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Phase Retrieval

Goal: Recover signal x0 ∈ C
n from m magnitude-only measurements

y = |Ax0 +w|,

where A ∈ C
m×n is a known linear transform and w ∈ C

m is noise.

Motivation: In many applications, it feasible to measure the intensity,
but not the phase, of the Fourier transform of the signal-of-interest:

X-ray crystallography,
transmission electron microscopy,
coherent diffractive imaging,
astronomical imaging, etc.

Feasibility: To make the solution to y = |Ax| unique (up to a global
phase) w.p.1, m=3n−2 i.i.d Gaussian measurements are necessary
[Finkelstein’04] and m=4n−2 are sufficient [Balan/Casazza/Edidin’06].
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Phase Retrieval: Classical Approaches

Most classical approaches are iterative in nature. For example,

Alternate between...

– projecting Ax̂ onto the magnitude constraint y, yielding ẑ,
– projecting A+ẑ onto an apriori known support set, yielding x̂.

However, due to the non-convexity of the first projection, it is easy for
such algorithms to get trapped in local minima.
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Phase Retrieval: Convex Approaches

Recently, some convex relaxations have been proposed.

– Noting that y2i = |aH
i x|

2 = tr(aia
H
i X) for X = xxH, pose as

“minX�0 rank(X) s.t. tr(aia
H
i X) = y2i for i = 1...m.” (NP hard!)

Relax to “min tr(X) s.t. tr(aia
H
i X) = y2i for i = 1...m,” (convex!)

known as PhaseLift [Candes/Eldar/Strohmer/Voroninski’11].

– Another semidefinite program (with similar performance) known as
PhaseCut was proposed in [Waldspurger/D’Aspremont/Mallat’12].

It was recently shown [Candes/Li’12] that

with very high probability, PhaseLift perfectly recovers an arbitrary x

from m ≥ c0n noiseless measurements, where c0 is a constant,

and PhaseLift can be made robust to noise.
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Compressive Phase Retrieval

Recall that m ≥ 3n− 2 magnitude measurements are needed for
y = |Ax| to have a unique solution for x ∈ C

n.

Sometimes we can only afford m < 3n− 2 magnitude measurements,
in which case the problem becomes one of compressive phase
retrieval.

For successful compressive phase retrieval (CPR), one needs to
leverage additional structure in x, such as sparsity.
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Compressive Phase Retrieval: Prior Work

Assuming knowledge of ‖x0‖1, [Moravec/Romberg/Baraniuk’07]

appended this constraint onto the classical RAAR algorithm, and
used RIP-based arguments to establish that m & k2 log(n/k2)
magnitude measurements suffice for recovery.

However, the algorithm was prone to local minima and slow
convergence. Also, knowledge of ‖x0‖1 is rarely available in practice.

Taking a convex approach, [Ohlsson/Yang/Dong/Sastry’12] proposed
the following generalization of PhaseLift, which they call CPRL:

minX�0 tr(X)+λ‖X‖1 + µ
∑m

i=1

∣

∣ tr(aia
H
i X)− y2i

∣

∣

2
for i = 1...m,

and performed both RIP and mutual coherence analyses. Seems
promising. . .
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Bring out the GAMP

Zed: Bring out the Gimp.

Maynard: Gimp’s sleeping.

Zed: Well, I guess you’re gonna have to go wake him up now, won’t you?

—Pulp Fiction, 1994.

We propose a new approach to CPR based on generalized approximate
message passing (GAMP).

Numerical results show

excellent phase transitions,

excellent NMSE & robustness to noise,

excellent runtime,

with direct application to compressive image retrieval.
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Generalized Approximate Message Passing (GAMP)

The evolution of GAMP:

The original AMP [Donoho/Maleki/Montanari’09] solves the LASSO
problem minx ‖y−Ax‖22 + λ‖x‖1 popular in compressive sensing, i.e.,
MAP estimation under i.i.d Laplacian signal and AWGN.
The Bayesian AMP [Donoho/Maleki/Montanari’10] extended the
above to generic i.i.d signal priors and MMSE estimation.
The generalized AMP [Rangan’10] extended the above to generic i.i.d
likelihood models of the form pY |Z(yi|a

H
i x).

In the end, GAMP produces a sophisticated iterative thresholding alg,
whose complexity is dominated by one application of A and AH per
iteration with relatively few (e.g., tens) iterations. Very fast!

Rigorous large-system analyses (under i.i.d Gaussian A) have
established that (G)AMP follows a state-evolution trajectory with
optimal properties [Bayati/Montanari’10], [Rangan’10].
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GAMP Heuristics (Sum-Product)
pX(x1)

pX(x2)

pX(xn)

x1

x2

xn

p1→1(x1)

pm←n(xn)

pY |Z(y1|[Ax]1, ψ)

pY |Z(y2|[Ax]2, ψ)

pY |Z(ym|[Ax]m, ψ)

...
...

...

