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1 Introduction

Opportunistic multiuser scheduling, introduced by Knopp and Humblet in [1] and defined
as allocating the resources to the user experiencing the most favorable channel conditions
has gained immense popularity among network designers in the recent past. Opportunis-
tic multiuser scheduling essentially taps the multiuser diversity in the system and has
motivated several researchers ([2, 3, 4, 5, 6]) to study the performance gains obtained
by opportunistic scheduling under various scenarios. While i.i.d flat fading model is
popularly used by researchers in modeling time varying channels, it fails to capture the
memory in the channel observed in realistic scenarios. This motivated the researchers to
consider the Gilbert Elliott model [7] that represents the channel by a two state Markov
chain. Specifically, a user experiences error-free transmission when it observes a “good”
channel, and unsuccessful transmission in a “bad” channel. Several works have been done
on opportunistic multiuser scheduling in this Markov modeled channel [8, 9, 10, 11, 12].
It is understandable that the availability of the channel state information at the scheduler
is crucial for the success of the opportunistic scheduling schemes. Traditionally, when
the scheduler has no channel information, pilot based channel estimation is performed
and the estimates are used for scheduling decisions ([2, 6, 13]). A new line of work,
[14, 15, 16, 17, 18], attempts to exploit Automatic Repeat reQuest (ARQ) feedback, tra-
ditionally used for error control at the data link layer, to estimate the state of the two
state Markov modeled channels.

In [18], for a two state Markov modeled downlink (one to many communication) sys-
tem, we have proved that a greedy policy is optimal from a sum throughput point of view
when the system has two users. We showed that this greedy policy can be implemented
by a simple round robin based algorithm that takes as input the ARQ feedback from
the scheduled user. For higher number of users, we provided sufficient conditions for the
optimality of the greedy policy and with support from empirical results, conjectured that
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the greedy policy is optimal in this general case as well. Although modeling the chan-
nel by a two state Markov chain is a welcome change from the traditional memoryless
models, the scheduler can do better by discriminating the channel conditions on a finer
level, i.e., if the channel is modeled by higher state Markov chains. As a first step in this
direction, in this report, we model the channels by three state Markov chains and study
the property of the greedy policy and conditions under which it will be optimal.

The report is organized as follows. The problem setup is described in Section 2
followed by a study of the implementation structure of the greedy policy in Section 3. A
comparison of the original system with the genie-aided system, introduced in [18], will
be made in Section 4. In Section 5, upper and lower bounds to the system performance
is derived. We study the conditions under which greedy policy is optimal in Section 6.
Conclusions are provided in Section 7.

2 Problem Setup

2.1 Channel Model - Probability Transition Matrix

We consider downlink transmissions with 2 users. The channel between the base station
and each user is modeled by an i.i.d, first order, three-state Markov chain. Time is slotted
and the channel of each user remains fixed for a slot and evolves into another state in
the next slot according to the Markov chain statistics. The time slots of all users are
synchronized. The three-state Markov channel is characterized by a 3 × 3 probability
transition matrix

P =




p11 p12 p13

p21 p22 p23

p31 p32 p33


 , (1)

where pij is the probability of evolving from state i to state j in the next slot.
The states are made to represent the quantized strength of the channel, with state

1 assumed to represent the lower end of the channel strength spectrum and state 3
representing the higher end. We assume that the Markov chain is positively correlated
in time. Thus pii ≥ pji if j 6= i. Also, motivated by observation of realistic channels,
we assume that the channel evolves in a smooth fashion across time. Thus p21 ≥ p31

and p23 ≥ p13. Also, observing that state 3 represents a region of the channel strength
spectrum that is not bounded from above, it is reasonable to assume p32 ≤ p12. To
summarize, the transition matrix elements are related as below:

p11 ≥ p21 ≥ p31

p22 ≥ p12 ≥ p32

p33 ≥ p23 ≥ p13 (2)

2.2 Existence of Steady State

Let pss denote the steady state probability vector of the Markov chain with pss(i) repre-
senting the steady state probability of state i. We now rule out the instances of P matrix
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entries that either 1) obviously lead to a steady state pss(i) = 0 for some i ∈ {1, 2, 3}
or 2) eliminates the possibility of a steady state altogether. Both these cases trivialize
the scheduling problem we address in this report. From the inequalities governing the
elements of the P matrix, we see that pii > 0. Otherwise, pji = 0 leading to pss(i) = 0.
Also p12 6= 0. Since, if p12 = 0, then p32 = 0. Thus pss(2) = 0 (since when the channel
enters state 1 or 3 it will never reach state 2 again). For similar reasons, p21 6= 0 and
p23 6= 0. Thus the only elements that can be zero are p13, p31 and p32. Among these
p31 and p32 cannot be both zero. Otherwise, p33 = 1 making state 3 an absorbing state
leading to pss(1) = pss(2) = 0. Thus there can be at most one zero in any row and
at most one zero in any column of P . This, along with the fact that all the entries are
non-negative, renders P 2 a positive matrix (i.e., all the elements are positive).

