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Abstract—In this paper, we propose a novel approach to com- with probability one. Thus, if the signal support is apriori
PfeSSi;{e I?hase ftehtfieval basl_eddon loopy be|ti6f propagation and, known, and constructed such that only one shift and flip is
in particular, on the generalized approximate message passin ; :

(GRMP) algorithm, l\?umerical reSlE)I?s show that the grogose dg feaES|bIe, trr:e signal can be recover:adbulp tho a global |E>hase.OI
PR-GAMP algorithm has excellent phase-transition behavior, Venw Qn unlquengss (upto a_g obal phase) is guaranteed,
noise robustness, and runtime. In particular, for successful there remains the difficult question of how to recover the
recovery of synthetic Bernoulli-circular-Gaussian signals, PR- signal using a practical algorithm, and whether that atgori
GAMP requires ~ 4 times the number of measurements as js robust to the presence of measurement noise. Most @éssic
a phase-oracle version of GAMP and, at moderate to large 5,5r5aches to phase retrieval (e.g., those of Gerchberg and

SNR, the NMSE of PR-GAMP is only ~ 3 dB worse than . N .
that of phase-oracle GAMP. A comparison to the recently Saxton [[8] and Fienup [1]) are iterative and based on alter-

proposed convex-relation approach known as “CPRL” reveals hating projections. For example, it is common to alternate
PR-GAMP’s superior phase transition and orders-of-magnitude between the signal projection of the signal estimatento a
faster runtimes, especially as the problem dimensions increase. known support and the projection of its transform magnisude
When applied to the recovery of a65k-pixel grayscale image § = | Az| onto the observationg. Due to the non-convexity

from 32k randomly masked magnitude measurements, numer- . . .
ical results show a median PR-GAMP runtime of only 13.4 of the latter projection, however, such algorithms canlgasi

seconds. get trapped in local minima[9].
Recently, convex relaxation techniques have been pro-
|. INTRODUCTION posed to solve the phase retrieval problem] [10],] [11],
A. Phase retrieval [12], [13]. There, the first step is to notice thaf =

lafzy|? = tr(a;a}! X,) for rank-one positive-semidefinite

. . . . "
Phaseretrieval [1], i.e., reconstruction of a signal, € C X, 2 zozl!, wherea! denotes thei*® row of A. Thus,

from the magnitudey = |z| of the linear (often Fourier- hase retrieval can be expressed as the optimization ble
based) transformatior = Az, € C™, is a problem P P P iono

“ . H 2 . ”
of great importance in many fields, e.g., opti€s [2], X-ra;fr;]l;n’; E%rrg;i;{r(]Xgnz\}\}ntrgasia“ip)rfa)ls;ﬁ/figrlcl)]&[i,é]' .,rTZI.axes
crystallography [[8], astronomy_[4], speechi [5], and ma non-convex rank term to obtain the convex problem
others. Closely connected to the problem of phase retrieya?. (X)) St tr(aaiX) — o2 fori — 1 N
is the problem ofspectral factorization [6]. miny - tr(X) s.t. tr(a;af’X) = y7fori = 1,...m,

The phase retrieval problem is challenging due to bo}%hmh can be 'recogmzed as a s§m|def|n|te brogram (SDP.)’
: . ) and solved using standard techniques. It was then shown in
the nonlinearity of the mapping betwean andy, as well

AR . ) [14] that, with very high probability, PhaseLift recoversp(to
;S thSnon—u?(laclz:jtZ Ie:npil\l/eei by_”?j Tagggg' Eor exaar;;gle,a global phase) an arbitrany, from m > con measurements
i Td _téco y me m gnit dy _f . aﬁ ; nit-ngf d_ Icmo C {y?}7,, wherec, is a sufficiently large constant, whet is
ylelds the same magnituagstor any u OaUIUSE € & 5 4 random. This result is encouraging because it has been

