unknown BEM mutual information [11], we havé(y; z”) = I(y,; ) +
coefficients in eachV-length block. All the CP-MMSE-PAT I(y,;z|y,). Using the coherent capacity to bound the
schemes are shown to sacrifice more tdanV, dimensions second term, we havly,;z”|y,) < l(y,;z|y,, H) =
for pilots, leaving N, < N — N;N, dimensions for data (N — N;N;)logp + O(1).
symbols, and hence are spectrally inefficient. Hence, to getwhat remains to be shown is thim, . 1@12%”3(”)) = 0.
a spectrally efficient PAT, we need to relax the MMSEsing the chain rule for mutual information again, we have
requirements in Lemma 2. Since we are considering non-data-

aided estimators, the pilot-data orthogonality at the oleln (y;2) = 1(y(0); =)

output (15) is desirable, otherwise the channel estimatiitin Ny N -1

suffer interference from data and the channel estimatésiatil + 0> Iy 2 |y(0), ... y(i — 1))(22)
be perfect even in the absence of noise (i.e., asymptaticall i=1

as p — o0). Thus, a PAT scheme which preserves pilot- < I(y(0); 2"”)

data orthogonality at the channel output, and which cardyiel Ny Ny =1 . .

perfect channel estimates in the absence of noise using only + > Iy 2, y(0), .., y(i — 1))23)
=1

N¢ N, pilot dimensions, is a candidate for spectrally efficient
PAT. We give one such example and establish its spectWsle shall analyze each term in (23) separately. We define the
efficiency. vectorsz!” = [z (i), ...,2® (i — N, +1)] T and their “com-

. . . plements’z'”, which are composed of elementsagf’ not in
Example 4 (SEKD). With the pilot index setP, = ) \Afth the - : . )

) x;”. With these definitions, the first term in (23) can be written
{0, N¢,...,(Ny — 1)N,} and the guard index sef, = I(Zy(o)-a,m) = 1(y(0);: 2 + 1(y(0); 5 |=¢)). Conditioned
{0,..., Ny Ny — 1}, an N-block ZPr MMSE-PAT scheme for = ()" 0 ' du 0 ho | coeffic
the CE-BEM DSC is given by onz;”, the uncertainty _ny(o) is due to channel coefficients
and additive noise which are independent &f’. Hence,

By oioh) ke P, I(y(0); 25 |2”) = 0. Now, I(y(0);z”) corresponds to a
p(k) = Ny (21) overspread channel (i.e., one observation with unknown
0 k ¢ Ps channel coefficients) and, using the result from [4](, )vve have
. T P
and by B constructed from the columns &fy with indices L(y(0); zf”) < loglog p+O(1). Hencelim, % =
notin the setg,. A(k) € R is arbitrary. 0. Now considering the general term inside the summation of
(23),

In the above PAT, the firstV;N; time slots are used by , ,
the pilots and the remaining time slots are used for data I1(y(i);z“,y(0),...,y(i —1))
transmission. The spectral efficiency of the PAT is esthblis = I(y(i);=\”)

in the following lemma.
<loglog p+0O(1)

Lemma 4. For the SEKD PAT from Example 4, achievable +I(y(i);j;p)|m§p))
rate R(p) at SNR levep satisfieslim, o < %’2 = NN, ~
and hence the PAT scheme is spectrally efficient. N .
pectaly +1(y(D);9(0), ... y(i = D]z,

In general, any PAT scheme which preserves pilot-data
orthogonality and which can perfectly estimate the BEM )
coefficients in the absence of noise while sacrificing onfy fémains to be shown thaim, ... - = 0. y
N N, pilot dimensions can be shown to be spectrally efficient. Récall thaty and h are jointly Gaussian conditioned on
Spectrally efficient PAT schemes are guaranteed to yielaerig €+ In terms of differential entropied(y(i); y(0), ..., y(i —
achievable rate than CP-MMSE-PAT schemes in the high-SNRZ”’) = h(y(i)|z’) — h(y(i)|z*,y(0), ..., y(i — 1)). It