1 Message from yi node to xj node:

pi→j(xj) ∝

∫

{xr}r 6=j

pY |Z
(
yi;

≈ N via CLT
︷ ︸︸ ︷∑

r
airxr , ψ

)∏

r 6=j
pi←r(xr)

≈

∫

zi

pY |Z(yi; zi, ψ)N
(
zi; ẑi(xj), ν

z
i (xj)

)
≈N

To compute ẑi(xj), ν
z
i (xj), the means and variances of {pi←r}r 6=j suffice,

thus Gaussian message passing!

Remaining problem: we have 2mn messages to compute (too many!).

2 Exploiting similarity among the messages
{pi←j}

m
i=1, GAMP employs a Taylor-series

approximation of their difference, whose
error vanishes as m→∞ for dense A

(and similar for {pi→j}nj=1 as n→∞).
Finally, need to compute only O(m+n)
messages!

pX(x1)

pX(x2)

pX(xn)

x1

x2

xn

p1→1(x1)

pm←n(xn)

pY |Z(y1; [Ax]1, ψ)

pY |Z(y2; [Ax]2, ψ)

pY |Z(ym; [Ax]m, ψ)

...
...

...
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GAMP for Phase Retrieval

To apply GAMP, we need an appropriate likelihood function
pY |Z(yi|zi), where r.v. Y represents the noisy magnitude
measurements yi and r.v. Z represents the corresponding noiseless
transform outputs zi , aH

i x.

For this, we assume the statistical model

yi = ejθi(zi + wi) with θi ∈ U [0, 2π) and wi ∼ CN (0, νw),

from which we margin out θi and wi to obtain

pY |Z(yi|zi) =
1

πνw
e−

(|yi|−|zi|)
2

νw I0(ρ)e
−ρ for ρ ,

2|y| |z|

νw
,

where I0(·) is the 0th-order modified Bessel function of the first kind.

See paper for other algorithmic details.
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Numerical Results

For our numerical results we generated

the signal x0 as k-sparse Bernoulli-circular-Gaussian,

the matrix as A = ΦF where Φ ∈ C
m×n is i.i.d circular Gaussian

and F is the n× n DFT matrix,

the (pre-magnitude) noise w as circular white Gaussian,

and we monitored the phase-corrected normalized reconstruction MSE

NMSE , min
θ

‖x̂− ejθx0‖
2
2

‖x0‖22
.
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Phase transition

PR-GAMP’s empirical success rate, averaged over 500 realizations, was
prGAMP success@−40dB, rdft, N=512, snr=100dB, avg=500
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where success , {NMSE < 10−4}.
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Comparison to phase-oracle

Comparing the 50%-success contours of PR- and phase-oracle GAMP:
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we see that PR-GAMP requires about 4× the number of measurements.
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Noise Robustness of PR-GAMP

The median NMSE, measured over 2000 realizations:

10 15 20 25 30 35 40 45 50
−70

−60

−50

−40

−30

−20

−10
50%−NMSE, rdft, N=512, M=256, K=4, avg=2000

 

 
prGAMP
poGAMP

N
M
S
E
in

d
B

SNR in dB

shows that PR-GAMP loses about 3 dB at medium-to-high SNR.
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Compressive Image Recovery

65536 image pixels, 32768 measurements, 30dB SNR:
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PR-GAMP runtime: only 11.1 sec.
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Comparison to CPRL [Ohlsson/Yang/Dong/Sastry’12]

Empirical success rate (and runtime) on two toy problems:

k = 1:

(m,n) = (20, 32) (m,n) = (30, 48) (m,n) = (40, 64)

CPRL 0.96 (4.9 sec) 0.97 (51 sec) 0.99 (291 sec)
PR-GAMP 0.83 (0.4 sec) 0.94 (0.3 sec) 0.99 (0.3 sec)

k = 2:

(m,n) = (20, 32) (m,n) = (30, 48) (m,n) = (40, 64)

CPRL 0.55 (5.8 sec) 0.55 (58 sec) 0.58 (316 sec)
PR-GAMP 0.72 (0.4 sec) 0.92 (0.3 sec) 1.0 (0.3 sec)

Notice:

CPRL works great with sparsity k = 1, but poorly when k ≥ 2.
GAMP instead suffers when problem dimensions are small.

CPRL’s runtime grows very quickly with problem dimensions!
GAMP’s runtime is negligible for these toy problems.
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Conclusions

(Compressive) phase retrieval is a longstanding problem that is
experiencing a rebirth through compressive sensing and convex
relaxation.

We proposed a new approach to CPR based on generalized
approximate message passing (GAMP).

Empirical results show an excellent phase transition (4×meas of
phase-oracle), excellent noise robustness (∼ 3 dB worse than
phase-oracle), and excellent runtime (many orders of magnitude faster
than convex relaxation).

As a practical demonstration, we accurately recovered a 64k-pixel
image from 32k measurements in only 11 seconds.
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