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Abstract

In this work, we consider maximum likelihood (ML) sequen&tattion in MIMO lin-
ear channels corrupted by additive white Gaussian noiséle\sphere decoding (SpD) al-
gorithms have been developed to reduce the average cotypeXL detection, the aver-
age complexity of classical SpD can itself be impracticdbim-SNR settings or when the
channel is ill-conditioned. In response, sequential dexpdligorithms that employ a pre-
processing stage based on minimum mean-squared erroratizeerdecision-feedback
equalization (MMSE-GDFE) have been proposed. They arebtapd near-ML detec-
tion at a complexity that remains low over a wide SNR rangeandith ill-conditioned
channels. While it has always been assumed that MMSE-GDEurcessing com-
promises the ML-optimality of the downstream minimum-diste detector, we establish,
in this work, that MMSE-GDFE pre-processing preserves Nptiroality under uncoded
BPSK/QPSK signaling, regardless of channel dimension an#t.r The implication is
that, when BPSK/QPSK signaling is used, MMSE-GDFE pre-ggsmg can be used in
conjunction with efficient SpD algorithms for true ML detect. This is particularly at-
tractive in moderate-to-low SNR ranges or with ill-conalited or under-determined linear
channels.

1 Introduction

In this paper, we consider communication over multiple angewireless channels that can
be described by a multiple-input multiple-output (MIMOpdiar transformation corrupted by
additive white Gaussian noise. Assuming a uniform sequeistebution, it is well known that
the maximum likelihood (ML) sequence detector is optimaeimms of minimizing frame error
rate [1]. The complexity of ML detection often makes it imgtieal to implement, however,
especially for long sequences. These issues have motitlaeedevelopment of algorithms
which are capable of solving the ML detection problem withaaerage complexity that can
be significantly less than that of exhaustive search, at feasvell-conditioned channels at
high SNR [2—6]. Since these algorithms typically searchagnanly those sequences that map
to a spherical region around the observation, we refer tm tb@lectively as sphere decoding
(SpD) algorithms.

In certain situations, however, the complexity of even ¢h®pD algorithms remains pro-
hibitively high. This is often the case, for example, whea tihannel is ill-conditioned (e.g.,



under-determined) or when the SNR is low. These issues kau® Ithe development of sub-
optimal sequential decoding (SgD) algorithms based on, kfgice decoding [7], SpD with
statistical pruning [8], the Fano algorithm [7], or otheeadth-first, depth-first, and best-first
strategies [9, 10]. In fact, recent work on this topic has destrated that near-ML perfor-
mance (i.e., a fraction-of-a-dB in SNR loss relative to Mg)piossible at an average search
complexity that is roughly cubic in the sequence dimensiger a broad range of channel/SNR
conditions [7].

Most sphere and sequential decoding algorithms start wptie-grocessing stage that con-
verts the MIMO channel matrix into upper triangular formetéby giving the detection prob-
lem a tree structure that lends itself to sequential degpdinaditionally, coordinate rotation,
based on, e.g., QR decomposition with appropriate powegring, is used to accomplish
this. Because coordinate rotation preserves the Euclioesrc, the pre-processed channel is
equivalent to the original channel as far as ML detectionsgd¢owever, coordinate rotation
cannot improve the channel’s condition number, and illdiboned channels are associated
with high SpD/SgD search complexity [7].

Pre-processing based on minimum mean-squared error ¢jigadmecision feedback equal-
ization (MMSE-GDFE) has been recently proposed as an altieato the classical coordinate-
rotation approaches [11]. The potential of MMSE-GDFE preepssing follows from the fact
that it yields a well-conditioned channel matrix. Not susprgly, it is particularly suited to the
case of under-determined linear channels [12]. In fact,nnd@mbined with appropriate or-
dering and lattice reduction, MMSE-GDFE lies at the coreaviesal state-of-the-art near-ML
SqD schemes [7].

The fundamental disadvantage of MMSE-GDFE pre-processitigat it does not preserve
the Euclidean metric. Thus, the minimum-distance sear@ndMSE-GDFE pre-processed
system will not, in general, produce an ML sequence estinfatethis reason, MMSE-GDFE
pre-processing has been usedriear-ML detection as opposed toue-ML detection. In this
paper, we establish the interesting fact that MMSE-GDFEyoeessing does not compromise
the optimality of minimum-distance search in the case obded BPSK or QPSK signaling.
Furthermore, this property holds irrespective of the cledismiimension and rank. The same
claim, however, cannot be made when non constant modulug @iWabets are employed.
The implication is that MMSE-GDFE pre-processing can belusedramatically reduce the
average complexity of true ML sequence detection in BPSISRBystems.