Although such “global phase ambiguity” is tolerable in mpséhown that, fory — |Az,| to have a unique solution iE™

applications of phase retrieval, more problematic ambiggi , . - P

can result under particular instancesAf For example, ifA glv;i]sﬁ:grzimltiya?gieinedssug?lg]gﬁﬁzilnggaasr?'sTLu?fTiLcieit

is a discrete Fourier transform (DFT) matrix, then all cgeli [16]. Moreover, PhaseLift's recovery was shoviil[14] to be
shifts of a givenz, will yield identical Fourier magnitudes robu.st to additive noise on the squ);red magnituglesThe

y, as will conjugate flips ofcy. But, besides these Va“ants"PhaseCut" approach proposed[i[13] instead opti/mizes ove

other x # x, can also yield the samg in the 1D case. the unknown phases of — Az, yielding a different SDP
In the 2D case, however, it has been shown [7] that re%liat with similar performance ' ’

valued x, can be uniquely recovered (up to global phase,
shift, and flip) from twice-oversampled DFT magnitudes. Compressive phase retrieval

Philip Schniter is supported in part by NSF grant CCF-1083361d T_here exist a_lppllcatlons (SUCh as Brag_g_sz?\mplmg from
DARPA/ONR grant N66001-10-1-4090. periodic crystalline structures [l17]) where it is inconieant



or impossible to taken > 3n — 2 magnitude measurementsThe Generalized-AMP (GAMP) algorithm proposed by Ran-
The case thatn < 3n — 2 can thus be considered aggan [23] then extends the methodology of AMP to the
“compressive phase retrieval,” as coined in [[18]. Due to generalized linear measurement model

the aforementioned problems of nonlinearity and nonupicit m

however, the compressed phase retrieval problem is signifi- y = q(Az +w) € C, @

cantly more difficult than the standard “compressive seg’fsinwhereq(,) is a component-wise nonlinearity. This nonlinear-
problem [19], where the goal is to recovep € C" from ity affords the application to compressive phase retrieval
z = Az € C™ (or a noisy version thereof) withm < n. Both AMP and GAMP can be derived from the perspective
Since compressive phase retrieval is a relatively new (aglbelief propagation [26], a Bayesian inference strategy that
challenging) problem, we are aware of only a few papei$ based on a factorization of the signal posterior jf | )
on the topic (e.g.,[[18],.[17],[T20]). Not surprisingly, $1e into a product of simpler pdfs that, together, uncover the
are all based on exploitinithe additional structure thatex probabi"stic structure in the prob|em_ (Reca” that thstpe
when the signale is sparse or compressible, i.e., the sameior pdf p(x | y) captures everything that can be learned about
structure exploited in standard compressive sensing. Opgrom y under the assumed observation model.) Concretely,
of the first results was given by Moravec, Romberg, anflwe model the signal coefficients and noise samples’
Baraniuk in [18], where it was shown that, foriasparse in (@)-(@) as independent and identically distributed, Isat t
n-length signal;m = O(k*log4n/k?) random 2D Fourier plx) = H;L:1PX($J‘) andp(y | 2) = [1/%, py |z (yi | i) for
measurements suffice for exact reconstruction. However, th 2 Az, then we can factor the posterior pdf as
algorithms proposed in these works leave considerable room
for improvement. For example, the algorithm in][18] exoit -
knowledge of the/; norm of the true signalk,, which is p(@|y) o« ply|)p(e) = prz(yi | [A=]:) pr(xj),
rarely (if ever) available in practice. The work by Marchesi = =t ®)
[17], on the other hand, is based on heuristics that are RR&Iding the factor graph in Fidd 1.
clearly generalizable outside of the applications thaty the
considered. The work by Ohlsson, Yang, Dong, and Sastry
[20Q] is cutting-edge in that it extends the convex PhaseLift
algorithm to exploit sparsity, and performs RIP-based and
mutual-coherence based analyses to derive sufficient con-
ditions on the sparse-signal recovery performance of the
proposed “CPRL’ algorithm. CPRL's complexity, however,
grows rapidly with the problem dimensions. For complete-
ness, we note that Waldspurger, D’Aspremont, and Mallat
mentioned, in[[18], a heuristic modification by which spiyrsi Fig. 1. Factor graph for compressive sensing, with whitelesrcenoting
can be leveraged within PhaseCut, but they did not investigg"dom variables and black squares denoting pdf factors.
the performance of this approach. ) . .
In this paper, we propose a novel approach to compressivén belief propagation[[26], beliefs about the unknown