From [19] (p.51), A nonnegative square matrix, A is said to be regular iff there exists
a natural number r such that Ar is a positive matrix. Thus P is a regular matrix with
r ≥ 2.

We now reproduce Theorem 4.2 from [19]

Theorem 1. If A is a regular stochastic matrix then An converges as n → ∞ to a
positive stable stochastic matrix eΠ

′

, where Π = (π(i))i∈state space is a probability vector
with non null entries and e is a unit vector with dimension equal to the cardinality of the
state space.

Thus the n-step transition probability matrices of the Markov channels in our problem
also converge to stable stochastic matrices. Since this is necessary and sufficient for the
existence of steady state, under the conditions established earlier, the Markov channels
in our problem have steady state with the steady state probability vector given by pss.

2.3 Scheduling Problem

The base station is the central controller that controls the transmission to the users in
each slot. In any time slot, the base station does not know the exact channel state of
the users and it must schedule the transmission of the head of line packet of exactly
one user (a data queue is maintained for each user to collect the data meant for that
user). Thus, a TDMA styled scheduling is performed here. The power spent in each
transmission is fixed. At the beginning of each time slot, the head of the line packet
of the scheduled user is transmitted and is dropped from the queue. The scheduled
user, based on measurements of the signal strength of the received data packet, obtains
information on the state of the channel and sends this back to the scheduler. We call
this feedback as Fi with i ∈ {1, 2, 3}. This channel state feedback is assumed to be
transmitted over a dedicated error-free channel. This feedback information, along with
the label of the slot in which it is acquired, will be used in future scheduling decisions.
The performance metric that the base station aims to maximize is the sum reward of the
system. Details will be discussed in the next section.
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2.4 Formal Problem Definition

Since the base station must make scheduling decisions based on only a partial observation
of the underlying Markov chain, we employ techniques from partially observable Markov
decision process (POMDP) [20, 21, 22, 23] theory in this work. We now proceed to
introduce the terms/entities that we use in this work, many of which are borrowed from
the POMDP literature.

Control interval k: Each time slot in our problem setup will henceforth be called a
control interval. The “end” of the POMDP is fixed. A control interval is indexed by k if
there are k − 1 more intervals until the end of the process.

Action ak: Indicates the index of the user (1 or 2) scheduled in control interval k.
Belief vector of user i at the kth control interval πk,i: Element πk,i(j) denotes the

probability that the channel of user i ∈ {1, 2} in the kth control interval is in state
j ∈ {1, 2, 3}, given all the past information about that channel. If Fj was received from
user i, l + 1 control intervals earlier with l ∈ 0, 1, 2, . . ., then the belief vector in the
current interval k is given by πk,i = [pj1 pj2 pj3]P

l. We will henceforth represent the
vector [pj1 pj2 pj3] by pj. If user i is not scheduled in control interval k, then the belief
vector of this user evolves to the next interval as follows: πk−1,i = πk,iP .

It has been proven in [20] that the belief vector πk,i is a sufficient statistic to any
information about the channel of user i in the past control interval, in our case, the
scheduling decisions and the channel feedback information from the past. Thus the
scheduling decision in any control interval can be solely based on the belief vectors for
that interval and not on the past channel feedback or schedule information.

Scheduling Policy
�

k: A scheduling policy
�

k in the control interval k is a mapping
from the belief vectors and the control interval index to an action as follows:

�
k : (πk,1, πk,2, k) → ak ∀k ≥ 1

Note that the scheduling policy can, in general, be time-variant.
Reward Structure: In any control interval k, a reward of αi is accrued when the

scheduled user sends back Fi. Let state 1 be defined such that no reward is accrued when
an user in state 1 is scheduled, i.e., α1 = 0. This assumption can be satisfied by letting
state 1 represent the channel strengths that do not allow any useful data transfer. Since
state 3 represents channel strengths that are better than those represented by state 2, we
have α3 ≥ α2. Throughout this report we will assume α3 = 1 without loss of generality.

Net Expected Reward in the control interval m, Vm: With the belief vectors, πm,1,
πm,2 and the scheduling policy, {

�
k}k≤m, fixed, the net expected reward, Vm, is the sum

of the reward, Rm(πm,am
, am), expected in the current control interval m and E[Vm−1],

the net reward expected in the future control intervals conditioned on the belief vectors
and the scheduling decision in the current control interval. Formally,

Vm(πm,1, πm,2, {
�

k}k≤m) = Rm(πm,am
, am)

+ E[Vm−1(πm−1,1, πm−1,2, {
�

k}k≤m−1)|πm,1, πm,1, am],

where the expectation is over the belief vectors πm−1,1, πm−1,2. With 1 α = [α1 α2 α3]
T ,

1
x

T indicates the transpose of vector x.
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the expected current reward can be written as

Rm(πm,am
, am) = πm,am

α.

