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Abstract

For doubly-dispersive channels, we propose a pulse-shapedmulticarrier modulation
scheme designed to yield an inter-symbol/inter-carrier interference (ISI/ICI) profile fa-
cilitating high-performance/low-complexity equalization. Specifically, sampled transmit-
ter/receiver pulses are jointly optimized to maximize a particular signal to interference-
plus-noise ratio. Two low-complexity iterative equalization algorithms are proposed which
leverage the resulting ISI/ICI structure, one based on softfeedback and the other on hard
feedback. Simulations indicate that the soft feedback algorithm achieves estimation per-
formance close to the matched filter bound in most scenarios.Post-cursor ISI cancellation
is also considered, and found to be appropriate when the delay spread is large.

1 Introduction

In non-trivial time- and frequency-selective environments, single carrier modulation requires
long and quickly-adapting equalizers for inter-symbol interference (ISI) mitigation, leading
to complicated/expensive receivers. Multi-carrier modulation (MCM) has thus emerged as an
attractive alternative.

Orthogonal frequency-division multiplexing (OFDM) [1] isprobably the most well-known
MCM technique. Leveraging FFTs at the transmitter and receiver, its complexity is the low-
est among spectrally-efficient MCM techniques. While the use of a cyclic prefix (CP) gives
OFDM robustness totime-dispersive fading (at the expense of reduced spectral efficiency),
CP-OFDM is often considered non-robust tofrequency-dispersive fading, since this fading in-
duces inter-carrier interference (ICI) in CP-OFDM (see, e.g., [2, 3] and references therein).
This notion should be considered more carefully, however: while ICI mandates a more com-
plex receiver, it also introduces beneficial Doppler-diversity [3–5]. In fact, it has been shown
that, with appropriate ICI shaping, it is possible to leverage a large proportion of this diversity
using a computationally efficient equalization scheme—onethat requires onlyO(N) opera-
tions beyond the traditional CP-OFDM receiver [6, 7]. In other words, the benefits of ICI may
outweigh the costs.

Various MCM techniques have been proposed over the years, some with the explicit goal
of suppressing ISI/ICI in the presence of doubly-selectivechannels. In this latter class we find
pulse-shaped FDM1 (PS-FDM) [8–11] and OQAM-OFDM (see [12] and references therein).
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1We write “FDM” rather than “OFDM” because some pulse designsprevent orthogonality.



In PS-FDM, OFDM’s traditionally rectangular pulse is replaced with a smoother pulse that has
better time/frequency localization. PS-FDM is attractivein that it’s implementation complexity
is only marginally greater than that of CP-OFDM but has the disadvantage that its ISI/ICI
suppression comes at the cost of reduced spectral efficiency[12]. OQAM-OFDM uses a clever
application of offset-QAM which allows smoothly overlapping OQAM-OFDM symbols. The
result is ISI/ICI suppression without any reduction in spectral efficiency. The implementation
complexity of OQAM-OFDM can be substantially greater than that of CP-OFDM, however,
because it requires filterbanks in addition to FFTs. In fact,OQAM-OFDM’s complexity has
been found to increase in proportion to its ISI/ICI suppression capabilities [12]. Finally, it is
important to remember that, while PS-FDM and OQAM-OFDM are able to suppress ISI/ICI
in doubly-selective environments, they are not able to eliminate it completely.

Motivated by [6,7], we propose a PS-FDM system whose pulse-shapes are designed to gen-
eratecontrolled ISI/ICI. The target ISI/ICI profile will be chosen to facilitate high-performance
low-complexity equalization. In other words, we propose MCM design for ISI/ICI shaping
rather than ISI/ICI suppression. In this work, PS-FDM is chosen in place of OQAM-OFDM
for reasons of simplicity. A similar design based on OQAM-OFDM would be interesting, but
is outside the scope of this paper.