phase retrieval based on loopy belief propagation and, \iﬂriables are passed among the nodes of the factor graph

articular, on thegeneralized roximate e passing  Until all agree on a common set of beliefs. The set of beliefs
?G AMP) algo ritharrg1 23] P P g passed into a given variable node are then used to deter-

mine the posterior pdf of that variable, or an approximation
thereof. The sum-product algorithin ]27] is perhaps the most
well-known incarnation of belief propagation, wherein the
The approximate message passing (AMP) algorithm wasessages take the form of pdfs and exact posteriors are
recently proposed by Donoho, Maleki, and Montanari [24uaranteed whenever the graph does not have loops. For
[25] for the task estimating a signal vecter € R from graphs with loops, exact inference is known to be NP hard,
linearly compressed and additive-Gaussian-noise caduptaind so loopy belief propagation (LBP) is not guaranteed to

m

py|z(Yi | Zj aij ;) Zj px(x;)

Il. BACKGROUND ONGAMP

measuremertis produce correct posteriors. Still, LBP has shown state-of-
. the-art performance on many problems in, e.g., decoding,
y=Ax+weCm ) computer vision, and compressive sensing [28].

) _ The conventional wisdom surrounding LBP says that ac-

We note that the works [21]L[22] address the problem of redoy  ¢yrate inference is possible only when the circumference of
sparse signals from Fourier-transform magnitudes, but db atulress . . . .
measurement compression. the loops are relatively large. Withl (1D}(2), this would uée

2Here and elsewhere, we ugavhen referring to then measurements that that A is an appropriately constructed sparse matrix, which
are available for signal reconstruction. In the case ofdsesh compressive precludes most interesting cases of Compressive inference
sensing, we model these measurementg as A with bein . . . .

g Y xt - J including compressive phase retrieval. Hence, the recent

additive white Gaussian noise. In the case of (noisy) corspresphase S i : )
retrieval, these measurements instead take the forg of| Az + w)|. realization by Donoho, Maleki, Montanari, and Bayati that



definitions: N that facilitates measurement compression, e.g., a syparsit
P2y p(2ly, BiuP) = T p:y‘IZZ(E’LT))C/(VZ(f*;Lp) (D1) inducing pdf. In addition, one must make a few modifications
Jout(y, B, uP) = Hip(EZ‘y,p{Z\y,ﬁ; uP} —p) (D2) to the algorithm, as described in Sectlon TlI-C.
Gl B p?) = o (LI 1) (D) A. Likelihood
px (@l ) = + px(@) CN (z37,u") (D4) Lo . .
XIR ( ’ \ T pXEz'iCN(z}j;r,m 05 The likelihood py |z (y:|-) that we assign is based on the
gin(r, 1) = Exp{X|7; p* D5 assumed measurement model
Gin (P, 1") = varx | p{X|f;p"} (b6)
initialize: et . -
Vj:2;(1) = users choice, e.g., E{X} (12) yi=e(zitw) fori=1,...,m, )
Véi:./{;gé; - gserscmlce' &g, vartX) E:g wherej £ /=1 is not to be confused with the indek
fort=1,23 .. where {6} are unknown i.i.d phases uniformly distributed
Vi pb(t) = STy a2l (t) (R1) over[0,2r), wherez; = at'z, and wherea!! is thei*" row of
vi:pi(t) = Z}‘zlai;ﬁj(t)p—uf(t) $i(t—1)(R2) A. Essentially, the i.i.d uniform distribution ofy;} makes
Vi 8i(t) = goulys Bi(t), p; (1)) (R3) the phase information if{y;} noninformative, after which
Vi ps(t) = —gou(¥i, Bi(t), g () (R4) it suffi id v th itud h
Vipn(t) = (50 aius ) " (R5) it suffices to consider only the magnitudes o } when
Vj f;.(t) = &;(t) + WE(t) o a0z 3i(t) (R6) inferring «, which are precisely the observed quantities in
Vi pd(t+1) = pi()gn (75 (1), 15 (¢)) (R7) phase retrieval.
Vi &5(t4+1) = gin(75 (1), uj(t)) (R8) The additive noise{w;} is modeled as i.i.d circular-
end Gaussian with mean0 and variance y*. Under this
setup, it can be recognized thak ;e (ylz,0;p") =
TABLE | 0w :
THE GAMP ALGORITHM [23] CN(y; z¢, u*), and thus
w 1 ELI | L y—ze|?
pyiz(ylzpt) = 5 —— do, (5)
T Jo T
LBP-based compressive sensing is not only feasible [24] fathich, after some calculus, reduces to
dense matricesA,.but provably accurateEEEQ]E[BO], can be " 1 _uiope? ., . 20yl ||
recognized as quite a breakthrough. In particular, thegbest Py |z(y|z; p*) = i Io(p)e™ for p = o
lished that, in the large system limit (i.e., asn — co with (6)

