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ABSTRACT

This report shows through simple examples important characteristics of the behavior of CMA applied to
fractionally spaced equalization. Specifically, it demonstrates that in the presence of noise or when perfect
equalizability is not attainable (due to length restrictions on the equalizer), the CMA-FSE cost function is
multi-modal and contains false minima. This observation indicates that proper initialization is necessary
for CMA-FSE to converge to the optimal solution. This is particularly important in light of the fact
that sub-optimal solutions may not sufficiently open the eye for successful transfer to decision-directed
equalization.

1 Introduction

The objective of this report is to illustrate via simple examples the behavior of the Constant
Modulus Algorithm (CMA) used to blindly adapt a fractionally-spaced equalizer (FSE). This
effort is motivated by the need for a comprehensive theory of CMA convergence, as found for
the popular least mean squares algorithm (LMS), due to the recent demand for inexpensive, yet
effective, blind equalization techniques (for broadcast and uncooperative communications).
Most of the analysis on CMA found in the literature is based on the following assumptions:

Al. Length The equalizer is sufficiently long to perfectly equalize the channel (zero-forcing
solution). In the case of a baud-spaced equalizer (BSE), the equalizer must be infinitely
long. In the case of a FSE, the equalizer must be at most one 7'/2-spaced tap shorter than
the the length of the channel.

A2. Invertibility The channel must be invertible. In the case of a BSE, there may be no roots
on the unit circle, while for a FSE, there may be no common subchannel roots.

A3. Source distribution The source is sub-gaussian, with kurtosis less than 3. Gaussian
sources, with kurtosis equal to 3, or sources with kurtosis greater than three do not permit
equalization of the channel.

A4. Source correlation The source is i.i.d.
A5. Noise The channel introduces no noise.

These assumptions enable analysis of the algorithm but often restrict the communications system
model to impractical settings. Some work, however, has been done towards understanding the
behavior of CMA when these conditions are violated. [1] breaks assumptions (A3) and (A4),



[4] deals with assumption (A2), [3] breaks assumption (Al), and [2] attacks the problem in

assumption (A5).

This report aims at violating these assumptions as well. In particular, it focuses on the
length assumption (A1) and briefly discusses the invertibility (A2) and noise (A5) assumptions.

2 Derivation of the Fractionally-Spaced CMA Cost Function

In this section we will derive an expression for the CMA cost function Jeoara(fo,---, fn) in
equalizer parameter space for a real source of arbitrary kurtosis in the presence of noise. Key

variables are denoted as below.
s(k) — T-spaced source (system input)

¢; — T'/2-spaced channel impulse response coefficient, s = 0--- M

(e)

. €
— even subchannel channel coefficients: c;

(0)
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cz(-o) — 0odd subchannel channel coefficients: ¢;”’ = ¢oj41,1=0--- M,

fi — T'/2-spaced equalizer impulse response coefficient, i =0--- N

fi(e) — even subchannel equalizer coefficients: f,-(e) = fo;,1=0---Ng

fi(o) — odd subchannel equalizer coefficients: fi(o) = foi+1,2=0---N,

h; — T-spaced combined channel/equalizer impulse response coefficients, i =0- - -

n(k) — channel noise sampled every T'/2 seconds
n{¢)(k) — on-baud noise samples: n(®) (k) = n(2k)
n{°) (k) — off-baud noise samples: n(% (k) = n(2k + 1)

y(k) — T-spaced system output

f — equalizer impulse response vector, f = (fo,---, fn)!
g — channel impulse response vector, g = (go,---,gnm)’
h - combined channel/equalizer impulse response vector, h = (hg,---,hp)’

The quantities o2 and o2 will be used to refer to the source variance and noise variance, respec-
tively. Similarly, E[s(k)*] and E[n(k)*] refer to the source and noise fourth moments. Finally,

we can define source modulus, source kurtosis, and noise kurtosis (respectively) as
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Note that for a unit-variance M-PAM source with equiprobable symbols, the kurtosis is
M S MET (A + 20)
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Since it can be shown that the combined baud spaced channel/equalizer combination is the
sum of two subchannels, each composed of alternating (i.e. even and odd) fractionally-spaced
coefficients,
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we can express the system output in terms of the baud-spaced channel/equalizer parameters h;
and the subchannel taps fz-(e) and fi(o)