We now mention three related works. Matheus and Kammeyer [10] also proposed a PS-
FDM scheme in which ISI/ICI was tolerated and then mitigatedusing Viterbi detection. They
did not design for a particular target ISI/ICI pattern, though, and simply assumed continuous
Gaussian pulse shapes. Kozek and Molisch [11] designed continuous pulses matched to the
statistics of a WSSUS Rayleigh-fading channel, though their aim was to suppress ISI/ICI com-
pletely rather than shape it. Sun [13] proposed CP-OFDM without a guard interval (i.e., rect-
angular pulses) and one-tap decision-feedback equalization (DFE) at the receiver to mitigate
ISI/ICI. Our work differs from these in that we design discrete-time transmitter/receiver pulse
sequences that arejointly-SINR-optimal, leveraging WSSUS doubly-selective channel statis-
tics and measuring SINR relative to a carefully-chosen target ISI/ICI pattern. For equalization,
we build on the iterative algorithms of [6, 7], which have been shown to exhibit performance
near the matched-filter bound but with significantly less complexity than Viterbi detection.

Notation: We use(·)t to denote transpose,(·)∗ conjugate, and(·)H conjugate transpose.
C(b) denotes the circulant matrix with first columnb, D(b) the diagonal matrix created from
vectorb, andI the identity matrix. We use[B]m,n to denote the element in themth row and
nth column ofB, where row/column indices begin with zero.‖ · ‖F denotes the Frobenius
norm, and� element-wise multiplication. Expectation is denoted byE{·} and covariance by
Cov{b, c} := E{bcH}−E{b}E{cH}. Finally,δ(·) denotes the Kronecker delta, andZ the set
of integers.

2 System Model

At each indexi ∈ Z, a set ofN coded QAM symbols{s(i)

k } is collected to form a multicarrier
symbols(i) = [s(i)

0 , . . . , s(i)

N−1]
t. These symbols are used to modulate pulsed carriers as follows:

tn =
∞

∑

i=−∞

an−iNs

1√
N

N−1
∑

k=0

s(i)

k ej 2π
N

(n−iNs−No)k (1)

In (1), {an} is the transmit pulse sequence,Ns is the multicarrier symbol interval, andNo ∈
{0, . . . , N − 1} delays the carrier origin relative to the pulse origin. The multipath channel is
described by its time-variant discrete impulse responsehtl(n, l), defined as the time-n response



to an impulse applied at timen− l. We assume a causal impulse response of length ofNh. The
signal observed by the receiver is then

rn = νn +

Nh−1
∑

l=0

htl(n, l)tn−l (2)

whereνn denotes samples of additive white circular Gaussian noise (AWGN) with varianceσ2.
Definingr(i)

n := riNs+n, ν(i)
n := νiNs+n, andh(i)

tl (n, l) := htl(iNs + n, l), it can be shown that

r(i)

n = ν(i)

n +

Nh−1
∑

l=0

h(i)

tl (n, l)

∞
∑

`=−∞

a`Ns+n−l
1√
N

N−1
∑

k=0

s(i−`)

k ej 2π
N

(n−l+`Ns−No)k (3)

To estimate the multicarrier symbols(i), the receiver employs the pulse{bn} as follows:

x(i)

d =
1√
N

∑

n

r(i)

n bne−j 2π
N

d(n−No) (4)

Here againNo delays the carrier origin relative to the pulse origin. Notethat this system reduces
to CP-OFDM withNo = Ns − N , {an}Ns−1

n=0 = 1, and{bn}Ns−1
n=No

= 1 (elsean = bn = 0). Note
also thatNg := Ns − N is analogous to CP-OFDM guard interval.

Plugging (3) into (4), we find

x(i)

d = w(i)

d +
∑

`

N−1
∑

k=0

h̆(i,`)

df (d − k, k) s(i−`)

k (5)

where

w(i)

d :=
1√
N

∑

n

bnν(i)

n e−j 2π
N

d(n−No) (6)

h̆(i,`)

df (d, k) :=
1

N

∑

n

Nh−1
∑

l=0

h(i)

tl (n, l)bna`Ns+n−l e
−j 2π

N
d(n−No)e−j 2π

N
k(l−`Ns) (7)

Equation (5) indicates thath̆(i,`)

df (d, k) can be interpreted as the response, at timei and subcarrier
k + d, to a frequency-domain impulse applied at timei − ` and subcarrierk.