m/n fixed) and under i.i.d sub-Gaus_sian the iter_ations (_)f whereIo(-) is the 0*-order modified Bessel function of the

AMP are govern_ed by a state-evolun_on whose fixed pointsist kind. It may be interesting to note that, agrows from

when unique—yields the true posterior means. 0 to oo, the termIy(p)e~* decreases monotonically froin
From a practical viewpoint, the impact of the original AMR, ) - As anticipated, the measurement-channel pdf depends

work [24] was not that LBP can solve the compressive SeNSily on the magnitudes of and =, and not their phases.

ing problem[(1), but that it can solve the problem much faster rpe functionsgou(-, -, -) and gl (-, -, -) defined in steps

and more accurately than other methods, whether CONVEX).(D3) of Tablell can then be computed using
optimization-based, greedy, or Bayesian. To accompligh th

feat, [24] proposed an ingenious set of approximations that Ezy.p{Zly,p; u"}

become accurate in the limit of large densg yielding Jo 2oy iz (ylz w)CN (25 p, i) dz @

an aIg_onthm tha_lt gives accurate r_esults using 015_1I32mn - fc Py 2yl 1 )CN (25 p, pP)dz’

operations per iteration and relatively few iterationsg(e. 1y| 15| $

tens). = (R ¢) + > T (8)
ey Ry g

Remarkably, the “approximate message passing” (AMP)
principles in [24]—including the state evolution—can bend
extended from the compressive sensing probleém (1) to more R

; : VaTZ|YP{Z|Z/»P;Mp}
general compressive inference problems of the fofin (2), Ty " .
as established in_[23]. The GAMP algorithm from [23] is  _ Je 1217 py 2 (yl 2 p*)CN (2 B, p ) dz

summarized in Tablg |, whei@\ (z; 2, u*) is used to denote Jopyz(Wl2's p)CN (2 b, pP)dz!

the circular-Gaussian pdf in variable with mean 2 and —|Ezy,p{Zly, p; u*}?

variance . In th [, w tail how this algorithm : .

ariance e sequel, we detail ho s algo ly[2 PE 1+ 6Ro(0)

allows us to tackle the phase retrieval problem. =
P P (L+pe/pp)? (o /pe +1)2 1/ p +1/pp
I11. PHASE RETRIEVAL GAMP _ |EZ\YP{Z|?J7]5§HP}|2 9)
To apply the GAMP algorithm outlined in Tablé | 0, here
compressive phase retrieval, one must specify a measutemen .
likelihood functionpy | (y:|-) that models the lack of phase Ro(¢) & L(9) and¢ £ 2lyllpl . (10)
information in the observations, and a signal prior pgf(-) Io (o) A




Although the noise variancg” may not be known apri- [for¢=1,2,3...

