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Abstract

In this work, we consider maximum likelihood (ML) sequence detection in MIMO lin-
ear channels corrupted by additive white Gaussian noise. While sphere decoding (SpD) al-
gorithms have been developed to reduce the average complexity of ML detection, the aver-
age complexity of classical SpD can itself be impractical inlow-SNR settings or when the
channel is ill-conditioned. In response, sequential decoding algorithms that employ a pre-
processing stage based on minimum mean-squared error generalized decision-feedback
equalization (MMSE-GDFE) have been proposed. They are capable of near-ML detec-
tion at a complexity that remains low over a wide SNR range and/or with ill-conditioned
channels. While it has always been assumed that MMSE-GDFE pre-processing com-
promises the ML-optimality of the downstream minimum-distance detector, we establish,
in this work, that MMSE-GDFE pre-processing preserves ML-optimality under uncoded
BPSK/QPSK signaling, regardless of channel dimension and rank. The implication is
that, when BPSK/QPSK signaling is used, MMSE-GDFE pre-processing can be used in
conjunction with efficient SpD algorithms for true ML detection. This is particularly at-
tractive in moderate-to-low SNR ranges or with ill-conditioned or under-determined linear
channels.

1 Introduction

In this paper, we consider communication over multiple antenna wireless channels that can
be described by a multiple-input multiple-output (MIMO) linear transformation corrupted by
additive white Gaussian noise. Assuming a uniform sequencedistribution, it is well known that
the maximum likelihood (ML) sequence detector is optimal interms of minimizing frame error
rate [1]. The complexity of ML detection often makes it impractical to implement, however,
especially for long sequences. These issues have motivatedthe development of algorithms
which are capable of solving the ML detection problem with anaverage complexity that can
be significantly less than that of exhaustive search, at least for well-conditioned channels at
high SNR [2–6]. Since these algorithms typically search among only those sequences that map
to a spherical region around the observation, we refer to them collectively as sphere decoding
(SpD) algorithms.

In certain situations, however, the complexity of even these SpD algorithms remains pro-
hibitively high. This is often the case, for example, when the channel is ill-conditioned (e.g.,



under-determined) or when the SNR is low. These issues have led to the development of sub-
optimal sequential decoding (SqD) algorithms based on, e.g., lattice decoding [7], SpD with
statistical pruning [8], the Fano algorithm [7], or other breadth-first, depth-first, and best-first
strategies [9, 10]. In fact, recent work on this topic has demonstrated that near-ML perfor-
mance (i.e., a fraction-of-a-dB in SNR loss relative to ML) is possible at an average search
complexity that is roughly cubic in the sequence dimension over a broad range of channel/SNR
conditions [7].

Most sphere and sequential decoding algorithms start with apre-processing stage that con-
verts the MIMO channel matrix into upper triangular form, thereby giving the detection prob-
lem a tree structure that lends itself to sequential decoding. Traditionally, coordinate rotation,
based on, e.g., QR decomposition with appropriate power ordering, is used to accomplish
this. Because coordinate rotation preserves the Euclideanmetric, the pre-processed channel is
equivalent to the original channel as far as ML detection goes. However, coordinate rotation
cannot improve the channel’s condition number, and ill-conditioned channels are associated
with high SpD/SqD search complexity [7].

Pre-processing based on minimum mean-squared error generalized decision feedback equal-
ization (MMSE-GDFE) has been recently proposed as an alternative to the classical coordinate-
rotation approaches [11]. The potential of MMSE-GDFE pre-processing follows from the fact
that it yields a well-conditioned channel matrix. Not surprisingly, it is particularly suited to the
case of under-determined linear channels [12]. In fact, when combined with appropriate or-
dering and lattice reduction, MMSE-GDFE lies at the core of several state-of-the-art near-ML
SqD schemes [7].

