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Abstract—In this paper, we propose a novel approach to com-
pressive phase retrieval based on loopy belief propagation and,
in particular, on the generalized approximate message passing
(GAMP) algorithm. Numerical results show that the proposed
PR-GAMP algorithm has excellent phase-transition behavior,
noise robustness, and runtime. In particular, for successful
recovery of synthetic Bernoulli-circular-Gaussian signals, PR-
GAMP requires ≈ 4 times the number of measurements as
a phase-oracle version of GAMP and, at moderate to large
SNR, the NMSE of PR-GAMP is only ≈ 3 dB worse than
that of phase-oracle GAMP. A comparison to the recently
proposed convex-relation approach known as “CPRL” reveals
PR-GAMP’s superior phase transition and orders-of-magnitude
faster runtimes, especially as the problem dimensions increase.
When applied to the recovery of a65k-pixel grayscale image
from 32k randomly masked magnitude measurements, numer-
ical results show a median PR-GAMP runtime of only 13.4

seconds.

I. I NTRODUCTION

A. Phase retrieval

Phase retrieval [1], i.e., reconstruction of a signalx0 ∈ C
n

from the magnitudesy = |z| of the linear (often Fourier-
based) transformationz = Ax0 ∈ C

m, is a problem
of great importance in many fields, e.g., optics [2], X-ray
crystallography [3], astronomy [4], speech [5], and many
others. Closely connected to the problem of phase retrieval
is the problem ofspectral factorization [6].

The phase retrieval problem is challenging due to both
the nonlinearity of the mapping betweenx0 andy, as well
as thenon-unicity implied by this mapping. For example,
if x = x0 yields a giveny = |Ax|, then x = cx0 also
yields the same magnitudesy for any unit-modulusc ∈ C.
Although such “global phase ambiguity” is tolerable in most
applications of phase retrieval, more problematic ambiguities
can result under particular instances ofA. For example, ifA
is a discrete Fourier transform (DFT) matrix, then all cyclic-
shifts of a givenx0 will yield identical Fourier magnitudes
y, as will conjugate flips ofx0. But, besides these variants,
other x 6= x0 can also yield the samey in the 1D case.
In the 2D case, however, it has been shown [7] that real-
valuedx0 can be uniquely recovered (up to global phase,
shift, and flip) from twice-oversampled DFT magnitudes,
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with probability one. Thus, if the signal support is apriori
known, and constructed such that only one shift and flip is
feasible, the signal can be recovered up to a global phase.

Even when uniqueness (up to a global phase) is guaranteed,
there remains the difficult question of how to recover the
signal using a practical algorithm, and whether that algorithm
is robust to the presence of measurement noise. Most classical
approaches to phase retrieval (e.g., those of Gerchberg and
Saxton [8] and Fienup [1]) are iterative and based on alter-
nating projections. For example, it is common to alternate
between the signal projection of the signal estimatex̂ onto a
known support and the projection of its transform magnitudes
ŷ = |Ax̂| onto the observationsy. Due to the non-convexity
of the latter projection, however, such algorithms can easily
get trapped in local minima [9].

Recently, convex relaxation techniques have been pro-
posed to solve the phase retrieval problem [10], [11],
[12], [13]. There, the first step is to notice thaty2i =
|aH

i x0|2 = tr(aia
H
i X0) for rank-one positive-semidefinite

X0 , x0x
H
0 , whereaH

i denotes theith row of A. Thus,
phase retrieval can be expressed as the optimization problem
“minX�0 rank(X) s.t. tr(aia

H
i X) = y2i for i = 1, ...,m.”

The approach known as “PhaseLift” [10], [12] relaxes
the non-convex rank term to obtain the convex problem
“minX�0 tr(X) s.t. tr(aia

H
i X) = y2i for i = 1, ...,m,”

which can be recognized as a semidefinite program (SDP),
and solved using standard techniques. It was then shown in
[14] that, with very high probability, PhaseLift recovers (up to
a global phase) an arbitraryx0 from m ≥ c0n measurements
{y2i }mi=1, wherec0 is a sufficiently large constant, whenA is
i.i.d random. This result is encouraging because it has been
shown that, fory = |Ax0| to have a unique solution inCn

(with probability one and up to a global phase),m=3n−2
measurements are necessary [15] andm=4n−2 are sufficient
[16]. Moreover, PhaseLift’s recovery was shown [14] to be
robust to additive noise on the squared magnitudesy2i . The
“PhaseCut” approach proposed in [13] instead optimizes over
the unknown phases ofz = Ax, yielding a different SDP,
but with similar performance.