The remainder of the paper is structured as follows. SeQidarmalizes the system
model and reviews MMSE-GDFE pre-processing. Section dbskes the fact that MMSE-
GDFE pre-processing preserves the optimality of the minirdistance detector under BPSK
or QPSK signaling. Section 4 demonstrates the reduction linskarch complexity that is
possible using MMSE-GDFE pre-processing with greedy V-BiIAordering [13], and shows
the small, but non-zero, degradation in error performaesed by the use of MMSE-GDFE
pre-processing with non-CM alphabets. Section 5 concludes

We use(-)? to denote the transposE;, to denote thel/ x M identity matrix, and| - || to
denote the; norm. Also,R denotes the real field; the complex field, and the integers.

2 Background

Consider a discrete-time complex-baseband communicsygtem with transmitted signale
C™ and observed signal € C". Thek'" element of the column vectar, denoted bys;, is
chosen from &)2-ary quadrature amplitude modulation (QAM) alphabet, k= a;, + jbs,



wherea,, b, € S for

Si= {~(Q - 1)/2.~(Q - 3)/2.....(Q - 3)/2,(Q - 1)/2}.

The transmitted and observed signals are related by the MiNM@nel matrixtd € C"*™ and
the additive white Gaussian noise (AWGN) vector= C™ according to

z = Hs+w. (1)
In the sequel, we focus on the real-valued system model
r = Hs+w (2)

wherex ¢ RY, H ¢ RV*M s ¢ RM andw € R”". More specifically, the elements of
belong to aQ-ary pulse amplitude modulation (PAM) alphaBet.e.,s € SM. The real-valued
PAM model (2) can be related to the complex-valued QAM motigV{a

@ = [Ref{z"} TIm{z"}] "
s = [Re{s"} Im{s"}]",
Re{w”} Tm{w”}]",

Re{H} —Im{H}
Im{H}  Re{H}|’

w =

H =

whenM = 2m andN = 2n. Thus, the real-valued model (2) can be used to describeragst
that employ either PAM or QAM alphabets.

When the channel matri# is perfectly known to the receiver, it is well known that the
ML estimate ofs is obtained as the solution to the following minimum-distardetection
problem [1].

Sw = argwin o — Hs|*. 3

Solving (3) by exhaustive search requi®$Q™) operations, which is impractical unles$
is very small. As discussed in the introduction, SpD can leslus solve (3) with an average
complexity that is significantly lower, e.g., polynomialii (when the channel is well behaved
and the SNR is reasonably high) [2—6].

In SpD, pre-processing is first applied to convert (2) intperptriangular form. Tradi-
tionally this is accomplished using a QR decomposition effinm H = QR, whereQ is
orthogonal andR is upper triangular. The transformed observatidn= Q” = obeys

r = Rs+w, 4)

where the transformed noise’ := Q”w is statistically equivalent tav. Due to the noise
equivalence, the detection problem (3) can be equivaleestated as

S = argsrggiﬁlf ||m,_Rs||2' (5)

It is usually advantageous to incorporate power-orderiity @R decomposition. For ex-
ample, [11] suggested that the columnskfmight be ordered in non-decreasing Euclidean
norm prior to QR decomposition. The same paper also proptmsediploy the greedy V-
BLAST ordering from [13], whereby the columns &f are ordered so that the minimum
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diagonal element oRR is maximized. In our numerical simulations, we focus on tgel
ordering scheme.

In MIMO channels, it is not unusual for the QR pre-processeanoel matrixR to be
ill-conditioned, or, whenV < M, singular. In these cases, the complexity of SpD has been
observed to grow significantly [7]. In response, MMSE-GDHRE-processing [11, 12] was
proposed as an alternative to QR pre-processing. It wasvateti by the fact that, under
perfect decision feedback, the MMSE-GDFE [14] maximizgsal to interference-plus-noise
ratio (SINR) at the decision point.

We now outline the MMSE-GDFE pre-processing algorithm d&][1Consider the “aug-
mented” channel matri¥l defined according to a signal-to-noise ratio parametes 0.