ori, it can be learned from the observations through an Vi:u(t) =837, lai;Puf () + (1 = B)pf (t—1) (s1)
expectation-maximization (EM)_[31] procedure, similar to alt) = o 0 1y (t) ) (82)
that proposed in [32]. We leave these details to future work. — Vi: pi(t) = 327_ ai;@;(t) — “'(( Vs,(t-1) (S3)
_ Vi : 5,(t) = Ba(t)gout (i, Pi (1), i (£)) + (1-B)3;(t—1)  (S4)
B. Sgnal prior Vi p? (t):_ﬁa(t)gout(ylvpz() f(t)) + (1=B)p; (t—1) (S5)
As for the compressibility-enabling (e.g., sparse) signal i w7 (6) = (7 lagu5 () (S6)
prior px (), it is not expected to be known apriori in practice. 7 * % (? =Pa;(t) + (1 - Bz, (1~ (gg)
However, it can essentially be learned from the compressed. Jm'(:i(l; . (i)) Jr(g ( ETZ )1;( Dy £ ()t)) ESQ;
observationgy using a scheme akin to EM-GM-AMP _[B2]. VJ. ’ /;j-(t-i-l)_ (v ). a g'” ! ®) (S10)
There,px () is modeled as a Gaussian mixture (GM), andenj‘ ! §in "3
the EM procedure is used to learn the GM parameters
(i.e., means, variances, and weights) from the compressed TABLE II

measurementg. It turns out that all of the quantities needed GAMP WITH VARIANCE NORMALIZATION «(t) AND STEPSIZES.
for the E-step of the EM algorithm are already computed byDUR'/g‘/‘gLHfHEmSETE'Jig“;\:ﬁ’fﬁ;l)’p?o): ! S'?OL)’SE;’D'“;?(%E)’ER o
GAMP, making the overall approach very computationally HE BT T
efficient. Structured compressibility-enabling priorsultb

also be used, such as the total-variation norm or structured

sparsity [33], if appropriate. We leave these details torit .

work good” side of the phase transition, we find that there is

rarely a need for re-starts, and for problems that are far on
C. Sepsize, normalization, initialization, and re-starts the “bad” side of the phase transition, we find that such re-

With numerical robustness in mind, we propose a modifffarts are generally a waste of time.
cation of GAMP that normalizes certain terms that grow very IV. NUMERICAL RESULTS
large (or small) as the iterations progress. In particular, . "
definea(t) £ {u?(t)}7, (which tends to grow exponentiaIIyA' Empirical phase transitions
small with ¢), normalize boths;(t) and u(t)—which tend  In this section, we demonstrate the performance of PR-
to grow—by 1/a(t), and normalizeu’; (t)—which tends to GAMP on a wide range of problem settings. Unless otherwise
shrink—by «(t). The resulting normalized quantities arenoted, we generated-sparse length- signal vectorsz,
denoted by underbars in Tallé Il. Under infinite numerica¥ith support chosen uniformly at random, where the nonzero
precision, these normalizations would cancel each other @wefficients were i.i.d zero-mean circular-Gaussian. Véa th
and have no effect. With finite numerical precision, howgvegenerated sensing matrices of the fodn= ®F', where F’
they can help to stabilize the algorithm. was the unitaryh x n one-dimensional DFT matrix, and the

Next we propose a “step-size” modification of GAMP, aglements of® € C™*"™ were chosen i.i.d zero-mean circular-
motivated by the following. In phase retrieval, the cirgula Gaussian (as if_[20]). PR-GAMP had knowledge Afand
Gaussian approximations used within GAMP are mismatch#éte m noisy magnitude measurements= |Ax,+w|, where
to the fact that the likelihooghy |4 (y;i|2) is not circularly w was i.i.d circular-Gaussian, from which it generated the
symmetric in z. For this reason, the steps taken by thestimatex of the true signak,. Performance is then assessed
algorithm can be overly aggressive at times. To counteratsing the phase-corrected normalized mean-squared error
this behavior, we propose to slow down the algorithm using Hw 0|2
a positive stepsized < 1 that is incorporated as shown NMSE £ min =2~ =112
in Table[l. In our experience3 = 0.25 works well. One loll3
consequence of the stepsize modification is the existerfear these experiments, we allowed PR-GAMP up9toe-
of additional state variables like;(¢). To avoid the need starts.
to initialize these variables, we uge = 1 during the first ~ We first study the conditions under which PR-GAMP is
iteration. likely to yield a “successful” recovery, which we define as