B. Compressive phase retrieval

There exist applications (such as Bragg sampling from
periodic crystalline structures [17]) where it is inconvenient



or impossible to takem ≥ 3n− 2 magnitude measurements.
The case thatm < 3n − 2 can thus be considered as
“compressive phase retrieval,” as coined in [18]. Due to
the aforementioned problems of nonlinearity and nonunicity,
however, the compressed phase retrieval problem is signifi-
cantly more difficult than the standard “compressive sensing”
problem [19], where the goal is to recoverx0 ∈ C

n from
z = Ax0 ∈ C

m (or a noisy version thereof) withm < n.
Since compressive phase retrieval is a relatively new (and

challenging) problem, we are aware of only a few papers
on the topic (e.g., [18], [17], [20]). Not surprisingly, they
are all based on exploiting the additional structure that exists
when the signalx is sparse1 or compressible, i.e., the same
structure exploited in standard compressive sensing. One
of the first results was given by Moravec, Romberg, and
Baraniuk in [18], where it was shown that, for ak-sparse
n-length signal,m = O(k2 log 4n/k2) random 2D Fourier
measurements suffice for exact reconstruction. However, the
algorithms proposed in these works leave considerable room
for improvement. For example, the algorithm in [18] exploits
knowledge of theℓ1 norm of the true signalx0, which is
rarely (if ever) available in practice. The work by Marchesini
[17], on the other hand, is based on heuristics that are not
clearly generalizable outside of the applications that they
considered. The work by Ohlsson, Yang, Dong, and Sastry
[20] is cutting-edge in that it extends the convex PhaseLift
algorithm to exploit sparsity, and performs RIP-based and
mutual-coherence based analyses to derive sufficient con-
ditions on the sparse-signal recovery performance of the
proposed “CPRL” algorithm. CPRL’s complexity, however,
grows rapidly with the problem dimensions. For complete-
ness, we note that Waldspurger, D’Aspremont, and Mallat
mentioned, in [13], a heuristic modification by which sparsity
can be leveraged within PhaseCut, but they did not investigate
the performance of this approach.

In this paper, we propose a novel approach to compressive
phase retrieval based on loopy belief propagation and, in
particular, on thegeneralized approximate message passing
(GAMP) algorithm [23].

II. BACKGROUND ON GAMP

The approximate message passing (AMP) algorithm was
recently proposed by Donoho, Maleki, and Montanari [24],
[25] for the task estimating a signal vectorx ∈ R

N from
linearly compressed and additive-Gaussian-noise corrupted
measurements2

y = Ax+w ∈ C
m. (1)

1We note that the works [21], [22] address the problem of recovering
sparse signals from Fourier-transform magnitudes, but do not address
measurement compression.

2Here and elsewhere, we usey when referring to them measurements that
are available for signal reconstruction. In the case of standard compressive
sensing, we model these measurements asy = Ax + w with w being
additive white Gaussian noise. In the case of (noisy) compressive phase
retrieval, these measurements instead take the form ofy = |Ax+w|.

The Generalized-AMP (GAMP) algorithm proposed by Ran-
gan [23] then extends the methodology of AMP to the
generalized linear measurement model

y = q(Ax+w) ∈ C
m, (2)

whereq(·) is a component-wise nonlinearity. This nonlinear-
ity affords the application to compressive phase retrieval.

Both AMP and GAMP can be derived from the perspective
of belief propagation [26], a Bayesian inference strategy that
is based on a factorization of the signal posterior pdfp(x |y)
into a product of simpler pdfs that, together, uncover the
probabilistic structure in the problem. (Recall that the poste-
rior pdf p(x |y) captures everything that can be learned about
x from y under the assumed observation model.) Concretely,
if we model the signal coefficientsx and noise samplesw
in (1)-(2) as independent and identically distributed, so that
p(x) =

∏n
j=1 pX(xj) andp(y | z) = ∏m

i=1 pY |Z(yi | zi) for
z , Ax, then we can factor the posterior pdf as

p(x |y) ∝ p(y |x)p(x) =
m
∏

i=1

pY |Z

(

yi
∣

∣ [Ax]i
)

n
∏

j=1

pX(xj),

(3)

yielding the factor graph in Fig. 1.

pY |Z(yi |
∑

j aijxj) pX(xj)xj

Fig. 1. Factor graph for compressive sensing, with white circles denoting
random variables and black squares denoting pdf factors.

In belief propagation [26], beliefs about the unknown
variables are passed among the nodes of the factor graph
until all agree on a common set of beliefs. The set of beliefs
passed into a given variable node are then used to deter-
mine the posterior pdf of that variable, or an approximation
thereof. The sum-product algorithm [27] is perhaps the most
well-known incarnation of belief propagation, wherein the
messages take the form of pdfs and exact posteriors are
guaranteed whenever the graph does not have loops. For
graphs with loops, exact inference is known to be NP hard,
and so loopy belief propagation (LBP) is not guaranteed to
produce correct posteriors. Still, LBP has shown state-of-
the-art performance on many problems in, e.g., decoding,
computer vision, and compressive sensing [28].