The fundamental disadvantage of MMSE-GDFE pre-processingis that it does not preserve
the Euclidean metric. Thus, the minimum-distance search ofan MMSE-GDFE pre-processed
system will not, in general, produce an ML sequence estimate. For this reason, MMSE-GDFE
pre-processing has been used fornear-ML detection as opposed totrue-ML detection. In this
paper, we establish the interesting fact that MMSE-GDFE pre-processing does not compromise
the optimality of minimum-distance search in the case of uncoded BPSK or QPSK signaling.
Furthermore, this property holds irrespective of the channel’s dimension and rank. The same
claim, however, cannot be made when non constant modulus (CM) alphabets are employed.
The implication is that MMSE-GDFE pre-processing can be used to dramatically reduce the
average complexity of true ML sequence detection in BPSK/QPSK systems.

The remainder of the paper is structured as follows. Section2 formalizes the system
model and reviews MMSE-GDFE pre-processing. Section 3 establishes the fact that MMSE-
GDFE pre-processing preserves the optimality of the minimum-distance detector under BPSK
or QPSK signaling. Section 4 demonstrates the reduction in ML search complexity that is
possible using MMSE-GDFE pre-processing with greedy V-BLAST ordering [13], and shows
the small, but non-zero, degradation in error performance caused by the use of MMSE-GDFE
pre-processing with non-CM alphabets. Section 5 concludes.

We use(·)T to denote the transpose,IM to denote theM × M identity matrix, and‖ · ‖ to
denote thè2 norm. Also,R denotes the real field,C the complex field, andZ the integers.

2 Background

Consider a discrete-time complex-baseband communicationsystem with transmitted signals ∈
Cm and observed signalx ∈ Cn. Thekth element of the column vectors, denoted bysk, is
chosen from aQ2-ary quadrature amplitude modulation (QAM) alphabet, i.e., sk = ak + jbk,

2



whereak, bk ∈ S for

S := {−(Q − 1)/2,−(Q − 3)/2, . . . , (Q − 3)/2, (Q− 1)/2}.

The transmitted and observed signals are related by the MIMOchannel matrixH ∈ Cn×m and
the additive white Gaussian noise (AWGN) vectorw ∈ Cn according to

x = Hs + w. (1)

In the sequel, we focus on the real-valued system model

x = Hs + w (2)

wherex ∈ RN , H ∈ RN×M , s ∈ RM , andw ∈ RN . More specifically, the elements ofs

belong to aQ-ary pulse amplitude modulation (PAM) alphabetS, i.e.,s ∈ SM . The real-valued
PAM model (2) can be related to the complex-valued QAM model (1) via

x :=
[
Re{xT} Im{xT}

]T
,

s :=
[
Re{sT} Im{sT}

]T
,

w :=
[
Re{wT} Im{wT}

]T
,

H :=

[
Re{H} − Im{H}
Im{H} Re{H}

]

,

whenM = 2m andN = 2n. Thus, the real-valued model (2) can be used to describe systems
that employ either PAM or QAM alphabets.

When the channel matrixH is perfectly known to the receiver, it is well known that the
ML estimate ofs is obtained as the solution to the following minimum-distance detection
problem [1].

ŝML = arg min
s∈SM

‖x − Hs‖2 . (3)

Solving (3) by exhaustive search requiresO(QM) operations, which is impractical unlessM
is very small. As discussed in the introduction, SpD can be used to solve (3) with an average
complexity that is significantly lower, e.g., polynomial inM (when the channel is well behaved
and the SNR is reasonably high) [2–6].

In SpD, pre-processing is first applied to convert (2) into upper triangular form. Tradi-
tionally this is accomplished using a QR decomposition of the formH = QR, whereQ is
orthogonal andR is upper triangular. The transformed observationx′ := QT x obeys

x′ = Rs + w′, (4)

where the transformed noisew′ := QT w is statistically equivalent tow. Due to the noise
equivalence, the detection problem (3) can be equivalentlyrestated as

ŝML = arg min
s∈SM

‖x′ − Rs‖2. (5)

It is usually advantageous to incorporate power-ordering with QR decomposition. For ex-
ample, [11] suggested that the columns ofH might be ordered in non-decreasing Euclidean
norm prior to QR decomposition. The same paper also proposedto employ the greedy V-
BLAST ordering from [13], whereby the columns ofH are ordered so that the minimum
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diagonal element ofR is maximized. In our numerical simulations, we focus on the latter
ordering scheme.