T;

regime. easily follows that
N¢—1
V. CONCLUSION h(y(i)[a”) = Eflog(1+p Y E{|hG, 0O} - 0)])},
=0 (24)

In this paper, the achievable spectral efficiency of the nenc
herent CE-BEM DSC with continuous input distributions and/here the expectation is with respect 46”. Now, given
was shown to be approximately— 2 fp7, where fp denotes {y(0),...,y(i — 1)}, we split y(z) into MMSE estimate and
single-sided Doppler spread andlenotes delay spread of theerror asy(i) = E{y(¢)|y(0), ...,y(i — 1)} + (i), and we have



h(y(i)|y(0),...,y(i — 1),2*) = Elog(E|g(i)|?). Defining Notice thatyy is chi-squared distributed withN degrees of
h; = [h(i,0),...,h(i, N; — 1)]T and denoting the covariancefreedom. Now,

of h; — E{hi|y(0),...,y(i — 1)} by R;, we haveE|j(i)|* = NpNo—1
1+ pz"" R;x{” . Let jumax,; denote the maximum eigenvaluqogdet[IjL pN (XU XU = log H (1+ PN )
of R; and q; denote the corresponding eigenvector. Now N¢N, iy NyNg
defin€kmax,; = inf ) cen fmax,i- FOri € {1,..., NyN; —1}, (32)
all the elements oth; can not be estimated perfectly, even NgNe—1
in the absence of noise (= o), since{y(0),...,y(i — 1)} < log H (1 +p]\f—]]vv)
correspond to a projection of onto a subspace of smaller i=0 Five
dimension, and hencep.x; > 0. Now, E|g(i)]* > 1 + (33)

N¢—1 . . . L. .
Phmax,i| 2to (k)2 (i — k)[*, and hence where the above inequality follows from maximizing right

, . hand side of (32) using the method of Lagrange multipliers
() —_

h(y(@)=, y(0),..., y(i — 1) 571 with the constraint (31). So,

E{log(1 + prmax| Y a:(k)z® (i —k)|*)}(25) I(y;Hlz) < NyNiElog(1+p<2)}  (34)

k=0 tiVf
= N;N;log(p) +O(1). (35)

Combining (24) and (25), we haveT; <

B log L2 Egh(iaf)ﬁ}lw((”;(i—alz' Since x» is a Using (29) and (35) in (27), we have the desired result.
1+Pﬁmax,ilzkég qT(k)m P (Z—k)P

sequence of continuous random vectors wjtk*’||> = N

converging to a continuous random vector, APPENDIXIII
i, o |zfj;751 q:(k)z® (i — k)|2 > 0 with probability 1, PROOF OFTHEOREM 2
andlim, . ogp = 0- We use modulaV inde>_<i2ng throughout _tzhis proof. First
definee ) = \/;E—[p(k)eﬂwﬂm.o’p(k_i_ 1)6JWﬂm.1’ Lk +
P
APPENDIXII N—1)ed®mN=D]T 'which are normalized to have unit norm,
PROOF FORLEMMA 1 for convenience. We also define the set§, = {—N; +

1,..Ny—1} and Ny = {-Ny +1,...,N; — 1}. Let W
be a matrix whose columns are constructed from the set
Wy:z) = (y; 2, H) — I(y; H|z) (26) {etem), & € Ny, m € Ny} Now, the orthogonality
L 2 E) — T(u: E 27 requirement (15) can be written " B = 0 and hence the
(y; 2| H) — 1(y; Hlx). (27) number of information symbols in each blo@dk, = rank(B)
; ; ; H
Now, I(y; z|H) corresponds to coherent case of perfect rés €qual to the dimension of the null spacedf™.
ceiver CSI and sinceH is full rank with probability 1, we We proof the theorem by contradiction. We assume there are
have, MMSE-PAT schemes for whichank(B) = N — N;N, and
find the necessary requirements on their pilot vectors. Tieen
I(y;x|H) = E{logdet[Iy + pH” H]} (28) establish that the pilot vectors satisfying these requeneis
= Nlog(p) + O(1). (29) does not yieldrank(B) = N — Ny N,.
Let (p, B) correspond to a MMSE-PAT withank(B) =
Now, for appropriately constructed matri¥ using the input N—N;N;. We proceed to establish the necessary requirements