For PR-GAMP, we found that it worked well to initializethe event thaNMSE < 10~*. Figure[2 plots the empirical
eachz,;(1) randomly using a zero-mean circular-Gaussiasuccess probability (oves00 independent problem realiza-
distribution of large variance (e.gl0%*), and then set the tions) as a function of signal sparsity and number of
corresponding:$ (1) = var{X} + [Z;(1) — E{X}2. measurements., for fixed signal lengthn = 512 and fixed

When operating near PR-GAMP’s phase transition (seégnal-to-noise rati&NR = || Axo||2/|w]|3 = 100 dB. The
Section[TV=A), it may help to re-start the algorithm fromfigure shows a “phase transition” behavior that separates th
a different random initialization if it seems to have confk,m) plane into two regions: perfect recovery in the top-
verged to a suboptimal solution, e.g., if the squared residdeft and failure in the bottom-right. Given the logarithmic
%Z;L(yi — |af'z|)? is larger than the assumed nois@xes of Fig[B, the near-linearity of the phase transition in
variance ;. However, for problems that are far on thehe figure suggests a near-polynomial relationship between

(11)



PrGAMP 50%-NMSE, rdft, N=512, snr=100dB, avg=500

the signal sparsityk, and the minimum required number of ‘ : ‘ : ‘ ; o
measurementsy, at a fixed signal length. To see how well 204
(versus how often) PR-GAMP is recovering the signal, w
plot the medianlNMSE over the same problem realizations 2
in Fig. [3. There we see that recovery is extremely goc
throughout the region above the phase transition. Overe
Fig.[2 and Fig[B demonstrate that PR-GAMP is indeed car
ble of compressive phase retrieval, i.e., successftit-signal
recovery fromm < 3n — 2 magnitude-only measurements.

For reference, Figl]4 extracts th#%-success contour
from Fig.[2 and compares it to the corresponding conto e
for phase-oracle (PO)-GAMP (i.e., GAMP operating ol
measurements of the forrdxz, + w) calculated from the  *
same problem realizations. There we see that the two phi
transitions have the same slope, but that the PO-GAMP ph:
transition is shifted downward/rightward. Moreover, aselp - A
comparison of the two phase transitions suggests that, for

uccessful recovery, GAMP requires abdutmes the number Fig. 3. MedianNMSE for PR-GAMP recovery of am = 512-length

; _ ; ; _ ernoulli-complex-Gaussian signal, versus signal spafsiand number of
of magnitude-only observations than magnitude plus'@ha%easurementm, from magnitude-only measurementsSiiR = 100 dB.

observations.
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sparsity k Fig. 4. 50%-success contours for PR-GAMP and phase-oraélMfs
recovery of ann = 512-length Bernoulli-complex-Gaussian signal, versus
Fig. 2. Empirical probability of successful PR-GAMP recovef ann=  Signal sparsityc and number of measurements, at SNR = 100 dB.
512-length Bernoulli-complex-Gaussian signal, versus sigpalsityk and
number of measurements, from magnitude-only measurementsSiNR =
100 dB.

real-valued measurements as PR-GAMP. At smaller values of
SNR, we see that PR-GAMP does return reasonable signal
estimates, although the gap betweenNfgISE and that of

PO-GAMP is wider.
We now demonstrate the robustness of PR-GAMP to non-

trivial levels of additive white circular-Gaussian noigein  C. Comparison to CPRL
the magnitude-only measuremepts= | Az +w|. As above, In this section, we present numerical results that compare

we use au = 512-length Bernoulli-complex-Gaussian signalpg_g AMP to the state-of-the-art convex-relaxation apgnoa
— =4 H 1

but now we focus on the casé, m) = (4,256), which is , compressive phase retrieval, CPRLI[20]. To implement

on the “good” side of the phase-transition in Hi§. 3. Fiddre éPRL, we used the public-domain matlab code posted by

shows mediarNMSE performance ove2000 independent o authorf which invokes the optimization package c¥ix.