In practice we implement finite-duration causal pulses{an} and{bn} of lengthNa andNb,
respectively, implying that only a finite number of terms in the set{h̆(i,`)

df (d, k), ` ∈ Z} will
be non-zero. Specifically, (7) implies that non-zero terms result from indices̀ which satisfy
0 ≤ `Ns + n − l ≤ Na − 1 for somen ∈ {0, . . . , Nb − 1} and somel ∈ {0, . . . , Nh − 1}. It
is straightforward to show that̆h(i,`)

df (d, k) is non-zero for̀ ∈ {−Lpre, . . . , Lpst} whereLpre =
bNb−1

Ns
c andLpst = bNa+Nh−2

Ns
c.

With the definitionsx(i) := [x(i)

0 , . . . , x(i)

N−1]
t, w(i) := [w(i)

0 , . . . , w(i)

N−1]
t, and[H̆(i,`)]d,k :=

h̆(i,`)

df (d−k, k), (5) implies the linear time-varying (LTV) multiple-inputmultiple-output (MIMO)
system

x(i) = w(i) +

Lpst
∑

`=−Lpre

H̆(i,`)s(i−`). (8)

In the sequel we assume wide-sense stationary uncorrelatedscattering (WSSUS) [14] so
thatE{htl(n, l)h∗

tl(n − q, l − m)} = rt(q)σ
2
l δ(m). Here,rt(q) denotes the normalized autocor-

relation (i.e.,rt(0) = 1) andσ2
l the variance of thelth lag.



3 Pulse and Window Design

The choice of{an} and{bn} affect the ISI/ICI patterns of the MIMO system (8). For example,
it is well known that the CP-OFDM choices yield an system for which ISI and ICI vanish
if the channel is LTI with delay spreadNh ≤ Ns − N + 1. The absence of ISI/ICI greatly
simplifies equalization; this is the classical motivation for CP-OFDM and, more generally,
orthogonal MCM. When the channel is LTV or it is impractical to enforceNh ≤ Ns − N + 1,
however, no choice of{an} and{bn} is capable of completely suppressing both ISI and ICI.
Our strategy is to choose{an} and{bn} which impart a particular structure on the effective
channel responsĕH(i,`). The ideal target ICI/ISI pattern should allow high-performance/low-
complexity equalization while being (nearly) attainable for some choice of{an} and{bn}.

3.1 ISI-Free Pulse Design

In this section, we focus on an ICI/ISI target that has a “cursor” coefficient H̆(i,0) with the
banded structure illustrated in Fig. 1 and ISI coefficients{H̆(i,`)}` 6=0 which equal zero. This
choice is motivated by the lowpass nature of typical Dopplerspectra (see [7]) and assumes that
ISI can be effectively suppressed. With very long delay spread, it may be more appropriate to
design pulses which allow post-cursor ISI and apply block decision feedback equalization; this
is discussed in Sec. 3.2.

We design pulses according to the SINR(x(i)) := Es/Eni criterion, where signal energyEs

and noise-plus-interference energyEni are defined relative to the target. If we defineEs,d to be
the energy contributed bys(i)

d to x(i)

d , and if we defineEni,d to be the energy contributed tox(i)

d

by additive noisew(i)

d , non-cursor symbols{s(j)

d }j 6=i, and non-neighboring co-cursor symbols
{s(i)

k }d−D−1
k=0 ∪ {s(i)

k }N−1
k=d+D+1, thenEs =

∑

d Es,d andEni =
∑

d Eni,d. Note that the energy con-
tributed tox(i)

d by neighboring co-cursor symbols{s(i)

k }d−1
k=d−D∪{s

(i)

k }d+D
k=d+1 is considered neither

signal nor interference, but rather a “don’t care” quantity. In choosinga := [a0, . . . , aNa−1]
t,

we impose the average transmitted power constraint‖a‖2 = Ns, consistent with CP-OFDM.
From (5) and the description above, we have

