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Phase Retrieval

@ Goal: Recover signal &y € C" from m magnitude-only measurements
Y= ‘AQZQ + ’lU|,

where A € C™*™ is a known linear transform and w € C™ is noise.

@ Motivation: In many applications, it feasible to measure the intensity,
but not the phase, of the Fourier transform of the signal-of-interest:
@ X-ray crystallography,
transmission electron microscopy,
coherent diffractive imaging,
astronomical imaging, etc.

¢ & ¢

@ Feasibility: To make the solution to y = | Ax| unique (up to a global
phase) w.p.1, m=3n—2 i.i.d Gaussian measurements are necessary
[Finkelstein'04] and m=4n—2 are sufficient [Balan/Casazza/Edidin'06].
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Phase Retrieval: Classical Approaches

Most classical approaches are iterative in nature. For example,

@ Alternate between...

— projecting A& onto the magnitude constraint y, yielding 2,
— projecting AT 2 onto an apriori known support set, yielding @.

However, due to the non-convexity of the first projection, it is easy for
such algorithms to get trapped in local minima.
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Phase Retrieval: Convex Approaches

Recently, some convex relaxations have been proposed.
— Noting that 32 = |al'z|? = tr(a;al' X) for X = xzz", pose as
“minx»orank(X) s.t. tr(a;al! X) = y? for i = 1..m." (NP hard!)

Relax to “mintr(X) s.t. tr(a;a?! X) = y? for i = 1..m," (convex!)
known as PhaseLift [Candes/Eldar/Strohmer/Voroninski'11].

— Another semidefinite program (with similar performance) known as
PhaseCut was proposed in [Waldspurger/D'Aspremont/Mallat'12].

It was recently shown [Candes/Li'12] that

@ with very high probability, PhaseLift perfectly recovers an arbitrary «
from m > cgn noiseless measurements, where ¢y is a constant,

@ and PhaselLift can be made robust to noise.
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Compressive Phase Retrieval

@ Recall that m > 3n — 2 magnitude measurements are needed for
y = | Ax| to have a unique solution for x € C™.

@ Sometimes we can only afford m < 3n — 2 magnitude measurements,
in which case the problem becomes one of compressive phase
retrieval.

@ For successful compressive phase retrieval (CPR), one needs to
leverage additional structure in @, such as sparsity.
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Compressive Phase Retrieval: Prior Work

@ Assuming knowledge of ||x||1, [Moravec/Romberg/Baraniuk’07]
@ appended this constraint onto the classical RAAR algorithm, and
o used RIP-based arguments to establish that m > k% log(n/k?)
magnitude measurements suffice for recovery.

However, the algorithm was prone to local minima and slow
convergence. Also, knowledge of ||xo||1 is rarely available in practice.

@ Taking a convex approach, [Ohlsson/Yang/Dong/Sastry'12] proposed
the following generalization of PhaseLift, which they call CPRL:

min x o tr(X)+A | X |1 + p X e, ‘tr(aia;"X) - yff fori=1...m,
and performed both RIP and mutual coherence analyses. Seems
promising. . .
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Bring out the GAMP

Zed: Bring out the Gimp.
Maynard: Gimp's sleeping.
Zed: Well, | guess you're gonna have to go wake him up now, won't you?

—Pulp Fiction, 1994.

We propose a new approach to CPR based on generalized approximate
message passing (GAMP).
Numerical results show

@ excellent phase transitions,

@ excellent NMSE & robustness to noise,

@ excellent runtime,

with direct application to compressive image retrieval.
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Generalized Approximate Message Passing (GAMP)

@ The evolution of GAMP:
@ The original AMP [Donoho/Maleki/Montanari’09] solves the LASSO
problem ming ||y — Az||3 + \||z||; popular in compressive sensing, i.e.,
MAP estimation under i.i.d Laplacian signal and AWGN.
@ The Bayesian AMP [Donoho/Maleki/Montanari'10] extended the
above to generic i.i.d signal priors and MMSE estimation.
@ The generalized AMP [Rangan’10] extended the above to generic i.i.d
likelihood models of the form py|z(y;|alx).
@ In the end, GAMP produces a sophisticated iterative thresholding alg,
whose complexity is dominated by one application of A and A" per
iteration with relatively few (e.g., tens) iterations. Very fast!