problem realizations asafgnctionﬁNRé | Azol|3/[w]]3. As before, we examine the probability of success (i.e.,
At larger values ofSNR (i.e., SNR > 30 dB), we see

that PR-GAMP performs aboutdB worse than PO-GAMP,  ants:/amww.control.isy.liu.sefohlsson/CPR zip
which is intuitive given that the latter observes twice aswyna “http:/icvxr.com/cvx/

B. Robustness to noise
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(m,n) = (30,48)

(m,n) = (40, 64)

CPRL
PR-GAMP

—*— PR-GAMP
—5— PO-GAMP

0.96 (4.9 sec)
0.83 (0.4 sec)

0.97 (51 sec)
0.94 (0.3 sec)

0.99 (291 sec)
0.99 (0.3 sec)

—20F B B B 4

|

w

S
T

TABLE Il

SUCCESS RATE AND MEDIAN RUNTIME OVER100 PROBLEM
REALIZATIONS FOR SEVERAL COMBINATIONS OF SIGNAL LENGTHn,
MEASUREMENT LENGTHm, AND SIGNAL SPARSITYk = 1.
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(m,n) = (20, 32)

(m,n) = (30,48)

(m,n) = (40, 64)

NMSE [dB]

CPRL
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0.55 (5.8 sec)
0.72 (0.4 sec)

0.55 (58 sec)
0.92 (0.3 sec)

0.58 (316 sec)
1.0 (0.3 sec)

TABLE IV
SUCCESS RATE AND MEDIAN RUNTIME OVER100 PROBLEM
REALIZATIONS FOR SEVERAL COMBINATIONS OF SIGNAL LENGTHn,
MEASUREMENT LENGTHm, AND SIGNAL SPARSITY k = 2.
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Fig. 5. NMSE for PR-GAMP and phase-oracle GAMP recovery of arD. Practical image recovery

n = 512-length k£ = 4-sparse Bernoulli-complex-Gaussian signal, versus _. . . .
SNR, from m =256 measurements. The performance shown is the median Finally, we dem_C)nStrate . practical Image recovery with
over 2000 independent problem realizations. PR-GAMP. For this experiment, the signal, was the

n = 65536-pixel grayscale image shown on the left of Hiyy. 6,
which has a sparsity ratio df/n ~ 0.1. Since this image

H’s real and non-negative, we used a Bernoulli-truncated-
paussian prior for PR-GAMP (as opposed to the Bernoulli-
circular-Gaussian prior used in previous experiments).

In addition, we used a linear transformatigh ¢ C™*"

~
~

NMSE < 10~%) of k-sparse Bernoulli-complex-Gaussia
signal recovery fromm magnitude only measurements o
the formy = |Axo + w|, where A = ®F for i.i.d circular-
Gaussian® and DFT F, and wherew is i.i.d circular-
Gaussian noise yielding00 dB SNR.

of the form
Table[Il shows empirical success probability and runtime A— [31 ] [F ] [Mﬁ
(on a standard personal computer) for a problem with sparsit B, F| | M|’

k =1, signal lengthsn € {32,48,64}, and compressive \ hare F was a 2D DET matrix of sizer x n, M, and
measurement lengths € {20, 30,40}. The table .shows thaF M., were diagonal “masking’ matrices of sizex n with
both CPRL and PR-GAMP were successful in recoVeringagonal entries drawn fronf0, 1}, and B, and B. were
the signal at all tested combinations i, n), although an4eq matrices of siZ& x n with 10 nonzero i.i.d circular-
for smaller values ofm,n) PR-GAMP failed on a small G, ssjan entries per colufiithe reason for includingVZ;
percentage of realizations because the central-limirtma and B; was to “randomize” the DFT, i.e., to avoid unicity
approximations used' within AMP are not well justified &fsq 65 sych as shift and flip ambiguities. Moreover, unhilee t
such small problem sizes. On the other hand, Table Ill Showsnse random matrid used previously for randomization,

that the runtime of CPRL increases rapidly with the signq{/[i and B; are sparse matrices that—together with an FFT
dimensionn, whereas that of PR-GAMP remains orders-of-