P Ne No
yk) = Y histk—i)+ 3 OOk —i) + 3 FOnO (k- i) (7)

Alternatively, we can combine the last two baud-spaced terms in (7) into one fractionally spaced
term, which simplifies the subsequent derivation. Thus the output

P N
> his(k—i)+ Y fin(k — i) (8)
i=0 i=0
The CMA cost function can be expressed in terms of the system output as follows.
Joma = Elp—y* (k)] 9)
= p* —2pEly’ (k)] + E[y* ()] (10)
= K3(07)? — 2503 E[y* (k)] + Ely* ()] (11)

Solving for its components, we can start with E[y?(k)]:

E[y* (k)] =

P N 2
(Z hzs(k - Z) + Z fm(k - Z)) ] (12)
1=0
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Assuming the signal and noise are mutually independent white processes,

Els(k —t)n(k —j)] = 0foralli,j (13)
E[s(k —i)s(k—j)] = o2fori=j (14)
= Ofori#j (15)
En(k —i)n(k—j)] = o2fori=j (16)
= Ofori#j (a7)
and therefore the expectation in (12) reduces to
p
El?(k)] = o) ki +o, Z 7 (18)
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In expanding E[y*(k)], it is useful to define the temporary quantities

P

A(k) = > his(k—1) (19)
=0
N

B(k) = Y fin(k—1) (20)
=0

where

Thus we can write the following:

Ely'(k)] = E[(A(k)+ B(k))'] (21)
= E[A'K) +44°(k)B(k)
+ 6A4%(k) B2 (k) + 4A(k)B® (k) + B (k)] (22)

Note that the second and forth terms can be discarded (assuming zero-mean and independent
noise and source) since

E[A™(k)B™(k)] = E[A™(k)])E[B"(k)] =0 for n or m odd (23)
which leaves
Ely'(k)] = E[A(k)] + 6E[A (k)| E[B* (k)] + E[B* (k)] (24)
Using (13) through (17) and the fact that
E[s(k —i)s(k —j)s(k —Ds(k —m)] = (o2 fori=j#1=m
= ()2 fori=1#j=m
(o2 fori=m#j=1
= E[s(k)*]fori=j=1=m
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we obtain the expressions

E[A%(k)] = iUfh? (29)
1;0

E[B* (k)] = Y onf? (30)
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BIAYK)] = 3)_ Y Rihi(0d)? + ) hiEls(k)*) (31)
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It is convenient to express these in terms of the source kurtosis ks and a (gaussian) noise kurtosis
Kn = 3. This results in

B = (@2 3ff[h%h§—h;*]+mfjh§] )
=0 j5=0 1=0
I N]N N

EB'(K)] = (02?3 [/ -1 +m X f ]
| i=0;=0 i=0
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i=0 j=0

Finally, equations (29) (30) (33) and (34) can be combined to yield

P P N
E[y4(k)] _ 2 [322};2}12—1—(%5—3)2}13 ‘f‘GU?UrQLZh?ijQ
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and collecting the terms of the CMA cost function gives

Joma = K2(0%)? — 2k407 l22h2+022f

[322};%2 —3) ih;*

1=07=0 =0

+ 60202 ZhQZfJ +3(o ZZf, i (36)
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3 Illustrative Examples of Fractionally-Spaced CM A Cost Func-
tions

Using (36), we may now visually study the shape of the CMA surface as a function of a two-
tap FSE. Our first example, shown in Fig. 1, uses all five assumptions above. Channel g; =
(0.2,0.5,1,—0.1)* has no common subchannel roots, no noise, the source is white with kurtosis
ks = 1, and two taps are enough to perfectly equalize the four-tap channel when off-baud (odd)
output samples are chosen. Choosing off-baud samples requires solving the system

g1 9o fo 1 0
or 37
<93 92><f1> <0> <1> 0
while choosing on-baud (even) samples requires an approximate answer to the system
go O f 1 0 0
g2 9 ( fO ) =10, | 1] o [0]. (38)
0 g3 ! 0 0 1

With all assumptions maintained, according to [5] [6], all CMA minima should be global and
should perfectly equalize the channel. Looking at the CMA cost function for the channel in Fig.