Es =

N−1
∑

d=0

Es,d :=

N−1
∑

d=0

E

{

∣

∣

∣
h̆(i,0)

df (0, d) s(i)

d

∣

∣

∣

2
}

=

N−1
∑

d=0

E

{

∣

∣

∣
h̆(i,0)

df (0, d)
∣

∣

∣

2
}

. (9)

From (7) and our WSSUS assumption it can be shown that

E{|h̆(i,`)

df (d, k)|2} =
1

N2

Nb−1
∑

n,m=0

rt(n − m)bnb∗me−j 2π
N

d(n−m)

Nh−1
∑

l=0

σ2
l a`Ns+n−la

∗
`Ns+m−l.(10)

implying that

Es =
1

N

Nb−1
∑

n=0

Nb−1
∑

m=0

bnb∗mrt(n − m)

Nh−1
∑

l=0

σ2
l an−la

∗
m−l. (11)

Equation (11) can be put in the quadratic forms (12) and (13),

Es = 1
N

bH
(

Rb � As

)

b, (12)

= 1
N

aH
(

Ra � Bs
)

a, (13)



whereRb andAs areNb × Nb matrices defined element-wise as[Rb]m,n := rt(n − m) and

[As]m,n :=
∑Nh−1

l=0 σ2
l an−la

∗
m−l, and whereRa andBs areNa ×Na matrices defined element-

wise as[Ra]p,q := rt(q − p) and[Bs]p,q :=
∑Nh−1

l=0 σ2
l bq+lb

∗
p+l.

Next we derive an expression forEni. From (5) and our definition ofEni,d, we have

Eni,d = E

{
∣

∣

∣

∣

w(i)

d +
∑

` 6=0

N−1
∑

k=0

h̆(i,`)

df (d − k, k)s(i−`)

k +
∑

k/∈{d−D,...,d+D}

h̆(i,0)

df (d − k, k)s(i)

k

∣

∣

∣

∣

2}

. (14)

Sincew(i)

d , {s(j)

k }∣∣
j 6=i

, and{s(i)

k } are independent, and since{s(j)

k } are unit-variance i.i.d.,

Eni,d = E{|w(i)

d |2} +

Lpst
∑

`=−Lpre

N−1
∑

k=0

E{|h̆(i,`)

df (d − k, k)|2} −
d+D
∑

k=d−D

E{|h̆(i,0)

df (d − k, k)|2},(15)

where, from (6),

E{|w(i)

d |2} =
1

N

Nb−1
∑

n,m=0

bnb∗m E{ν(i)

n ν(i)∗
m }e−j 2π

N
d(n−m) =

1

N

Nb−1
∑

n=0

|bn|2σ2 (16)

From (10),Eni =
∑

d Eni,d, and the facts that
∑N−1

k=0

∑N−1
d=0 e−j 2π

N
(d−k)(n−m) = N2δ(〈n − m〉N),

and
∑D

q=−D e−j 2π
N

q(n−m) = sin( π
N

(2D + 1)(n − m))/ sin( π
N

(n − m)), we have

Eni = σ2

Nb−1
∑

n=0

|bn|2 +

Nb−1
∑

n=0

Nb−1
∑

m=0

bnb∗mrt(n − m)δ(〈n − m〉N )

Lpst
∑

`=−Lpre

Nh−1
∑

l=0

σ2
l a`Ns+n−la

∗
`Ns+m−l

−
Nb−1
∑

n=0

Nb−1
∑

m=0

bnb∗mrt(n − m)
sin

(

π
N

(2D + 1)(n − m)
)

N sin
(

π
N

(n − m)
)

Nh−1
∑

l=0

σ2
l an−la

∗
m−l. (17)

Usingb := [b0, . . . , bNb−1]
t, (17) can be put in theNb × Nb quadratic forms (18) and (19)

Eni = bH
(

σ2INb
+ Rb � Cb � At − Rb � Db � As

)

b (18)

= aH
(

‖b‖2σ2/Ns + Ra � Ca � Bt − Ra � Da � Bs
)

a, (19)