The conventional wisdom surrounding LBP says that ac-
curate inference is possible only when the circumference of
the loops are relatively large. With (1)-(2), this would require
that A is an appropriately constructed sparse matrix, which
precludes most interesting cases of compressive inference,
including compressive phase retrieval. Hence, the recent
realization by Donoho, Maleki, Montanari, and Bayati that



definitions:
pZ|Y,P (z|y, p̂;µp) =

pY |Z(y|z) CN (z;p̂,µp)
∫
z′ pY |Z(y|z′) CN (z′;p̂,µp)

(D1)

gout(y, p̂, µ
p) = 1

µp

(

EZ|Y,P {Z|y, p̂;µp} − p̂
)

(D2)

g′out(y, p̂, µ
p) = 1

µp

(

varZ|Y,P {Z|y,p̂;µp}

µp − 1
)

(D3)

pX|R(x|r̂;µr) =
pX(x) CN (x;r̂,µr)∫

x′ pX(x′) CN (x′;r̂,µr)
(D4)

gin(r̂, µ
r) = EX|R{X|r̂;µr} (D5)

g′in(r̂, µ
r) = varX|R{X|r̂;µr} (D6)

initialize:
∀j : x̂j(1) = user’s choice, e.g., E{X} (I1)
∀j : µx

j (1) = user’s choice, e.g., var{X} (I2)
∀i : ŝi(0) = 0 (I3)

for t = 1, 2, 3, . . .
∀i : µp

i (t) =
∑n

j=1 |aij |
2µx

j (t) (R1)
∀i : p̂i(t) =

∑n
j=1aij x̂j(t)− µp

i (t) ŝi(t−1)(R2)
∀i : ŝi(t) = gout(yi, p̂i(t), µ

p
i (t)) (R3)

∀i : µs
i (t) = −g′out(yi, p̂i(t), µ

p
i (t)) (R4)

∀j : µr
j (t) =

(
∑m

i=1 |aij |
2µs

i (t)
)−1 (R5)

∀j : r̂j(t) = x̂j(t) + µr
j (t)

∑m
i=1a

∗
ij ŝi(t) (R6)

∀j : µx
j (t+1) = µr

j (t)g
′
in(r̂j(t), µ

r
j (t)) (R7)

∀j : x̂j(t+1) = gin(r̂j(t), µ
r
j (t)) (R8)

end

TABLE I
THE GAMP ALGORITHM [23]

LBP-based compressive sensing is not only feasible [24] for
dense matricesA, but provably accurate [29], [30], can be
recognized as quite a breakthrough. In particular, they estab-
lished that, in the large system limit (i.e., asm,n → ∞ with
m/n fixed) and under i.i.d sub-GaussianA, the iterations of
AMP are governed by a state-evolution whose fixed point—
when unique—yields the true posterior means.

From a practical viewpoint, the impact of the original AMP
work [24] was not that LBP can solve the compressive sens-
ing problem (1), but that it can solve the problem much faster
and more accurately than other methods, whether convex-
optimization-based, greedy, or Bayesian. To accomplish this
feat, [24] proposed an ingenious set of approximations that
become accurate in the limit of large denseA, yielding
an algorithm that gives accurate results using only≈ 2mn
operations per iteration and relatively few iterations (e.g.,
tens).

Remarkably, the “approximate message passing” (AMP)
principles in [24]—including the state evolution—can be
extended from the compressive sensing problem (1) to more
general compressive inference problems of the form (2),
as established in [23]. The GAMP algorithm from [23] is
summarized in Table I, whereCN (z; ẑ, µz) is used to denote
the circular-Gaussian pdf in variablez with mean ẑ and
varianceµz. In the sequel, we detail how this algorithm
allows us to tackle the phase retrieval problem.

III. PHASE RETRIEVAL GAMP

To apply the GAMP algorithm outlined in Table I to
compressive phase retrieval, one must specify a measurement
likelihood functionpY |Z(yi|·) that models the lack of phase
information in the observations, and a signal prior pdfpX(·)

that facilitates measurement compression, e.g., a sparsity-
inducing pdf. In addition, one must make a few modifications
to the algorithm, as described in Section III-C.

A. Likelihood

The likelihoodpY |Z(yi|·) that we assign is based on the
assumed measurement model

yi = ejθi(zi + wi) for i = 1, . . . ,m, (4)

where j ,
√
−1 is not to be confused with the indexj,

where {θi} are unknown i.i.d phases uniformly distributed
over [0, 2π), wherezi , aH

i x, and whereaH
i is theith row of

A. Essentially, the i.i.d uniform distribution on{θi} makes
the phase information in{yi} noninformative, after which
it suffices to consider only the magnitudes of{yi} when
inferring x, which are precisely the observed quantities in
phase retrieval.

The additive noise{wi} is modeled as i.i.d circular-
Gaussian with mean0 and varianceµw. Under this
setup, it can be recognized thatpY |Z,Θ(y|z, θ;µw) =
CN (y; zejθ, µw), and thus

pY |Z(y|z;µw) =
1

2π

∫ 2π

0

1

πµw
e−

1
µw |y−zejθ|2dθ, (5)

which, after some calculus, reduces to

pY |Z(y|z;µw) =
1

πµw
e−

(|y|−|z|)2

µw I0(ρ)e
−ρ for ρ ,

2|y| |z|
µw

(6)

whereI0(·) is the0th-order modified Bessel function of the
first kind. It may be interesting to note that, asρ grows from
0 to ∞, the termI0(ρ)e

−ρ decreases monotonically from1
to 0. As anticipated, the measurement-channel pdf depends
only on the magnitudes ofy andz, and not their phases.