Using the chain rule for mutual information, we have

>

samples{x(i)}ﬁ\gl, (2) can be written as for p. To start with, optimal excitation (14) is necessary
for MMSE-PAT and letp be any vector which satisfies
y = V/pXh+w. (14). For convenience, definB = -1 Figure 1 gives a

) ) pictorial representation of the elements of the{gg}, ,,,), k €
Using the BEM model (5), we havg = /p XU +v. Since N, m € N}} arranged in a grid.
A captures all the degrees of freedom of DSC over a block,\ya define the quantity

we havel(y; H|z) = I(y; A|x) = I(y; A| X). Conditioned on

X, y and are jointly Gaussian and hence using the statistics 1= iam
of A, we have Tkhm) = T~ > p(i)p* i+ k)e ¥ (36)
P =0
N =
I(y: A|X) = Blogdet(I + 2~ (XU)"XU] (30) < €(0.0): €(k,m) > (37)
Fve

where< z,y >= yz denotes the inner product between

Let {o;}0 """ be eigen values of XU )" XU. For both andy. From (14), note that
CP End %?[ syste;ns, from the structure Xf and U, with Piem) = 0(k)3(m) for k € N;, andm € N} (38)
px = L2y [#(n)[?, we have

It easily follows that

N¢N:—1 NN,
t j 27 (ma—m



w,
€(—Ni+1,~Nj+1) T €(~Ni+1,-D-1) | €(=N;+1,-D) T €(-Ni+1,D-1) €(~Ni+1,D) €(~Ni+1,D+1) e E(=Ne+1L,N;=1)
€(—Ni+2,~Ny+1) c €(-N+2,-D-1)| | €(-N;+2,-D) e €(—N+2,D-1) €(—Ny+2,D) €(—N;+2,D+1) T €(—Ne+2,N;—1)
§ . 2N, — 1
€(0,—Ny+1) e €(0,—~D-1) €(0,—D) e €(0,D-1) €(0,D) €(0,D+1) e €(0,N;-1)
€(1,—Ny+1) o €(1,-D-1) €(1,-D) e €(1,D-1) €(1,D) €(1,D+1) T €(1,N;-1)
2 . . . .
Wc : : : . : T
€(N,—1,-Njy+1) o €(N;—1,-D-1) €(N,~1,-D) ce €(N;~1,D-1) €(N,~1,D) €(N,~1,D+1) T €(N,~1,Ny—1) k
m —=
2Ny —1

Fig. 1. Elements of the sdte(y ), k € Ni, m € Ny} arranged in a grid

From (38) and (39), all the elements in Fig.wiithin any Similarly, we have the following expansion for the columns
rectangle of heightV, and width N; are orthonormal We of w2,

also have,
T [6(1,—D), €(1,-D+1)> ---76(1,D—1)]
* _ _ -5
T(kxm) =< e(k,m)u 6(070) > =€ N T(*kv*m)'(“'o) = [6(,Nt+17,D), 6(,Nt+1_’,D+1), ceny e(thJrl,D)]MZ
We use the following intermediate result. where M, € CNr*Ns=1 js equal to

Lemma 5. WhenB is of rank N — Ny N;, we haver v ;)| = T(—N0.0) e IR (Np=2),
Lor |rn, ol =1 ¥y, ) e e ZE(Ng-3),
Proof. Since rank(B) = N — N;N, is the null space

dimension of W", it follows that rank(W) = N;N;. o33 (N 1)
Let W, be a matrix whose columns are from the se