In (18),Rb andAs were previously defined, andCb, Db, andAt areNb ×Nb matrices defined
element-wise as[Cb]m,n := δ(〈n − m〉N), [Db]m,n := 1

N
sin( π

N
(2D + 1)(n−m))/ sin( π

N
(n−

m)), and[At]m,n :=
∑Lpst

`=−Lpre

∑Nh−1
l=0 σ2

l a`Ns+n−la
∗
`Ns+m−l. In (19), Ra andBs were previ-

ously defined, andCa, Da, andBt areNa × Na matrices defined element-wise as[Da]p,q :=
1
N

sin( π
N

(2D+1)(q−p))/ sin( π
N

(q−p)), [Bt]p,q :=
∑Lpst

`=−Lpre

∑Nh−1
l=0 σ2

l bq+l−`Ns
b∗p+l−`Ns

, and
[Ca]p,q := δ(〈q − p〉N). We used‖a‖2 = Ns to write (19). Since SINR= Es/Eni is not a
function of‖b‖, we choose‖b‖2 = Ns in the sequel.

To optimize SINR= Es/Eni jointly with respect toa andb under the constraints‖a‖2 =
‖b‖2 = Ns, we alternate the pair of optimizations (20) and (21), wherev?(M , N) denotes
the principle generalized eigenvector of the matrix pair(M , N). Recall thatAs andAt are
functions ofa and thatBs andBt are functions ofb. The optimization can be carried out in
advance for particular fading scenarios. For example, in the case of Rayleigh fading, the pulses



depend on maximum Doppler frequency, power profile, and noise variance.

b?|a = arg max
b:‖b‖2=Ns

bH
(

Rb � As

)

b

bH
(

σ2I + Rb � Cb � At − Rb � Db � As

)

b

= v?

(

Rb � As, σ2I + Rb � Cb � At − Rb � Db � As

)

·
√

Ns (20)

a?|b = arg max
a:‖a‖2=Ns

aH
(

Ra � Bs

)

a

aH
(

σ2I + Ra � Ca � Bt − Ra � Da � Bs

)

a

= v?

(

Ra � Bs, σ2I + Ra � Ca � Bt − Ra � Da � Bs

)

·
√

Ns (21)

3.2 Postcursor-ISI Pulse Design

The pulses described in the Sec. 3.1 were designed to suppress both pre-cursor and post-cursor
ISI. With decision-feedback equalization, however, post-cursor ISI can be tolerated, allowing
more freedom in pulse design.

With only a few modifications, post-cursor ISI can be incorporated into the the pulse design
of Sec. 3.1. RegardingEs, the definition and expressions remain the same, i.e., (12)-(13).
RegardingEni, we remove the positive terms from the`-summations in (14)-(15), (17), and the
definitions ofAt andBt. Thus, the alternating optimization (20)-(21) applies after these slight
redefinitions ofAt andBt.

4 Symbol Estimation

Here we build on the low-complexity iterative algorithms from [6, 7] which recovers(i) from
x(i) while leveraging the quasi-banded structure ofH̆(i,0). The symbols{s(i)

k }N−1
k=0 are estimated

sequentially using a linear MMSE technique that incorporates the outcomes of previous esti-
mates (and/or known pilots) as prior information for subsequent estimates. In doing so, we
hope to avoid both the noise-enhancement of linear equalization and the error-propagation of
hard decision feedback. While we avoid DFE fromwithin s(i), we do consider DFE cancella-
tion of post-cursor ISI from{s(i−`)}Lpst

`=1. We focus on estimation rather than uncoded detection
becausecoded detection performance is known to be proportional to the MSEof soft symbol
estimates [15]. Coding details, however, are outside the scope of this paper.