The functionsgout(·, ·, ·) and g′out(·, ·, ·) defined in steps
(D2)-(D3) of Table I can then be computed using

EZ|Y,P {Z|y, p̂;µp}

=

∫

C
z pY |Z(y|z;µw)CN (z; p̂, µp)dz

∫

C
pY |Z(y|z′;µw)CN (z′; p̂, µp)dz′

(7)

=

( |y|
1 + µw/µp

R0(φ) +
|p̂|

µp/µw + 1

)

p̂

|p̂| (8)

and

varZ|Y,P {Z|y, p̂;µp}

=

∫

C
|z|2 pY |Z(y|z;µw)CN (z; p̂, µp)dz

∫

C
pY |Z(y|z′;µw)CN (z′; p̂, µp)dz′

− |EZ|Y,P {Z|y, p̂;µp}|2

=
|y|2

(1 + µw/µp)2
+

|p̂|2
(µp/µw + 1)2

+
1 + φR0(φ)

1/µw + 1/µp

− |EZ|Y,P {Z|y, p̂;µp}|2 (9)

where

R0(φ) ,
I1(φ)

I0(φ)
andφ ,

2|y| |p̂|
µw + µp

. (10)



Although the noise varianceµw may not be known apri-
ori, it can be learned from the observations through an
expectation-maximization (EM) [31] procedure, similar to
that proposed in [32]. We leave these details to future work.

B. Signal prior

As for the compressibility-enabling (e.g., sparse) signal
prior pX(·), it is not expected to be known apriori in practice.
However, it can essentially be learned from the compressed
observationsy using a scheme akin to EM-GM-AMP [32].
There,pX(·) is modeled as a Gaussian mixture (GM), and
the EM procedure is used to learn the GM parameters
(i.e., means, variances, and weights) from the compressed
measurementsy. It turns out that all of the quantities needed
for the E-step of the EM algorithm are already computed by
GAMP, making the overall approach very computationally
efficient. Structured compressibility-enabling priors could
also be used, such as the total-variation norm or structured
sparsity [33], if appropriate. We leave these details to future
work.

C. Stepsize, normalization, initialization, and re-starts

With numerical robustness in mind, we propose a modifi-
cation of GAMP that normalizes certain terms that grow very
large (or small) as the iterations progress. In particular,we
defineα(t) , {µp

i (t)}mi=1 (which tends to grow exponentially
small with t), normalize bothŝi(t) and µs

i (t)—which tend
to grow—by 1/α(t), and normalizeµr

j(t)—which tends to
shrink—by α(t). The resulting normalized quantities are
denoted by underbars in Table II. Under infinite numerical
precision, these normalizations would cancel each other out
and have no effect. With finite numerical precision, however,
they can help to stabilize the algorithm.

Next we propose a “step-size” modification of GAMP, as
motivated by the following. In phase retrieval, the circular-
Gaussian approximations used within GAMP are mismatched
to the fact that the likelihoodpY |Z(yi|zi) is not circularly
symmetric in zi. For this reason, the steps taken by the
algorithm can be overly aggressive at times. To counteract
this behavior, we propose to slow down the algorithm using
a positive stepsizeβ < 1 that is incorporated as shown
in Table II. In our experience,β = 0.25 works well. One
consequence of the stepsize modification is the existence
of additional state variables likēxj(t). To avoid the need
to initialize these variables, we useβ = 1 during the first
iteration.

For PR-GAMP, we found that it worked well to initialize
each x̂j(1) randomly using a zero-mean circular-Gaussian
distribution of large variance (e.g.,104), and then set the
correspondingµx

j (1) = var{X}+ |x̂j(1)− E{X}|2.
When operating near PR-GAMP’s phase transition (see

Section IV-A), it may help to re-start the algorithm from
a different random initialization if it seems to have con-
verged to a suboptimal solution, e.g., if the squared residual
1
m

∑m
i=1(yi − |aH

i x̂|)2 is larger than the assumed noise
varianceµw. However, for problems that are far on the

for t=1, 2, 3...
∀i : µp

i (t) = β
∑n

j=1 |aij |
2µx

j (t) + (1− β)µp
i (t−1) (S1)

α(t) = 1
m

∑m
i=1 µ

p
i (t) (S2)

∀i : p̂i(t) =
∑n

j=1aij x̂j(t)−
µ
p
i
(t)

α(t)
ŝi(t−1) (S3)

∀i : ŝi(t) = βα(t)gout(yi, p̂i(t), µ
p
i (t)) + (1−β)ŝi(t−1) (S4)

∀i : µs
i
(t) =−βα(t)g′out(yi, p̂i(t), µ

p
i (t)) + (1−β)µs

i
(t−1) (S5)

∀j : µr
j
(t) =

(
∑m

i=1 |aij |
2µs

i
(t)

)−1 (S6)

∀j : x̄j(t) = βx̂j(t) + (1−β)x̄j(t−1) (S7)
∀j : r̂j(t) = x̄j(t) + µr

j
(t)

∑m
i=1a

∗
ij ŝi(t) (S8)

∀j : µx
j (t+1) = α(t)µr

j
(t)g′in

(

r̂j(t), α(t)µ
r
j
(t)

)

(S9)

∀j : x̂j(t+1) = gin
(

r̂j(t), α(t)µ
r
j
(t)

)

(S10)

end

TABLE II
GAMP WITH VARIANCE NORMALIZATION α(t) AND STEPSIZEβ.