In MIMO channels, it is not unusual for the QR pre-processed channel matrixR to be
ill-conditioned, or, whenN < M , singular. In these cases, the complexity of SpD has been
observed to grow significantly [7]. In response, MMSE-GDFE pre-processing [11, 12] was
proposed as an alternative to QR pre-processing. It was motivated by the fact that, under
perfect decision feedback, the MMSE-GDFE [14] maximizes signal to interference-plus-noise
ratio (SINR) at the decision point.

We now outline the MMSE-GDFE pre-processing algorithm of [12]. Consider the “aug-
mented” channel matrix̃H defined according to a signal-to-noise ratio parameter1 γ > 0.

H̃ :=

[
H

1√
γ
IM

]

. (6)

Say that QR decomposition yields̃H = Q̃R̃, whereQ̃ ∈ R(N+M)×M has orthonormal
columns and wherẽR ∈ RM×M is upper triangular with positive diagonal entries. If we

partitionQ̃ =

[
Q1

Q2

]

so thatQ1 ∈ R
N×M andQ2 ∈ R

M×M , then

H = Q1R̃. (7)

MMSE-GDFE pre-processing (PP) transforms the observationaccording tox̃ := QT
1 x prior

to minimum-distance (MD) decision making:

ŝPPMD = arg min
s∈SM

‖x̃ − R̃s‖2. (8)

SinceQ1 is not, in general, orthogonal, we cannot claim that the PPMDrule (8) is equivalent
to the ML rule (3). In other words, solutions to (8) are not, ingeneral, ML. However, in the
next section, we show that solutions to (8) are indeed ML whenBPSK is employed in the PAM
model (2) or when QPSK is employed in the QAM model (1).

3 Optimality of MMSE-GDFE Pre-Processed Estimates

In this section we establish that, when BPSK is employed in (2), MMSE-GDFE pre-processing
does not compromise the ML-optimality of minimum-distancedecision making. Since MMSE-
GDFE pre-processing can yield a significant reduction in average SpD search complexity rel-
ative to standard QR-based pre-processing, especially when N < M , our finding implies that
the complexity savings of MMSE-GDFE pre-processing can be leveraged fortrue ML (rather
than onlynear-ML) detection.

Let us defineX (s) as the set of (non-pre-processed) observations for which the ML esti-
mate of the PAM sequences ∈ SM will be error free. In other words,

X (s) := {x : ‖x − Hs‖ ≤ ‖x − Hs′‖, ∀s′ ∈ S
M}. (9)

Sincex = Hs + w, we find that

‖x − Hs‖ ≤ ‖x − Hs′‖

⇔ ‖w‖ ≤ ‖w − H(s′ − s)‖

⇔ 2wT H(s′ − s) ≤ ‖H(s′ − s)‖2. (10)

1Usually,γ = σ2

s
/σ2

w
whereσ2

w
denotes the noise variance andσ2

s
the symbol variance under the assumption

thatE{ssT } = σ2

s
IM [12,14]. As we will see, however, anyγ > 0 suffices for the main result of this paper.
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We now defineA(s) := {s′ − s : s′ ∈ S
M} as the set of error sequences relative to the true

sequences. Putting (9) and (10) together, we find the following equivalence.

x ∈ X (s) ⇔ 2wT Hα ≤ ‖Hα‖2, ∀α ∈ A(s). (11)

Next let us defineX̃ (s) as the set of MMSE-GDFE pre-processed observations for which
the MD estimate of the PAM sequences will be error free. In other words,