Figure 1: CMA-FSE cost function for channel g; = (0.2,0.5,1,—0.1)t. Global minima of Joya =
0 at £ = =4(1.9231,0.1923)! yielding overall channel-FSE response h = =+(1,0)!, and at f =
+(—0.3846,0.9615)¢ yielding overall response h = +(0,1)!. MMSE solution indicated by the “x”.

1 this is readily verfied. Notice that Joar4 has 9 stationary points. At position (0,0) there is a
maximum, and there are four minima for overall channel-FSE combinations +(1,0) and £(0,1).
Between each one of these minima is a saddle point, totaling four saddle points in all.

Next, we investigate the assumption concerning common subchannel roots by choosing the
channel gy which leads to the CMA surface in Fig. 2. This channel, g = (0.01,1,0.01, —1)?,
with roots {—99.98, —1.0102,0.9901}, has an ill-conditioned convolution matrix requiring an
equalizer with large coefficients (i.e. high norm). Since the subchannel roots are nearly repeated
and not exactly repeated, the channel is still equalizable, and the CMA cost surface resembles
a "stretched” version of that in Fig. 1.

4 Examples of Fractionally-Spaced CMA Cost Functions in the
Presence of Noise

Next, we observe the effect of noise on the CMA cost function. Using the same channels as
the previous examples, we obtain Fig.s 3, 4, and 5. For channel g, the effect of the noise is to
compress the CMA “bowl”, shrinking the convex regions about the minima and increasing the
costs at the minima. Since noise gain is proportional to the norm of the equalizer, the minima
nearest to the origin (e.g., f ~ £(0.9326,0.1365)") sustain the least increase in cost, remaining
global minima. Consequently, the other pair of minima become local minima. Note that the
equalizer initializations f = £(1,0) will converge to these false minima.

For channel g, with near-common subchannel roots, a similar phenomenon is seen: addition
of noise leads to shrinking of the CMA “bowl]”. Because of the near repetition of roots and the
high noise gain inherent in the solutions, a small addition of noise (e.g. 40 dB SNR) results in a
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Figure 2: CMA-FSE cost function for channel g = (0.01,1,0.01, —1)%. Global minima of Jopa = 0
at £ = £(0.5,50)¢ yielding overall channel-FSE response h = +(1,0)¢, and at f = +(—0.5,50) yielding
overall response h = £(0,1)!. Note the extreme scaling of the axes. MMSE solution indicated by the
“*”‘
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Figure 3: CMA-FSE cost function for channel g; = (0.2,0.5,1.0,—0.1)! with SNR = 7.0 dB. Local
minima of Jopa = 0.5722 near £ = +(0.9326,0.1365)" yielding an approximate overall channel-FSE
response h = +(0.4936,0.0432), and global minima of Joapa = 0.3859 near f = (—0.1914,0.6897)¢
yielding overall response h = +(0.0422, 0.7088)¢. MMSE solution indicated by the “x”.



significant reduction in the norm of the CMA equalizer solutions. Due to the symmetry in the
channel, the discrimination of the two pairs of minima into local and global is not seen.
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Figure 4: CMA-FSE cost function for channel g; = (0.01,1,0.01,—1)! with SNR = 40 dB.
Global minima of Joya = 0.3785 near f = =£(0.4399,28.1609)! yielding overall channel-FSE re-
sponse h = +(0.7215,—0.1582)%, and near f = +(—0.4399,28.1609)! yielding overall response h =
+(—0.1582,0.7215)¢. Note the extreme scaling of the axes. MMSE solution indicated by the “x”.