DURING THE FIRST ITERATION(t = 1), β = 1 IS USED IN ORDER TO

AVOID THE NEED TO INITIALIZE µp
i (0), µ

s
i
(0), AND x̄j(0).

“good” side of the phase transition, we find that there is
rarely a need for re-starts, and for problems that are far on
the “bad” side of the phase transition, we find that such re-
starts are generally a waste of time.

IV. N UMERICAL RESULTS

A. Empirical phase transitions

In this section, we demonstrate the performance of PR-
GAMP on a wide range of problem settings. Unless otherwise
noted, we generatedk-sparse length-n signal vectorsx0

with support chosen uniformly at random, where the nonzero
coefficients were i.i.d zero-mean circular-Gaussian. We then
generated sensing matrices of the formA = ΦF , whereF
was the unitaryn× n one-dimensional DFT matrix, and the
elements ofΦ ∈ C

m×n were chosen i.i.d zero-mean circular-
Gaussian (as in [20]). PR-GAMP had knowledge ofA and
them noisy magnitude measurementsy = |Ax0+w|, where
w was i.i.d circular-Gaussian, from which it generated the
estimatêx of the true signalx0. Performance is then assessed
using the phase-corrected normalized mean-squared error

NMSE , min
θ

‖x0 − ejθx̂‖22
‖x0‖22

. (11)

For these experiments, we allowed PR-GAMP up to9 re-
starts.

We first study the conditions under which PR-GAMP is
likely to yield a “successful” recovery, which we define as
the event thatNMSE < 10−4. Figure 2 plots the empirical
success probability (over500 independent problem realiza-
tions) as a function of signal sparsityk and number of
measurementsm, for fixed signal lengthn = 512 and fixed
signal-to-noise ratioSNR , ‖Ax0‖22/‖w‖22 = 100 dB. The
figure shows a “phase transition” behavior that separates the
(k,m) plane into two regions: perfect recovery in the top-
left and failure in the bottom-right. Given the logarithmic
axes of Fig. 3, the near-linearity of the phase transition in
the figure suggests a near-polynomial relationship between



the signal sparsity,k, and the minimum required number of
measurements,m, at a fixed signal lengthn. To see how well
(versus how often) PR-GAMP is recovering the signal, we
plot the medianNMSE over the same problem realizations
in Fig. 3. There we see that recovery is extremely good
throughout the region above the phase transition. Overall,
Fig. 2 and Fig. 3 demonstrate that PR-GAMP is indeed capa-
ble of compressive phase retrieval, i.e., successfulC

n-signal
recovery fromm < 3n− 2 magnitude-only measurements.

For reference, Fig. 4 extracts the50%-success contour
from Fig. 2 and compares it to the corresponding contour
for phase-oracle (PO)-GAMP (i.e., GAMP operating on
measurements of the formAx0 + w) calculated from the
same problem realizations. There we see that the two phase
transitions have the same slope, but that the PO-GAMP phase
transition is shifted downward/rightward. Moreover, a closer
comparison of the two phase transitions suggests that, for
uccessful recovery, GAMP requires about4 times the number
of magnitude-only observations than magnitude-plus-phase
observations.

prGAMP success@−40dB, rdft, N=512, snr=100dB, avg=500
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Fig. 2. Empirical probability of successful PR-GAMP recovery of ann=
512-length Bernoulli-complex-Gaussian signal, versus signalsparsityk and
number of measurementsm, from magnitude-only measurements atSNR =
100 dB.

B. Robustness to noise

We now demonstrate the robustness of PR-GAMP to non-
trivial levels of additive white circular-Gaussian noisew in
the magnitude-only measurementsy = |Ax0+w|. As above,
we use an = 512-length Bernoulli-complex-Gaussian signal,
but now we focus on the case(k,m) = (4, 256), which is
on the “good” side of the phase-transition in Fig. 3. Figure 5
shows medianNMSE performance over2000 independent
problem realizations as a function ofSNR , ‖Ax0‖22/‖w‖22.
At larger values ofSNR (i.e., SNR ≥ 30 dB), we see
that PR-GAMP performs about3 dB worse than PO-GAMP,
which is intuitive given that the latter observes twice as many

prGAMP 50%−NMSE, rdft, N=512, snr=100dB, avg=500

 

 

1  2  4  8  16 32 64 128 256 512

16  

32  

64  

128 

256 

512 

1024

2048

dB

−120

−100

−80

−60

−40

−20

0

sparsity k

m
ea

su
re

m
en

ts
m

Fig. 3. MedianNMSE for PR-GAMP recovery of ann = 512-length
Bernoulli-complex-Gaussian signal, versus signal sparsity k and number of
measurementsm, from magnitude-only measurements atSNR = 100 dB.
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Fig. 4. 50%-success contours for PR-GAMP and phase-oracle GAMP
recovery of ann = 512-length Bernoulli-complex-Gaussian signal, versus
signal sparsityk and number of measurementsm, at SNR = 100 dB.

real-valued measurements as PR-GAMP. At smaller values of
SNR, we see that PR-GAMP does return reasonable signal
estimates, although the gap between itsNMSE and that of
PO-GAMP is wider.