@ Rigorous large-system analyses (under i.i.d Gaussian A) have
established that (G)AMP follows a state-evolution trajectory with
optimal properties [Bayati/Montanari'10], [Rangan’10].
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GAMP Heuristics (Sum-Product)

py|z(nil[Az]1,¢) px(21)
© Message from y; node to x; node:
Py |z(y2|[Az]2,v) px(22)
~ N via CLT
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To compute Z;(z;), v7(x;), the means and variances of {p;,}r»; suffice,
thus Gaussian message passing!

Remaining problem: we have 2mn messages to compute (too many!).

@ Exploiting similarity among the messages
{pi;}71, GAMP employs a Taylor-series rviz(:[4al.v)
approximation of their difference, whose
error vanishes as m — oo for dense A
(and similar for {p;_,;}"_; as n—00).
Finally, need to compute only O(m+n) ., (Ad). ) g
messages! Pre-n(an)
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GAMP for Phase Retrieval

@ To apply GAMP, we need an appropriate likelihood function
py|z(Yilzi), where r.v. Y represents the noisy magnitude
measurements y; and r.v. Z represents the corresponding noiseless

transform outputs z; £ a?az.

@ For this, we assume the statistical model
yi = &% (z; +w;) with 6; € U[0,27) and w; ~ CN(0, %),
from which we margin out 6; and w; to obtain
1 Quil=1zD? _
py|z(yilzi) = —pem v Io(p)e™” for p
where Iy(-) is the 0""-order modified Bessel function of the first kind.

s 2lyllz]
e Tha

@ See paper for other algorithmic details.
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Numerical Results

For our numerical results we generated
@ the signal xg as k-sparse Bernoulli-circular-Gaussian,

@ the matrix as A = ®F where ® ¢ C™*" is i.i.d circular Gaussian
and F' is the n x n DFT matrix,

@ the (pre-magnitude) noise w as circular white Gaussian,
and we monitored the phase-corrected normalized reconstruction MSE
& — 013

NMSE £ min 5
o ol
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Phase transition

PR-GAMP's empirical success rate, averaged over 500 realizations, was

PrGAMP success@-40dB, rdft, N=512, snr=100dB, avg=500
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where success = {NMSE < 10~%}.
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Comparison to phase-oracle

Comparing the 50%-success contours of PR- and phase-oracle GAMP:

50%-success @-40dB, rdft, N=512, snr=100dB, avg=500
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we see that PR-GAMP requires about 4 x the number of measurements.
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Noise Robustness of PR-GAMP

The median NMSE, measured over 2000 realizations:

50%-NMSE, rdft, N=512, M=256, K=4, avg=2000
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shows that PR-GAMP loses about 3 dB at medium-to-high SNR.
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Compressive Image Recovery

65536 image pixels, 32768 measurements, 30dB SNR:
PR-GAMP (-29.7dB NMSE)
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PR-GAMP runtime: only 11.1 sec.
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Comparison to CPRL [Ohlsson/Yang/Dong/Sastry'12]

Empirical success rate (and runtime) on two toy problems:

(m,n) = (20,32) | (m,n) = (30,48) | (m,n) = (40,64)
k=1 cPrL | 0. 96 (4.9 sec) | 0.97 (51 sec) | 0.99 (291 sec)
PR-GAMP | 0.83 (0.4 sec) | 0.94 (0.3 sec) | 0.99 (0.3 sec)
(m,n) = (20,32) | (m,n)=(30,48) (m,n) = (40, 64)
k=2 cpre | 0.55 (5.8 sec) | 0.55 (58 sec) | 0.58 (316 sec)
PR-GAMP | 0.72 (0.4 sec) | 0.92 (0.3 sec) | 1.0 (0.3 sec)

Notice:

@ CPRL works great with sparsity £ = 1, but poorly when k& > 2.

GAMP instead suffers when problem dimensions are small.

@ CPRL's runtime grows very quickly with problem dimensions!
GAMP’s runtime is negligible for these toy problems.
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Conclusions

@ (Compressive) phase retrieval is a longstanding problem that is
experiencing a rebirth through compressive sensing and convex
relaxation.

@ We proposed a new approach to CPR based on generalized
approximate message passing (GAMP).

@ Empirical results show an excellent phase transition (4xmeas of
phase-oracle), excellent noise robustness (~ 3 dB worse than
phase-oracle), and excellent runtime (many orders of magnitude faster
than convex relaxation).

@ As a practical demonstration, we accurately recovered a 64k-pixel
image from 32k measurements in only 11 seconds.
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