- H

"o {L ! } | (6)
Ve M

Say that QR decomposition yieldd = QR, whereQ € RW+Mx*M has orthonormal

columns and wherd? ¢ RM*M s upper triangular with positive diagonal entries. If we

partitionQ = [81} so thatQ, € RV*¥ andQ, € RM*M then
2

H = QR (7)

MMSE-GDFE pre-processing (PP) transforms the observatimording tot := Q7 a prior
to minimume-distance (MD) decision making:

Sppwp = arg srgé% |z — RS||2' )

SinceQ), is not, in general, orthogonal, we cannot claim that the PRMB (8) is equivalent
to the ML rule (3). In other words, solutions to (8) are notgeneral, ML. However, in the
next section, we show that solutions to (8) are indeed ML wBReSK is employed in the PAM
model (2) or when QPSK is employed in the QAM model (1).

3 Optimality of MM SE-GDFE Pre-Processed Estimates

In this section we establish that, when BPSK is employed)iM®ISE-GDFE pre-processing
does not compromise the ML-optimality of minimum-distadeeision making. Since MMSE-
GDFE pre-processing can yield a significant reduction imaye SpD search complexity rel-
ative to standard QR-based pre-processing, especially Whe M, our finding implies that
the complexity savings of MMSE-GDFE pre-processing careberiaged fotrue ML (rather
than onlynear-ML) detection.

Let us defineX(s) as the set of (non-pre-processed) observations for whetvith esti-
mate of the PAM sequeneec S will be error free. In other words,

X(s) = {zx:|lx— Hs| <|x— Hs|, Vs € SM}. (9)
Sincex = H s + w, we find that
le— Hs|| < [z—HS|
& lw| < Jlw-H(s' - s
2w H(s'—s) < ||H(s' —s)|> (10)

lUsually,y = 02/02 wheres? denotes the noise variance arfithe symbol variance under the assumption
thatE{ss?} = 021, [12, 14]. As we will see, however, any> 0 suffices for the main result of this paper.
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We now defined(s) := {s' — s : ' € SM} as the set of error sequences relative to the true
sequencea. Putting (9) and (10) together, we find the following equarale.

xc€X(s) & 2w'Ha < |[Ha|? Yo € A(s). (11)

Next let us defineY (s) as the set of MMSE-GDFE pre-processed observations fortwhic
the MD estimate of the PAM sequensevill be error free. In other words,

X(s) = {&:||@— Rs| < ||z — Rs'|, Vs € SV} (12)
where
x = Qlx
= Q"f(Her'w)
Rs+(QTH-R)s+Q'w. (13)
IZV’I’L

Recall that, sinc®), is typically non-orthogonal, we cannot clai@ H = R. Repeating the
arguments in (10), we obtain the following equivalence.

zcX(s) & 2n"Ra < |Ral? Va € A(s). (14)
Finally, let us define th@? -transformation of the regiof’(s):
Xgr(s) = (Qlz:we X(s)). 1)
Note thatz € X(s) < & € Xgr(s) sincez := Q[ x. Thus (11) implies
T € Xgr(s) < 2w'Ha < ||[Ha|? Yo € A(s). (16)
Lemma 1. Xgr(s) C X(s)foranys € {3, 1},

272

Proof. Examining the left side of the inequality in (14), we see that
n"Ra = (wTQl + T (HTQ1 — RT)> Ra
= w Ha+ s’ <HTH — RTR> «
= wHa—-~'s"a, a7

where we have used the facts @R = H andR' R = H”H + v~ 'I,,. The latter fact
also implies

|Ra|® = [Hel®+77 e (18)
Equations (17)-(18) can be used to rewrite (14) as

zeX(s) & 20wTHa < |[Hal?+~7! (lee|? + 28" ), Ve € A(s).  (19)

—D
It is readily verified thatD > 0 for anys € {—1,1}*. Thus, comparing (19) to (16), we see
that Xor(s) C X(s) for arbitrarys € {—3,5}". Note that it is not possible to guarantee
D > 0 for larger alphabets, e.gzs,€ {—32, -1, 1 3}, O
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Corollary 2. Consider model (2) with arbitrary H, w, and s € {—%, %}M. If $,. = s, then

Sppvp = S-

Proof. Recall thats,, = siff x € X(s), and thatsppy, = siff T € 2?(3), wherez := Q7.
Then, from (15) and Lemma 1, we see that

whenS = {—3,3}. O

Corollary 2 establishes the fact that MMSE-GDFE pre-prsicgsdoes not affect the opti-
mality of ML detection when BPSK signaling is used. Sinceubke of QPSK symbols in model
(1) gives a special case of BPSK symbols in model (2), CanpRaalso applies to QPSK sys-
tems in complex-valued channels. From the proof of Lemma i&, ¢lear that the property
Xor(s) C X (s) will not hold for larger PAM/QAM alphabets, though, implgjithat MMSE-
GDFE pre-processing can render MD decision making suby@btivhen non-BPSK/QPSK
alphabets are used. This sub-optimality will be inveseddtirther in Section 4.