Adding a moderate amount of noise to the near-common subchannel-root example (e.g. 7
dB SNR, as in Fig. 3) it is clear that the CMA cost function becomes quite distorted. What
was once 4 distinct minima become a single pair yielding closed-eye solutions. This is shown
in Fig. 5. In effect, the equalizer is compromised more towards noise reduction than towards
zero-forcing equalization.

5 Example of an Undermodelled Fractionally-Spaced CMA Cost
Function

Finally we turn to the problem of most concern: the case when the FSE is not sufficiently long
to perfectly equalize the channel. For clarity, the effects of noise will be omitted in this example.
Here are some questions on the behavior of CMA for this case:

e By using an undermodelled FSE, do local minima appear in the cost function?

e For which channel/FSE combination delay does CMA open the eye (if it does open the
eye)?

e How far from the minimum mean square error (MMSE) solution are the CMA solutions?

e Which initializations converge to the global minimum?
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Figure 5: CMA-FSE cost function for channel g; = (0.01,1,0.01, —1) with SNR = 7 dB. Global minima
of Joyma = 0.45 near f = (+0.45,0.0)! yielding overall channel-FSE response h = +(0.45, —0.45)!. Note

(132

the proportional scaling of the axes. MMSE solution indicated by the “x”.

The example in Fig. 6 may provide insights into some of these questions. We first confirm
the fact that the CMA minima are no longer perfect: there exist a pair of global minima at
f ~ +(—0.7910,0.7328)!, with an FSE setting leading to an open-eye response (for BPSK) h =
+(—0.1640,0.8119,0.2082)* and a pair of false minima at f = +(1.8481,0.1121)* with an almost
closed-eye response h = +(0.5656, —0.0727,0.4257)¢. Note that the equalizer initializations
f = £(1,0) will converge to these false minima.

In order to find a connection with the MMSE design, we calculate for each system delay ¢
the MMSE equalizer fj:

2.1368 ~0.8889 1.3504
fo= ( 0.0285 ) f = ( 0.8148 ) 2 = < 0.3647 ) ’ (39)

along with the corresponding channel/FSE combination hs:

0.6439 —0.1852 0.4416
hy=| —0.1852 | ,h; = 0.9037 yho = | 0.2296 |, (40)
0.4416 0.2296 0.4524

and the resulting mean square error, MSE;,
MSEy = 0.3561, MSE; = 0.0963, MSE; = 0.5476. (41)

From these calculations and the cost function shown in Fig. 6, one could hypothesize that in
the case of an undermodelled FSE, the global CMA minima are located near the MMSE minima,
which correspond to the optimum delays. Thus, the global minima are close to f; and the local
minima, are closer to fy and f;. However, there still remains the question of whether spurious



local minima (i.e. not clearly associated with any MMSE solution) ever appear when the FSE
is undermodelled.

If we can establish that all CMA minima are close to a particular MMSE minimum, then it
may be possible to devise a way to initialize CMA so as to converge to the global minimum —
the minimum supposedly associated with the MMSE solution optimized over all possible system
delays.

Figure 6: CMA-FSE cost function for channel g = (0.1,0.3,1.0,—0.1,—0.5,0.2)®. Global min-
ima of Joyma = 0.4861 near f = +(1.8481,0.1121)¢ yielding overall channel-FSE response h =
+(0.5656, —0.0727,0.4257)¢, and local minima of Joara = 0.2631 near £ = +(—0.7910,0.7328)¢ yielding
overall response h = 4(—0.1640,0.8119,0.2082):. Note the the x’s locate the MMSE solutions corre-
sponding to optimum system delays, and that the x’s locate the MMSE solutions for other delays.

6 Conclusion

Various examples have shown the existance of local minima. Should equalizer initialization be
chosen within the region of attraction of any of these local minima, the CMA-FSE algorithm
will ill-converge. This is potentially disastrous when such false minima correspond to closed-
eye solutions. This emphasizes the need for techniques that avoid false minima or, conversely,
converge to the global minimum.