{etem) : k € {0,-1,...,—N; + 1}, m € {-D,...,D}}, Since each column oWi is orthogonal to each column
and letW}! = [e(—1,-D—1)s -» €(—N,+2,—p—1)] and w? = of W2, from their basis expansions, we see that they have
le(1,—p), - €e(1,p—1))- (See Fig. 1.) From (14),(38) and (39)0nly one common basis vectef_y, 1 py. SO, to meet the
the N;N; columns of W, are orthonormal and, sincé  orthogonality requirement, we have

(=N¢,—N¢+2)
(7Nf=7Nf+3)

i2m
T(=Ny,Ny—1) " eIV TN, 1)

is of rank NyN,, we have the following basis expansion: r(—1,Nf) = -+ = r(=N,+1,N;) = 0 (43)
Vk € Ny, Vm € Ny,
N¢—=1 D or
€(k,m) = Z Z < €(k,m)s €(—i,j) = €(—ij)> (41) T(—Nt,l) = = T‘(—Nt,Nf — 1) = 0. (44)
]ét:_ol j:;D Using (43) in the basis expansion ef, _p_1), we have
=3 > IR e (42) €(0,-D-1) = T(0,N;)€(0,D)- (45)
i=0 j=-D Since bothey _p_1) ande(y py have unit norm, we have

Since any two elements inside the rectangle of hefghand

_ L
width N; are orthogonal ((38),(39)), for the columns Wf, ronpl =1 = TN, = e for somef € R. (46)

we have Similarly, when the condition (44) is met, we have
€(1,—-D) = T(—N,,0€(—N,+1,-D) (47)
[€(0.-D-1),€(~1,-D~1)s - €N, +2,-D-1)] and|r(_y, 0)| = 1. So, from (40) we have
= le ,€e(_ s €(—N4+1,0)| M . _
NyxN _[1(-07D)- . (-rer0) M T(N,0) = e?? for somef € R. (48)
where M, € CVt*¥t—1 is given by -
co. e IR Ny(N:—2)
T(0,Ny) e N T(N,~2,Ny) . : . .
PNy e—J%Nf(Nt—z)r(Ntigny) Now we study the pilot vectorp which satisfy (14) with

M, = _ _ . the additional constraint that y, o)| = 1 or [r ;)| = 1.
: : Considering these two cases separately, we establishhtrat t
PN LNy o e IRNI N is no suchp for which rank(B) = N — N;N;.



A. Case lir y,) = €/°
From (45), we have

p(i)(e” JRNsi _ eje) = 0. (49)
Now, if 6 # 2X N¢q for someq € Z, thenp(i) = 0Vi, which

clearly does not satisfy the MMSE-PAT requirement (14), a

hence ruled out from consideration. Now,6if= 2”N +q for
someq € Z, from (49), p(:) may be non-zero only it =
9+ 5 kN for k € Z such that’“—N € Z. Now, for k € Z, defining

ENYyI2  jf kN 7
an(k) = {|p<q+ K] € (50)
0 else
requirement (38),

= E,6(m), Ym € Ny, which can

the

mi

then from

Zivzfo_l aq(i)e

be met if and only if
aq(t) =

From the definition (50), it follows that, the above requigrh
can be met if and only n‘ﬂ € Z.If &£ ¢ Z, there is no

7Nf

E
2. vie{0,..,Ny—1}. (51)
Ny

If L < N then (56) can not be satisfied singéL) =
g(0)e’Fal. So, if N ¢ Z, there is no MMSE-PAT with
dim(W) = Ny N,. Now if & ~; € Z, thenL = N, and the onIy
sequencda,(i)} satisfying the requirement (56) &, (i) =

for some constant, V i. This corresponds to the equi- spaced,

rRflui-powered frequency domain pilot sequence of FDKD in

Example 2. Again, for this pilot sequence, from Example 2, we
haverank(B) < N — N;N;. Again, we reach a contradiction
on the initial assumption thaB is of rank Ny N;.