C. Comparison to CPRL

In this section, we present numerical results that compare
PR-GAMP to the state-of-the-art convex-relaxation approach
to compressive phase retrieval, CPRL [20]. To implement
CPRL, we used the public-domain matlab code posted by
the authors,3 which invokes the optimization package CVX.4

As before, we examine the probability of success (i.e.,

3http://www.control.isy.liu.se/∼ohlsson/CPR.zip
4http://cvxr.com/cvx/

http://www.control.isy.liu.se/~ohlsson/CPR.zip
http://cvxr.com/cvx/
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Fig. 5. NMSE for PR-GAMP and phase-oracle GAMP recovery of an
n = 512-length k = 4-sparse Bernoulli-complex-Gaussian signal, versus
SNR, from m=256 measurements. The performance shown is the median
over 2000 independent problem realizations.

NMSE < 10−4) of k-sparse Bernoulli-complex-Gaussian
signal recovery fromm magnitude only measurements of
the formy = |Ax0 +w|, whereA = ΦF for i.i.d circular-
GaussianΦ and DFT F , and wherew is i.i.d circular-
Gaussian noise yielding100 dB SNR.

Table III shows empirical success probability and runtime
(on a standard personal computer) for a problem with sparsity
k = 1, signal lengthsn ∈ {32, 48, 64}, and compressive
measurement lengthsm ∈ {20, 30, 40}. The table shows that
both CPRL and PR-GAMP were successful in recovering
the signal at all tested combinations of(m,n), although
for smaller values of(m,n) PR-GAMP failed on a small
percentage of realizations because the central-limit-theorem
approximations used within AMP are not well justified at
such small problem sizes. On the other hand, Table III shows
that the runtime of CPRL increases rapidly with the signal
dimensionn, whereas that of PR-GAMP remains orders-of-
magnitude smaller and independent of(m,n) over the range
tested here.5

Table IV repeats the experiment carried out in Table III, but
at the sparsityk = 2. For this more difficult problem, the ta-
ble shows that CPRL is much less successful at recovering the
signal than PR-GAMP. Meanwhile, the runtimes reported in
Table IV again show CPRL complexity scaling rapidly with
the problem dimension, whereas GAMP complexity stays
orders-of-magnitude smaller and constant over the tested
problem dimensions. In fact, the comparisons conducted in
this section were restricted to very small problem dimensions
precisely due to the complexity scaling of CPRL.

5Although the complexity of GAMP is known to scale asO(mn) for
this choice ofA, the values ofm andn in Table III are too small for this
scaling law to manifest.

(m,n) = (20, 32) (m,n) = (30, 48) (m,n) = (40, 64)

CPRL 0.96 (4.9 sec) 0.97 (51 sec) 0.99 (291 sec)
PR-GAMP 0.83 (0.4 sec) 0.94 (0.3 sec) 0.99 (0.3 sec)

TABLE III
SUCCESS RATE AND MEDIAN RUNTIME OVER100 PROBLEM

REALIZATIONS FOR SEVERAL COMBINATIONS OF SIGNAL LENGTHn,
MEASUREMENT LENGTHm, AND SIGNAL SPARSITYk = 1.

(m,n) = (20, 32) (m,n) = (30, 48) (m,n) = (40, 64)

CPRL 0.55 (5.8 sec) 0.55 (58 sec) 0.58 (316 sec)
PR-GAMP 0.72 (0.4 sec) 0.92 (0.3 sec) 1.0 (0.3 sec)

TABLE IV
SUCCESS RATE AND MEDIAN RUNTIME OVER100 PROBLEM

REALIZATIONS FOR SEVERAL COMBINATIONS OF SIGNAL LENGTHn,
MEASUREMENT LENGTHm, AND SIGNAL SPARSITYk = 2.

D. Practical image recovery

Finally, we demonstrate practical image recovery with
PR-GAMP. For this experiment, the signalx0 was the
n = 65536-pixel grayscale image shown on the left of Fig. 6,
which has a sparsity ratio ofk/n ≈ 0.1. Since this image
is real and non-negative, we used a Bernoulli-truncated-
Gaussian prior for PR-GAMP (as opposed to the Bernoulli-
circular-Gaussian prior used in previous experiments).

In addition, we used a linear transformationA ∈ C
m×n

of the form

A =

[

B1

B2

] [

F

F

] [

M1

M2

]

, (12)

where F was a 2D DFT matrix of sizen × n, M1 and
M2 were diagonal “masking” matrices of sizen × n with
diagonal entries drawn from{0, 1}, andB1 and B2 were
banded matrices of sizem2 ×n with 10 nonzero i.i.d circular-
Gaussian entries per column.6 The reason for includingM i

andBi was to “randomize” the DFT, i.e., to avoid unicity
issues such as shift and flip ambiguities. Moreover, unlike the
dense random matrixΦ used previously for randomization,
M i andBi are sparse matrices that—together with an FFT
implementation ofF—led to a fast implementation ofA.