7 Appendix: MATLAB Code

% CMA_err_surf.m
h
% This program plots the MSE and CMA cost contours of 2-tap BSEs/FSEs
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for a specified channel, in the presence of noise, and for a white
source of specified kurtosis. In addition, it plots the major
and minor axes of the contours of the MSE surface, as well as the
Wiener equalizers for various system delays. The solution
corresponding to the optimal delay (or one of them, should there
be more than one) is indicated by an asterisk.

Phil Schniter

Blind Equalization Research Group
Cornell University

last modified 9/30/96
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% user defined source parameters 7%
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sigma2_s = 1; % signal power
kappa = 1.0; 7% source kurtosis

Dot tohototolototo o totoToToto ToTotofoTo o foTo o foTo To o JoTo o Jo o oo To 1o fo o o o T o o o T o o
% user defined channels and related parameters %
Dot tolototohototo o totoTototoTototofoto o foTo o foToTo o ToTo o To o oo Toto oo o o Ja o o o T o o

clear v;

% THESE PARAMETERS MUST BE SUPPLIED FOR EACH SIMULATION:

Y

% useFSE : {0,1} corresponds to {BSE,FSE}

% B : channel impulse response

% sigma2_n : noise variance

% range_f1 : +/- span of contour plot along 1st equalizer parameter
% range_£f2 : +/- span of contour plot along 2nd equalizer parameter
% v : (optional : user-defined levels of contour plot)

yA

% SIMPLY UN-COMMENT ONE OF THE EXAMPLES BELOW, OR ADD YOUR OWN...

% BSE channel

%useFSE=0;

%B = [0.5,-0.3,0.25];

%v=[0.3 0.4 0.52 0.54 0.58 0.6 0.8 4 20]; %BSE
%sigma2_n = 0.0; % FSE1

%range_f1 = 2.0; ) grid span along f1
%range_f2 = 2.0; 7 grid span along f2

%[0.0600 -1.0733]; 0.5188;

%[-1.6397 -0.9326]; 0.2628;

% FSE1l: Perfectly Equalizable
%useFSE=1;
%B = [0.2,0.5,1,-0.1]; % FSE1 & FSE3
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%v=[0.3 0.4 0.52 0.54 0.58 0.6 0.8 4 20]; %FSE1
%sigma2_n = 0.0; % FSE1

%range_f1 = 2.5; 7 grid span along f1l

%range_f2 = 2.5; 7, grid span along f2

% FSE2: Nearly Reflected Roots
Y%useFSE=1;

%B = [0.01 1 0.01 -1.0]7;

%v=[0.3 0.4 0.52 0.8 4 20]; %FSE2
%sigma2_n = 0.0; % FSE1

%range_f1 = 1.5; 7 grid span along f1l
%range_f2 = 150.0; J grid span along £2

% FSE3: Perfectly Equalizable with noise
%useFSE=1;

%»B = [0.2, 0.5, 1.0, -0.1]; % FSE1 & FSE3

%v = [0.4 0.54, 0.58, 0.6, 0.8 4,20]; ' FSE3
%sigma2_n = 0.2; % FSE3

%range_f1 = 2.5; I grid span along f1
hrange_f£2 2.5; % grid span along f2
%[1.3285; 0.4343]; 0.5073;

%[-1.0990; 0.7969]; 0.1341;

% FSE4: Nearly Reflected Roots with a little noise
Y%useFSE=1;

%B = [0.01 1 0.01 -1.0]7;

%v = [0.39 0.5 0.6 0.75 0.9 2 4 20];

hsigma2_n = 0.0001; % FSE4

%range_f1 = 1.5; 7 grid span along f1

%range_f2 = 150.0; ) grid span along f2

%[0.4964; 7.9617]; 0.4872;

%[0.4964; -7.9617]; 0.4872;

%» FSE4b: Nearly Reflected Roots with more noise
huseFSE=1;

%#B = [0.01 1 0.01 -1.0]7;

»v = [0.39 0.5 0.6 0.756 0.9 2 4 20];

%hsigma2_n = 0.2; % FSE4b

%range_f1 = 2.5; I, grid span along f1

%range_£2 .5; % grid span along f2
%»[-0.4501, 0.0063]; 0.5404;