It is interesting to note that the MMSE-GDFE property holoisdrbitrary positivey. (This
fact will be confirmed numerically in Section 4.) Thus, ML iesttes can be obtained via
MMSE-GDFE pre-processing without knowledge of SNR. Howetlee search complexity
remains a function of,, and numerical experiments suggest choosiras specified in [12]
(see also Footnote 1).

4 Numerical Experiments

In this section we present the results of three numericadexyents. In all experiments, the
MIMO channel matrixH € R¥*M was generated from i.i.d. zero-mean Gaussian elements
with variance)M ~!, and the noise vector from i.i.d. zero-mean Gaussian elesméth variance
(4SNR)~*! for BPSK and(4SNR/5)~! for 4-PAM, recalling tha = {—1, 1} for BPSK and
S={-%,-1 1 3} for 4-PAM. In other wordsSNR is the signal-energy to noise-energy ratio
at each receive antenna. Unless noted otherwise, we-se8NR, as specified in [12].

The first experiment shows the typical reduction of searchpiexity that comes from the
use of MMSE-GDFE pre-processing and ordering in place ofrtditional QR pre-processing
and ordering. We employed the greedy ordering scheme stegbleg [11] which was origi-
nally proposed for V-BLAST in [13]. Figure 1 shows averagen@mr-Euchner (SE) SpD
search complexity for a system with = N = 32 under BPSK signaling (or, equivalently,
m = n = 16 under QPSK signaling). By “search complexity” we mean thehar of real
multiplications plus additions per frame consumed by thB Sparch stageof the SE-SpD
algorithm from [11]. Note that the complexity is reported @tvg ,, scale. Here the SE-SpD
sphere radius was initialized at 1.5 times the averagerdisthetween the observation and
the closest lattice point. Figure 1 demonstrates that MNERH-E pre-processing can lead to
significant complexity savings over a moderate-to-low SMRge. For example, a factor of
about 10 in complexity savings can be observed for SNR at vttBe detailed investigations
of MMSE-GDFE complexity savings can be found in [7,11, 12].

The second experiment compares the frame error rate (FEfR)vad by the ML detector
(3) to that achieved by the MMSE-GDFE pre-processed MD det¢8) under BPSK signaling
for several combinations o¥/ and N and for several choices of MMSE-GDFE parameter

2This definition assumes slow-fading, where the matrix colaions associated with pre-processing could be
amortized over many frames, thereby making the SpD searalpleaity dominant.
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Specifically, Fig. 2 examings\/, N) € {(6,8), (8, 8), (8, 6)}, which includes over- and under-
determined linear channels, ande {%SNR, SNR, 10SNR}. Consistent with Corollary 2,
the FER of MMSE-GDFE sphere decoding is identical to that af détection in all cases.
In this experiment, the ML detector was implemented usirgg@R pre-processed SE-SpD
algorithm from [11].

The third experiment verifies the sub-optimality of MMSE-BP pre-processed MD esti-
mates when non-BPSK/QPSK alphabets are used. In Fig. 3ERe&Fhe ML detector is com-
pared to that of the MMSE-GDFE pre-processed SpD for a 4-Pgdtesn withM = N = 8.
Observe that the FER degradation caused by MMSE-GDFE jmeepsing is small but mea-
surable. As before, the ML detector was implemented usiegQR pre-processed SE-SpD
algorithm from [11].

5 Conclusions

In this paper, we established that MMSE-GDFE pre-procgssa®s not compromise the ML-

optimality of minimum-distance decisions for MIMO systemigh uncoded BPSK or QPSK

signaling. This property holds for systems of arbitraryesze., over- or under-determined
linear channels), though not for larger PAM/QAM alphabédike result is attractive because
MMSE-GDFE pre-processing is known to yield significant retthns in the average search
complexity of sphere decoding algorithms, especially irderate-to-low SNR ranges and/or
with ill-conditioned/under-determined linear channels.
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Figure 2:Frame error rate of the ML detector (via QR pre-processed) $pBus the MMSE-GDFE
pre-processed SpD for a BPSK system under several chamnehsiong M/, N') and several values of
MMSE-GDFE parametey.
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Figure 3:Frame error rate of the ML detector (via QR pre-processed) $pBus the MMSE-GDFE
pre-processed SpD for a 4-PAM system with= N = 8.