X̃ (s) := {x̃ : ‖x̃ − R̃s‖ ≤ ‖x̃ − R̃s′‖, ∀s′ ∈ S
M} (12)

where

x̃ = QT
1 x

= QT
1 (Hs + w)

= R̃s + (QT
1 H − R̃)s + QT

1 w
︸ ︷︷ ︸

:= n

. (13)

Recall that, sinceQ1 is typically non-orthogonal, we cannot claimQT
1 H = R̃. Repeating the

arguments in (10), we obtain the following equivalence.

x̃ ∈ X̃ (s) ⇔ 2nT R̃α ≤ ‖R̃α‖2, ∀α ∈ A(s). (14)

Finally, let us define theQT
1 -transformation of the regionX (s):

XQT

1

(s) := {QT
1 x : x ∈ X (s)}. (15)

Note thatx ∈ X (s) ⇔ x̃ ∈ XQT

1

(s) sincex̃ := QT
1 x. Thus (11) implies

x̃ ∈ XQT

1

(s) ⇔ 2wT Hα ≤ ‖Hα‖2, ∀α ∈ A(s). (16)

Lemma 1. XQT

1

(s) ⊂ X̃ (s) for any s ∈ {−1
2
, 1

2
}M .

Proof. Examining the left side of the inequality in (14), we see that

nT R̃α =
(

wT Q1 + sT
(

HT Q1 − R̃
T
))

R̃α

= wT Hα + sT
(

HT H − R̃
T
R̃

)

α

= wT Hα − γ−1sT α, (17)

where we have used the facts thatQ1R̃ = H andR̃
T
R̃ = HT H + γ−1IM . The latter fact

also implies

‖R̃α‖2 = ‖Hα‖2 + γ−1‖α‖2. (18)

Equations (17)-(18) can be used to rewrite (14) as

x̃ ∈ X̃ (s) ⇔ 2wT Hα ≤ ‖Hα‖2 + γ−1
(
‖α‖2 + 2sT α

)

︸ ︷︷ ︸

:= D

, ∀α ∈ A(s). (19)

It is readily verified thatD ≥ 0 for anys ∈ {−1
2
, 1

2
}M . Thus, comparing (19) to (16), we see

thatXQT

1

(s) ⊂ X̃ (s) for arbitrarys ∈ {−1
2
, 1

2
}M . Note that it is not possible to guarantee

D ≥ 0 for larger alphabets, e.g.,s ∈ {−3
2
,−1

2
, 1

2
, 3

2
}M .
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Corollary 2. Consider model (2) with arbitrary H , w, and s ∈ {−1
2
, 1

2
}M . If ŝML = s, then

ŝPPMD = s.

Proof. Recall that̂sML = s iff x ∈ X (s), and that̂sPPMD = s iff x̃ ∈ X̃ (s), wherex̃ := QT
1
x.

Then, from (15) and Lemma 1, we see that

ŝML = s ⇔ x ∈ X (s) ⇔ x̃ ∈ XQT

1

(s) ⇒ x̃ ∈ X̃ (s) ⇔ ŝPPMD = s (20)

whenS = {−1
2
, 1

2
}.

Corollary 2 establishes the fact that MMSE-GDFE pre-processing does not affect the opti-
mality of ML detection when BPSK signaling is used. Since theuse of QPSK symbols in model
(1) gives a special case of BPSK symbols in model (2), Corollary 2 also applies to QPSK sys-
tems in complex-valued channels. From the proof of Lemma 1, it is clear that the property
XQT

1

(s) ⊂ X̃ (s) will not hold for larger PAM/QAM alphabets, though, implying that MMSE-
GDFE pre-processing can render MD decision making sub-optimal when non-BPSK/QPSK
alphabets are used. This sub-optimality will be investigated further in Section 4.