N N O

% FSE5: Undermodelled Channel with no noise
B=1[0.1,0.3,1,-0.1 0.5 0.2]’; % FSE1 & FSE3
%v = [0.5 0.52 0.6 0.75 0.9 0.99 2 4 20];

sigma2_n = 0;
range_f1l = 3.0; % grid span along f1
range_f2 = 3.0; % grid span along £f2

12
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% NO user parameters below this point! %
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% channel and equalizer lengths
N_g = length(B); % BS/FS channel length
N_f = 2; ) BS/FS equalizer length

% build channel
B=B(:);
GG = convmtx(B,N_f); % channel convolution matrix
if useFSE,
G = GG(2:2:N_g+N_£f-1,:); % create decimated FS chan conv matrix
else
G = GG; % keep BS chan conv matrix
end

% solve for optimal delay MSE equalizer

N_h = length(G(:,1));

lambda = sigma2_n/sigma2_s;

P = inv(G’*G+lambda*eye(N_f));

F (eye(N_h) - G*P*G’)"2 + lambda*G*P’*PxG’ ;
[mse_opt,delta_opt] = min(diag(F));

h_opt = zeros(N_h,1); h_opt(delta_opt)=1;

PGt = P*G’;

f_opt = PGt*h_opt; % MSE optimal equalizer

% define a grid in f space

if length(f_opt) ~= 2, error(’plots only for equalizer lengths of 2’); end;
grid_density = 5; % grid density

num_pts = 80;

f1_grid = linspace(-range_f1,range_f1,num_pts);

f2_grid = linspace(-range_f2,range_f2,num_pts);

L1 = length(fi_grid); L2 = length(f2_grid);

% calculate CMA cost values on grid
CMA = zeros(L1,L2);
for i=1:L1,
for k=1:L2,
f = [f1_grid(i);f2_grid(k)];
h = G*f;
hTh = h’xh; fTf = f’*f;
CMA(i,k) = kappa”2*sigma2_s"2 - 2*kappa*sigma2_s~2*hTh. ..
- 2xkappa*sigma2_s*sigma2_n*fTf...
+ 3*sigma2_s~2+¥hTh~2 + sigma2_s~2*(kappa-3)*(h."2)’*(h."2)...
+ 6*sigma2_s*sigma2_nxhTh*fTf + 3*sigma2_n"2*fTf"2;
end
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end

% plot CMA contours

figure(1);

if exist(’v’)"=1,
%v = 1.1%min(min(CMA))+1og10([[1:0.15:1.8],[2:0.4:7.61,[8:1:11],[12:2:2011);
v = min(min(CMA))+log10([[1:0.15:1.8],[2:0.4:20]1);

end;

cs = contour(fl_grid,f2_grid,CMA’,v,’c’);

hold on;

for delta = 1:N_h, % plot optimal equalizers for delta delay
plot (PGt (1,delta) ,PGt(2,delta),’x’);
plot (-PGt(1,delta) ,-PGt(2,delta),’x’);

end;

plot (PGt (1,delta_opt),PGt(2,delta_opt),’*’);

plot (-PGt (1,delta_opt) ,-PGt(2,delta_opt),’*’);

hold off;

xlabel(’£f0’); ylabel(’f1’);

title(’CMA Error Surface’);

% plot MSE ellipse axes

hold on;

origin = [-(3/4)*range_f1,(3/4)*range_£2];

[V,lambda] = eig(G’*G+lambdaxeye(N_f))

vecl = V(:,1)*sqrt(1./lambda(1,1))/4;

vec2 = V(:,2)*sqrt(1./lambda(2,2))/4;

plot(origin(1)+[-vec1(1) ,vecl1(1)],origin(2)+[-vecl(2),vecl(2)]1);
plot(origin(1)+[-vec2(1) ,vec2(1)],origin(2)+[-vec2(2),vec2(2)]1);
text ((1.21)*origin(1),(1.20)*origin(2),’MSE ellipse axes’);

hold off;
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