To eliminate the need for the expensive matrix mul-
tiplications with the elementwise-squared versions ofA

and AH, as specified in steps (S1) and (S6) of Table II,
GAMP was run in “uniform variance” mode, meaning that
{µp

i (t)}mi=1 were approximated byµp(t) , 1
m

∑m
i′=1 µ

p
i′(t),

and similar was done with{µs

i
(t)}mi=1, {µr

j(t)}nj=1, and
{µx

j (t)}nj=1. The result is that (S1)-(S2) becomeµp(t) =
β‖A‖2Fµx(t)/m+(1−β)µp(t−1) = α(t) and (S6) becomes
µr(t) =

(

‖A‖2Fµs(t)/n
)−1

.
As before, the observations took the formy = |Ax0+w|,

but now the noise variance was adjusted to the nontrivial
level of SNR = 30 dB. To demonstratecompressive image

6In particular, the diagonal ofM1 hadn/2 ones positioned uniformly at
random, and the diagonal ofM2 was its complement, so thatM1+M2 =
I. Also, since eachBi was a wide matrix, its nonzero band was wrapped
from bottom to top when necessary.



recovery, onlym = n/2 = 32768 measurements were used.
Running PR-GAMP on100 problem realizations (each with
different randomA andw, and allowing at most5 re-starts
per realization), a89% success ratewas observed, where for
this noisy problem “success” was defined asNMSE < −27
dB (i.e., no more than3 dB worse thanSNR−1). See the right
side of Fig. 6 for a typical PR-GAMP recovery. Furthermore,
among the successful realizations, the median runtime was
only 13.4 seconds. To put this number in perspective, we
recall Tables III and IV, which showed CPRL consuming
∼ 300 seconds on toy problems of size(m,n) = (40, 64).
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PR-GAMP (-29.7 dB NMSE)

Fig. 6. Original image (left) and a typical PR-GAMP-recovery(right) from
m = n/2 measurements atSNR = 30 dB, which took11.1 seconds.

V. CONCLUSIONS

In this paper, we proposed a novel approach to compressive
phase retrieval based on the generalized approximate mes-
sage passing (GAMP) algorithm. Numerical results showed
that the proposed PR-GAMP algorithm has excellent phase
transition behavior, noise robustness, and runtime. In partic-
ular, for successful recovery of synthetic Bernoulli-circular-
Gaussian signals, PR-GAMP requires≈ 4 times the number
of measurements as phase-oracle GAMP and, at moderate
to large SNR, the NMSE of PR-GAMP is only≈ 3 dB
worse than that of phase-oracle GAMP. For recovery of a
real-valued65532-pixel image from32768 randomly masked
magnitude measurements, PR-GAMP was successful89%
of the time, with a median runtime of only13.4 seconds.
Comparison to the state-of-the-art convex relaxation CPRL
revealed PR-GAMPs superior phase transition and runtimes
that were many orders-of-magnitude faster.

REFERENCES

[1] J. R. Fienup, “Phase retrieval algorithms: A comparison,”Appl. Optics,
vol. 21, pp. 2758–2769, Aug. 1982.

[2] A. Walther, “The question of phase retrieval in optics,”Optica Acta,
vol. 10, no. 1, pp. 41–49, 1963.

[3] R. P. Millane, “Phase retrieval in crystallography and optics,” J. Optical
Soc. America A, vol. 7, pp. 394–411, Mar. 1990.

[4] J. C. Dainty and J. R. Fienup, “Phase retrieval and image construction
for astronomy,” inImage Recovery: Theory and Application (H. Stark,
ed.), ch. 7, pp. 231–275, New York: Academic Press, 1987.

[5] L. Rabiner and B. H. Huang,Fundamentals of Speech Recognition.
Englewood Cliffs, NJ: Prentice-Hall, 1993.

[6] A. Sayed and T. Kailath, “A survey of spectral factorization methods,”
Numer. Linear Algebra Appl., vol. 8, no. 6-7, pp. 467–496, 2001.

[7] M. Hayes, “The reconstruction of a multidimensional sequence from
the phase or magnitude of its Fourier tranform,”IEEE Trans. Acoust.
Speech & Signal Process., vol. 30, pp. 140–154, 1982.

[8] R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the
determination of the phase from image and diffraction plane pictures,”
Optika, vol. 35, no. 2, pp. 237–246, 1972.

[9] H. H. Bauschke, P. L. Combettes, and D. R. Luke, “Phase retrieval,
error reduction algorithm, and Fienup variants: a view from convex
optimization,”J. Optical Soc. America A, vol. 19, pp. 1334–1345, July
2002.

[10] A. Chai, M. Moscoso, and G. Papanicolaou, “Array imagingusing
intensity-only measurements,”Inverse Problems, vol. 27, no. 1, pp. 1–
16, 2011.