It is interesting to note that the MMSE-GDFE property holds for arbitrary positiveγ. (This
fact will be confirmed numerically in Section 4.) Thus, ML estimates can be obtained via
MMSE-GDFE pre-processing without knowledge of SNR. However, the search complexity
remains a function ofγ, and numerical experiments suggest choosingγ as specified in [12]
(see also Footnote 1).

4 Numerical Experiments

In this section we present the results of three numerical experiments. In all experiments, the
MIMO channel matrixH ∈ RN×M was generated from i.i.d. zero-mean Gaussian elements
with varianceM−1, and the noise vector from i.i.d. zero-mean Gaussian elements with variance
(4SNR)−1 for BPSK and(4SNR/5)−1 for 4-PAM, recalling thatS = {−1

2
, 1

2
} for BPSK and

S = {−3
2
,−1

2
, 1

2
, 3

2
} for 4-PAM. In other words,SNR is the signal-energy to noise-energy ratio

at each receive antenna. Unless noted otherwise, we setγ = SNR, as specified in [12].
The first experiment shows the typical reduction of search complexity that comes from the

use of MMSE-GDFE pre-processing and ordering in place of thetraditional QR pre-processing
and ordering. We employed the greedy ordering scheme suggested by [11] which was origi-
nally proposed for V-BLAST in [13]. Figure 1 shows average Schnorr-Euchner (SE) SpD
search complexity for a system withM = N = 32 under BPSK signaling (or, equivalently,
m = n = 16 under QPSK signaling). By “search complexity” we mean the number of real
multiplications plus additions per frame consumed by the SpD search stage2 of the SE-SpD
algorithm from [11]. Note that the complexity is reported ona logN scale. Here the SE-SpD
sphere radius was initialized at 1.5 times the average distance between the observation and
the closest lattice point. Figure 1 demonstrates that MMSE-GDFE pre-processing can lead to
significant complexity savings over a moderate-to-low SNR range. For example, a factor of
about 10 in complexity savings can be observed for SNR at 8 dB.More detailed investigations
of MMSE-GDFE complexity savings can be found in [7,11,12].

The second experiment compares the frame error rate (FER) achieved by the ML detector
(3) to that achieved by the MMSE-GDFE pre-processed MD detector (8) under BPSK signaling
for several combinations ofM andN and for several choices of MMSE-GDFE parameterγ.

2This definition assumes slow-fading, where the matrix computations associated with pre-processing could be
amortized over many frames, thereby making the SpD search complexity dominant.
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Specifically, Fig. 2 examines(M, N) ∈ {(6, 8), (8, 8), (8, 6)}, which includes over- and under-
determined linear channels, andγ ∈ { 1

10
SNR, SNR, 10SNR}. Consistent with Corollary 2,

the FER of MMSE-GDFE sphere decoding is identical to that of ML detection in all cases.
In this experiment, the ML detector was implemented using the QR pre-processed SE-SpD
algorithm from [11].

The third experiment verifies the sub-optimality of MMSE-GDFE pre-processed MD esti-
mates when non-BPSK/QPSK alphabets are used. In Fig. 3, the FER of the ML detector is com-
pared to that of the MMSE-GDFE pre-processed SpD for a 4-PAM system withM = N = 8.
Observe that the FER degradation caused by MMSE-GDFE pre-processing is small but mea-
surable. As before, the ML detector was implemented using the QR pre-processed SE-SpD
algorithm from [11].

5 Conclusions

In this paper, we established that MMSE-GDFE pre-processing does not compromise the ML-
optimality of minimum-distance decisions for MIMO systemswith uncoded BPSK or QPSK
signaling. This property holds for systems of arbitrary size (i.e., over- or under-determined
linear channels), though not for larger PAM/QAM alphabets.The result is attractive because
MMSE-GDFE pre-processing is known to yield significant reductions in the average search
complexity of sphere decoding algorithms, especially in moderate-to-low SNR ranges and/or
with ill-conditioned/under-determined linear channels.
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