4.1) MMSE Estimation: When the MIMO channel{H̆(i,`)}Lpst

`=−Lpre
has a cursor coefficient

H̆(i,0) whose structure approximates that shown in Fig. 1,sk will contribute primarily to the
observation elements{x̆d}k+D

d=k−D, where all indexing in this section is taken modulo-N . Local
estimates ofsk are then generated using

x̆
(i)

k :=

{

[x̆(i)

k−D, · · · , x̆(i)

k+D]t −
∑Lpst

`=1 H̆(i,`)(k − D : k + D, :)ˆ̂s(i−`) with DFE,

[x̆(i)

k−D, · · · , x̆(i)

k+D]t without DFE,

where{ˆ̂s(i−`)}`>0 denotes past decisions. If we defines
(i)

k := [s(i)

k−2D, · · · , s(i)

k+2D]t, w
(i)

k :=

[w(i)

k−D, · · · , w(i)

k+D]t, andH̆(i)

k := H̆(i,0)(k−D : k+D, k−2D : k+2D), then we can write

x̆
(i)

k = H̆(i)

k s
(i)

k + ε
(i)

k , (22)

whereε
(i)

k denotes noise plus residual ICI and ISI (consisting only of precursor and error-
propagation components in the DF case). Note that, as a consequence of modulo-N indexing,



the elements of̆H(i,0) from the top-right and bottom-left shaded triangles in Fig.1 are included
in H̆(i)

k . In the sequel, we omit the superscript indices.
The MMSE linear estimate ofsk givenx̆k is

ŝk = E{sk} + Cov(sk, x̆k) Cov(x̆k, x̆k)
−1

(

x̆k − E{x̆k}
)

. (23)

Our assumptions implyE{εk} = 0 andE{skε
H
k } = 0. If we defineΣk := E{εkε

H
k }, h̆k :=

[h̆(i,0)

k−D,k, · · · , h̆(i,0)

k+D,k]
t, s̄k := E{sk}, vk := Cov(sk, sk), s̄k := [s̄k−2D, . . . , s̄k+2D]t, andvk :=

[vk−2D, . . . , vk+2D]t, then it is straightforward to show thatE{x̆k} = H̆ks̄k, Cov(sk, x̆k) =

vkh̆
H

k , andCov(x̆k, x̆k) = Σk + H̆k D(vk)H̆H
k , giving the MMSE estimate

ŝk = s̄k + fH
k (x̆k − H̆ks̄k). (24)

f k =
(

Σk + H̆k D(vk)H̆H
k

)−1
h̆kvk. (25)

We choose to use onlyextrinsic information, i.e., only the priors from{sd}d6=k when estimating
sk. This can be accomplished using (24)-(25) withs̄k = 0 andvk = 1.

Numerical studies have shown that, when the pulse shapes aredesigned as in Sec. 3,Σk

is dominated by its noise component. It can be shown that the noise component ofΣk is a
Toeplitz matrix invariant tok.

4.2) Update of the Priors: The symbol estimatêsk can be used to updatēsk and vk. For
simplicity, we consider only i.i.d. BPSK symbolssk ∈ B := {−1, +1}; QAM extensions are
straightforward. We assume a conditionally Gaussian modelfor the estimates, i.e.,p(ŝk|sk =
b) ≈ φ

(

(ŝk − µk(b))/σk(b)
)

/σk(b), whereφ(w) := e−w2
/
√

π is the proper complex Gaussian
density. Definingµk(b) := E{ŝk|sk = b} andσ2

k(b) := Cov(ŝk, ŝk|sk = b), it can be shown

thatµk(b) = fH
k h̆k · b andσ2

k(b) = fH
k h̆k(1− h̆

H

k f k). If we define the prior and posterior log-
likelihood ratios (LLR) asL(sk) := ln P (sk=+1)

P (sk=−1)
andL(sk|ŝk) := ln P (sk=+1|ŝk)

P (sk=−1|ŝk)
, respectively,

their difference can be expressed as

∆L(ŝk) := L(sk|ŝk) − L(sk) = 4 Re(ŝk)/(1 − h̆
H

k f k). (26)

The posterior LLR leads to an update of the priors:

Lnew(sk) = L(sk) + ∆L(ŝk) (27)

s̄k,new =
∑

b∈B b · P (sk = s|ŝk) = tanh(Lnew(sk)/2) (28)

vk,new =
∑

b∈B(b − E{sk|ŝk})2 · P (sk = b|ŝk) = 1 − s̄2
k,new (29)

which, in turn, can be used to estimate{sd}d6=k via (24)-(25).