: X implementation ofF—led to a fast implementation oA.
magmtudesmaller and independent(of, n) over the range To eliminate the need for the expensive matrix mul-
tested herfd.

tiplications with the elementwise-squared versions Af
Table[TV repeats the experiment carried out in Téble Il, buind A", as specified in steps (S1) and (S6) of Table Il

at the sparsitys = 2. For this more difficult problem, the ta- GAMP was run in “uniform variance” mode, meaning that

ble shows that CPRL is much less successful at recovering '{m%’(t) ™ were approximated by (t) 2 % Z?Ll 1k (),

signal than PR-GAMP. Meanwhile, the runtimes reported é&nd similar was done with{ pes ()}, {M;(t) "_,, and

Table[1M again show CPRL complexity scaling rapidly with{u;@(t) .y The result is that (S1)-(S2) becomé'(t) =

the problem dimension, whereas GAMP complexity stays| A||2. % (t)/m+ (1 — B)u? (t—1) = a(t) and (S6) becomes

orders-of-magnitude smaller and constant over the tested;) — (||A||§,ﬂ,u5(t)/n)71.

problem dimensions. In fact, the comparisons conducted Mg pefore, the observations took the fogm= |Azo +w),

this section were restricted to very small problem dimemsioy, ;¢ now the noise variance was adjusted to the nontrivial

precisely due to the complexity scaling of CPRL. level of SNR = 30 dB. To demonstrateompressive image

12)

8In particular, the diagonal aM; hadn/2 ones positioned uniformly at
5Although the complexity of GAMP is known to scale &(mn) for random, and the diagonal &> was its complement, so thatf; + My =
this choice ofA, the values ofn andn in Table[Il are too small for this I. Also, since eachB; was a wide matrix, its nonzero band was wrapped
scaling law to manifest. from bottom to top when necessary.



recovery, onlym = n/2 = 32768 measurements were used.[7] M. Hayes, “The reconstruction of a multidimensional setgeefrom

Running PR-GAMP onl00 problem realizations (each with
different randomA andw, and allowing at mos$ re-starts
per realization), 89% success ratavas observed, where for

this noisy problem “success” was definedBISE < —27

8

dB (i.e., no more thaf dB worse tharSNR_l). See the right o]
side of Fig[® for a typical PR-GAMP recovery. Furthermore,
among the successful realizations, the median runtime was
only 13.4 secondsTo put this number in perspective, wel10]
recall Tabled Tl and_1V, which showed CPRL consuming

~ 300 seconds on toy problems of sizer, n) = (40,64).

original PR-GAMP (-29.7 dB NMSE)

150

50 100 150 200 250 50 100 150 200 250

Fig. 6. Original image (left) and a typical PR-GAMP-recovéright) from
m = n/2 measurements @NR = 30 dB, which took11.1 seconds.

V. CONCLUSIONS

In this paper, we proposed a novel approach to compress[lve
phase retrieval based on the generalized approximate mes-
sage passing (GAMP) algorithm. Numerical results show

transition behavior, noise robustness, and runtime. Itigear

ular, for successful recovery of synthetic Bernoulli-alar-

Gaussian signals, PR-GAMP requirest times the number
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that the proposed PR-GAMP algorithm has excellent phase
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phase retrieval from squared output measurements via senitielefin
programming,”arXiv:1111.6323, Nov. 2011.

Y. M. Lu and M. Vetterli, “Sparse spectral factorizatioUnicity and
reconstruction algorithms,” iRroc. |EEE Int. Conf. Acoust. Speech &
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of measurements as phase-oracle GAMP and, at modefatg K. Jaganathan, S. Oymak, and B. Hassibi, “Recovery afsepa-D sig-

to large SNR, the NMSE of PR-GAMP is only~ 3 dB

worse than that of phase-oracle GAMP. For recovery of[gﬁ]
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magnitude measurements, PR-GAMP was successi4
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