APPENDIX IV
PROOF OFLEMMA 4

The pilot observations of the PAT scheme in Example 4,

it follows thaty, = [y(0),...y(NsN; — 1)]", can be written asy, =

VPG + v, wherev, = [v(0),...,v(NyN; — 1)]T, for
someG. It can be verified thaG |s full rank and hence
the minimum eigen value olG"G denoted by Brin is
positive. The covariance matrix of the estimation etRy =
E{hh"} = U(R;' + pG"G)~'U". Denoting the smallest
eigen value of R, by ain, we have R; < (amin +
PBmin)” lgu", in the positive semi- def|n|te sense. Now,

training sequence which satlsﬂes both (14) and (46). NowonstructingB,; € CN*N-NsNt ysing the last columngd’ —

if ﬁf € Z, from (50) and (51), the sequengéi) is of the

form given in Example 1. For Example 1, as noted earli¢j(N,N,), ..

rank(B) = Ny = N — (2N, — 1)Ny < N — N¢N;. This
contradicts the initial assumption th&t is of rank N .IV;.

B. Case Il:r(y, 0 = ei?
From (40), (47) and (48), it follows that

p(i) = ejép(i + Nt). (52)

Because of the circular symmetpyi + N) = p(4), using (52),
we can find the largest integére {1, ..., N;} so thatg S/
andp(i) = e/’p(i + L) for somed € R. Note that, if5- € Z

thenL = N; elseL < N;. Again from the circular symmetry,

0= 2W”Lq for someq € Z. Let p denote theV-point unitary
discrete Fourier transform (DFT) gb. For the sequence
with the given “periodic” structure, we have

1 N-1 )
Bk) = —= Y pli)e I (53)
\/N =0
1 L-1 F-1
_ \/_N —7Nm Z Lik=a)m (54)
1=0
and hencei(k) =0V k ¢ {q,q+ %, ...+ N(L— 1)} Now,

the optimal excitation requirement (14) can be written it
of p as [15],Vk € Ny, Vm € N,

N-1

S (i = keI F =

=0

Defining|p(q+ 2)[* = a,(i),i € {0, ...,

(55)

L—1
g(m) = > ag(i)e TRETHO™ — B §5(m), ¥ m e N,
=0 (56)

L—1} and using the
MMSE-PAT requirements in the frequency domain, we require

Ny N, columns of identity matrix, the data observathnﬁ_
Ly(N —1)]" are given byy, = BTHBs + v,
wherevy = [v(N;Ny), ...,v(N —1)]T. The effective channel
between the observations and the dataHs = BSHB.
Splitting H into estimateH and errorH components, we
have

y, = BJHBs+ BYHBs +v,. (57)
N—— ~—_—————

H, Ve
Orthogonality principle of MMSE estimator guarantees that
H_.s and v, are uncorrelated. In this case, the worst case
distribution for v, (from a mutual information perspective)
is Gaussian [14]. With i.i.d. Gaussian distribution for the
information symbolss satisfying the power constraint, with
_ __B.
2= ~—n.w, We have

I(y,; s) > Elogdet[I + po?H., RfllﬁIH] (58)

where R, = E{v.v!'}. Since B and B, have orthonormal

columns, it easily follows thaR, < (1 + pNi'”)I in
the positive definite sense. Using this in (58) the achikvab
rate of the system obeys

1 N
R(p) = NElogdet[I+peHeHS] (59)

PO (‘M{nln“‘ﬂﬁlnln)
where p, = et P T N2 We havep. > kp,Vp > 1

for some constankt and lim, H, = H. almost surely.
Using Fatou’s lemma, taking the limit inside the expectatio
we have

1 ~ A
lim R(p) > + E lim logdet[Z + pH.H] (60)
p—00 p—00
1
> o Elogdet lim [T+ kpH.HY (61)
p—00
N — NN,
= $1ogp+0(l) (62)

since H .. is full rank with probability1.
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