4.3) Iteration: We initially sets̄k = 0 andvk = 1 (though pilots could be handled by setting
s̄k = sk andvk = 0). For sequential iterative estimation (SIE), we calculatês0 via (24)-(25)
and then immediately update the priorss̄0 andv0 via (26)-(27). Next, we calculatês1 and
then immediately updatēs1 andv1. This continues until̂sN−1, s̄N−1,new, andvN−1,new have
been computed, then repeats again, starting withŝ0. The algorithm terminates after a specified
number of iterations or when the LLRs surpass a threshold.

A simplification calledsequential decision feedback (SDF) operates identically to SIE ex-
cept thats̄k,new = sgn(ŝk) andvk,new = 0. Computation of LLRs is not necessary and the
algorithm terminates after a specified number of iterationsor when{s̄k} converge.

4.4) Comments: The computational complexity of SIE and SDF, dominated by the(2D+1)×
(2D+1) matrix inversion in (25), isO(D2N) multiplications per iteration.



SIE is related to the estimation stage of the “turbo equalization” scheme [16]. Unlike SIE,
however, [16] assumes a LTI channel in white noise and inserts a decoding iteration after each
equalization iteration. SDF is reminiscent of the “successive detection” scheme used in [17],
though SDF does not employ anO(N2) symbol ordering procedure. Also, SDF employs
multiple iterations so that hard decisions can converge.

5 Simulations

To evaluate the iterative equalization algorithms, we compare 1
N

∑N−1
k=0 E{|s(i)

k − ŝ(i)

k |2}, their
average MSE, to that of the matched filter bound (MFB), i.e., the MMSE estimation ofs(i)

k

assuming all interference{s(j)

d }(j,d)6=(i,k) is known perfectly. We also consider anapproximate
MFB (AMFB) which assumes that, when estimatings(i)

k , only neighboring co-cursor inter-
ference{s(i)

d }k+2D
d=k−2D is known; ISI and non-neighboring ICI are unknown. This AMFBlower

bounds the MSE of the iterative algorithms, and the AMFB/MFBdifference measures the pulse
design’s success in suppressing out-of-target interference.

The MFB itself is a function of the pulse design. We compare the MFB for our PS-FDM to
the following SVD-based scheme, which requires transmitter channelrealization knowledge
(as opposed tostatistical knowledge). Denote byH(i)

tl theNb × Na convolution matrix con-
structed from{htl(n, :)}iNs+Nb

n=iNs
where the coefficients inH(i)

tl are exactly those used to construct

{H̆(i,`)}Lpst

`=−Lpre
. Then define the modulation waveforms for{s(i)

k }N−1
k=0 as the firstN right sin-

gular vectors ofH(i)

tl (scaled by
√

Ns/N for fair comparison) and the corresponding matched
filters for estimation of{s(i)

k }N−1
k=0 by the firstN left singular vectors ofH(i)

tl . Though our choices
of Na andNb promote ISI, we assume this ISI is known in our evaluation of the “SVD-MFB.”

Experiments employ i.i.d. BPSK, SNR−1-variance circular AWGN noise, a WSSUS Ray-
leigh-fading channel withσ2

l = N−1
h (for 0 ≤ l < Nh), and the design choicesNa = 1.5Ns,

Nb = Na + Nh/2, andD = dfdNe + 1. Unless otherwise noted, assumeN = 64, Nh = 16,
Ns = N (i.e., no guard interval), andfd = 0.03. Channel knowledge is assumed and so no
pilots were employed. SIE and SDF were allowed 4 iterations,and performance was averaged
over 5000 multicarrier symbols. Recall thatfd has been normalized to thechannel-use interval
as opposed to the multicarrier-symbol interval.

Figure 1(a) plots typical pulse shapes for the ISI-free target (i.e., no DFE) while Fig. 1(b)
plots them for the post-cursor ISI target (i.e., for DFE). Note that the pulses may include nega-
tive values and may be asymmetric in the DFE case, and that ourchoices forNa andNb appear
to be “large enough.”