[11] E. J. Cand̀es, Y. C. Eldar, T. Strohmer, and V. Voroninski, “Phase
retrieval via matrix completion,”arXiv:1109.0573, Sept. 2011.

[12] E. J. Cand̀es, T. Strohmer, and V. Voroninski, “Phase lift: Exact
and stable signal recovery from magnitude measurements via convex
programming,”arXiv:1109.4499, Sept. 2011.

[13] I. Waldspurger, A. D’Aspremont, and S. Mallat, “Phase recovery,
MaxCut and complex semidefinite programming,”arXiv:1206.0102,
June 2012.

[14] E. J. Cand̀es and X. Li, “Solving quadratic equations via
PhaseLift when there are about as many equations as unknowns,”
arXiv:1208.6247, Aug. 2012.

[15] J. Finkelstein, “Pure-state informationally complete and “really” com-
plete measurements,”Phys. Rev. A, vol. 70, pp. 052107–052110, Nov.
2004.

[16] R. Balan, P. G. Casazza, and D. Edidin, “On signal reconstruction
without noisy phase,”Appl. Computational Harmonic Anal., vol. 20,
pp. 345–355, 2006.

[17] S. Marchesini, “Ab initio compressive phase retrieval,”
arXiv:0809.2006, Sept. 2008.

[18] M. L. Moravec, J. K. Romberg, and R. Baraniuk, “Compressive phase
retrieval,” in SPIE Conf. Series, vol. 6701, (San Diego, CA), Aug.
2007.

[19] M. A. Davenport, M. F. Duarte, Y. C. Eldar, and G. Kutyniok,
“Introduction to compressed sensing,” inCompressed Sensing: Theory
and Applications (Y. C. Eldar and G. Kutyniok, eds.), Cambridge Univ.
Press, 2012.

[20] H. Ohlsson, A. Y. Yang, R. Dong, and S. S. Sastry, “Compressive
phase retrieval from squared output measurements via semidefinite
programming,”arXiv:1111.6323, Nov. 2011.

[21] Y. M. Lu and M. Vetterli, “Sparse spectral factorization: Unicity and
reconstruction algorithms,” inProc. IEEE Int. Conf. Acoust. Speech &
Signal Process., (Prague, Czech Republic), pp. 5976–5979, Mar. 2011.

[22] K. Jaganathan, S. Oymak, and B. Hassibi, “Recovery of sparse 1-D sig-
nals from the magnitudes of their Fourier transform,”arXiv:1206.0102,
June 2012.

[23] S. Rangan, “Generalized approximate message passing forestimation
with random linear mixing,” inProc. IEEE Int. Symp. Inform. Thy.,
(Saint Petersburg, Russia), Aug. 2011. (See alsoarXiv:1010.5141).

[24] D. L. Donoho, A. Maleki, and A. Montanari, “Message passing
algorithms for compressed sensing,”Proc. Nat. Acad. Sci., vol. 106,
pp. 18914–18919, Nov. 2009.

[25] D. L. Donoho, A. Maleki, and A. Montanari, “Message passing
algorithms for compressed sensing: I. Motivation and construction,”
in Proc. Inform. Theory Workshop, (Cairo, Egypt), pp. 1–5, Jan. 2010.

[26] J. Pearl,Probabilistic Reasoning in Intelligent Systems. San Mateo,
CA: Morgan Kaufman, 1988.

[27] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs
and the sum-product algorithm,”IEEE Trans. Inform. Theory, vol. 47,
pp. 498–519, Feb. 2001.

[28] B. J. Frey and D. J. C. MacKay, “A revolution: Belief propagation
in graphs with cycles,” inProc. Neural Inform. Process. Syst. Conf.,
(Denver, CO), pp. 479–485, 1997.

[29] M. Bayati and A. Montanari, “The dynamics of message passing on
dense graphs, with applications to compressed sensing,”IEEE Trans.
Inform. Theory, vol. 57, pp. 764–785, Feb. 2011.

[30] M. Bayati, M. Lelarge, and A. Montanari, “Universalityin polytope
phase transitions and iterative algorithms,” inProc. IEEE Int. Symp.
Inform. Thy., (Boston, Ma), pp. 1–5, June 2012.

[31] A. Dempster, N. M. Laird, and D. B. Rubin, “Maximum-likelihood



from incomplete data via the EM algorithm,”J. Roy. Statist. Soc.,
vol. 39, pp. 1–17, 1977.

[32] J. P. Vila and P. Schniter, “Expectation-maximization Gaussian-mixture
approximate message passing,”arXiv:1207.3107, July 2012.

[33] P. Schniter, “Turbo reconstruction of structured sparse signals,” inProc.
Conf. Inform. Science & Syst., (Princeton, NJ), pp. 1–6, Mar. 2010.


	Introduction
	Phase retrieval
	Compressive phase retrieval

	Background on GAMP
	Phase Retrieval GAMP
	Likelihood
	Signal prior
	Stepsize, normalization, initialization, and re-starts

	Numerical Results
	Empirical phase transitions
	Robustness to noise
	Comparison to CPRL
	Practical image recovery

	Conclusions
	References