Figure 3 shows MSE vs. SNR for PS-FDM without DFE at various Dopplers; SIE and SDF
are compared to the PS-AMFB, PS-MFB, and SVD-MFB. At allfd, we see AMFB=MFB,
meaning that out-of-target ICI/ISI is negligible. SIE reaches the MFB in all but thefd =
0.1/SNR≤5dB case, whereas SDF reaches the MFB only atfd = 0.01; this is remarkable
considering that SIE isO(N). The SNR gap between PS-MFB and SVD-MFB is about 3dB
atfd = 0.01 but shrinks to about 1dB atfd = 0.1; recall that, asfd increases,D also increases
and so provides more diversity at the cost of higher implementation complexity. Results for
the same setup butwith DFE (not shown here) are nearly identical since this relatively small
delay spread does not generate much ISI.

Figure 4 shows MSE vs. SNR for various choices of multicarrier-symbol intervalNs (re-
calling that each multicarrier symbol containsN = 64 BPSK symbols). Here AMFB=MFB
in all but the high-SNR region of the “overloaded” caseNs = 0.75N . SIE performs near to the
MFB in all but the low-SNR case and the high-SNR overloaded case, whereas SDF lags behind



1-2dB. Note that the gap between SVD-MFB and PS-MFB closes inthe overloaded case; the
orthogonality of the SVD basis is suboptimal as far as the MFBconcerns. We conclude that
PS-FDM is robust to a lack of guard interval (i.e.,Ns ≤ N). The DFE results (not shown here)
are nearly identical.
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Figure 1: Desired structure of MIMO cursor coef-
ficient H̆(i,0). Typically,D = dfdNe+1.
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Figure 2: Pulses for (a) non-DFE (b) DFE target,
with Nh = 32 and SNR=20 dB.
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Figure 3: MSE versus SNR for Doppler (a)fd =

0.01, (b) fd = 0.03, and (c)fd = 0.1.
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Figure 4: MSE versus SNR for guard interval (a)
Ng = −16, (b) Ng = 0, and (c)Ng = 16.
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Figure 5: MSE versus SNR forNh = 64 and
(a) PS-FDM without DFE, (b) PS-FDM with DFE,
and (c) CP-OFDM with DFE.
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Figure 6: MSE versus SNR forNh = 32 and
(a) PS-FDM without DFE, (b) PS-FDM with DFE,
and (c) CP-OFDM with DFE.

Figure 5 compares various schemes under large delay spreadNh = Ns = N = 64. For
PS-FDM without DFE, there is a large gap between the MFB and AMFB: out-of-target ISI/ICI
is not well suppressed. Adding DFE to PS-FDM, the MFB/AMFB gap closes to<2dB and
SIE nearly reaches the AMFB. For CP-OFDM with DFE, we see relatively large MFB/AMFB



and PS-MFB/SVD-MFB gaps. Repeating the experiment withNh = 32 (see Fig. 6), we find
that PS-FDM gives excellent—and nearly identical—performance with or without DFE, while
CP-OFDM with DFE still displays a large AMFB/MFB gap. We conclude that PS-FDM is
quite robust to delay spread, though the DFE option should beexercised whenNh ≥ Ns.

6 Conclusions

We presented a new approach to PS-FDM in the presence of doubly-dispersive fading. Pulse se-
quences were constructed to shape ICI/ISI into a pattern that enables low-complexity diversity-
leveraging equalization, and a suitable equalization algorithm was described. Simulations
demonstrated the efficacy of the proposed technique.
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[13] Y. Sun, “Bandwidth-efficient wireless OFDM,”IEEE J. Select. Areas In Commun., vol. 19, pp. 2267–2278,
Nov. 2001.

[14] J. G. Proakis,Digital Communications. New York: McGraw-Hill, 4th ed., 2001.

[15] H. Sari, G. Karam, and I. Jeanclaude, “Transmission techniques for digital terrestrial TV broadcasting,”
IEEE Commun. Mag., pp. 100–109, Feb. 1995.
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