Note that if am was observed to be in state i in the previous interval then πm,am
= pi

and Rm(πm,am
, am) = piα.

Performance Metric- the Sum Reward, ηsum: For a given scheduling policy, {
�

k}k≥1,
the sum reward is given by

ηsum({
�

k}k≥1) = lim
m→∞

Vm(pss,pss, {
�

k}k≥1)

m
, (3)

where pss is the steady state probability vector of the underlying Markov channels.
Optimal Scheduling Policy, {

� ∗
k}k≥1:

{
� ∗

k}k≥1 = arg max
{ � k}k≥1

ηsum({
�

k}k≥1). (4)

3 Structure of the Greedy Policy

Consider the following policy:

̂�
k : (πk,1, πk,2, k) → ak = arg max

ak

Rk(πk,ak
, ak)

= arg max
i

πk,iα ∀k ≥ 1.

Since the above given policy attempts to maximize the expected current reward, without
any regard to the expected future reward, it follows an approach that is fundamentally

greedy in nature. For this reason, we henceforth call {̂�
k}k≥1 the Greedy Policy. We now

proceed to derive the implementation structure of the greedy policy.

Lemma 2. For any k ≥ 0, the immediate reward expected by scheduling an user that
was observed k + 1 control intervals earlier, to be in state 2, lies between the rewards
corresponding to states 3 and 1, i.e,

p1P
kα ≤ p2P

kα ≤ p3P
kα, ∀k ∈ 0, 1, 2, . . . (5)

Lemma 3. The immediate reward expected by scheduling an user that was observed, k+1
control intervals earlier, to be in state 3, monotonically decreases to pssα as k increases
from 0 → ∞, i.e.,

p3P
k+1α ≤ p3P

kα, ∀k ∈ 0, 1, 2, . . .

p3 lim
k→∞

P kα = pssα (6)

Note that pssα is the immediate reward expected when no past information about the user
is available or when the belief vector of the user equals the steady state vector, pss.
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Lemma 4. The immediate reward expected by scheduling an user that was observed, k+1
control intervals earlier, to be in state 1, monotonically increases to pssα as k increases
from 0 → ∞, i.e.,

p1P
k+1α ≥ p1P

kα, ∀k ∈ 0, 1, 2, . . .

p1 lim
k→∞

P kα = pssα (7)

Note that, from the above lemmas, we have

p2 lim
k→∞

P kα = pssα. (8)

In all the above results, the immediate reward approaches pssα as the time since
the last observation of the user increases. This is because, in the underlying first order
Markov chain, the dependency between the states in two control intervals (memory)
diminishes as the time gap between the control intervals increases. These lemmas are
instrumental in obtaining the algorithm for implementing the greedy policy, that will be
summarized soon. We first identify two types of system based on the property of the P

matrix and the reward values.

• Type I system: when p2α ≥ pssα

• Type II system: when p2α < pssα

The implementation algorithm for the greedy policy significantly changes depending on
the type of the system.

Proposition 5. When the system is type I, the greedy policy is implemented as follows

• If feedback F3 or F2 was received from the user scheduled in the previous control
interval (identified as user s), reschedule the user in the current control interval.

• Schedule the other user (identified as user u) if feedback F1 was received.

Proof. Refering to Fig. 1, when F3 was received from user s, the expected reward if s is
scheduled again is given by p3α. The expected reward if u is scheduled is a point on one
of the three curves (for k > 0) in the figure. Note that p3α is greater than any point (the
y-dimension) on any of the curves, thus establishing ‘retain the schedule if F3 is received’
policy. This result essentially stems from the following facts: 1) Higher reward (α3 = 1)
is accrued when the scheduled user happens to be in state 3 than in other states. 2) The
Markov channel is positively correlated in time (pii ≥ pji if i 6= j).

Similarly when F1 was received from user s, the expected reward if s is scheduled again
is given by p1α which is less than any other point on the three curves, thus establishing
‘switch if F1 is received’ policy.

When F2 is received, assuming the greedy policy was implemented so far since the
beginning of the scheduling process, the reward expected if u is scheduled lies on the
lower curve p1P

kα for k > 0. This is because the first time (since the beginning of
the scheduling process) a F2 is received (call this interval m0), if greedy policy was
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Figure 1: Type I system

implemented so far, user u (the waiting user) would not have given F3 when it was
dropped and since this is the first time F2 is observed by the scheduler, u would not
have sent F2 either, when it was dropped. Therefore u must have sent F1 the last time
it was scheduled (and hence dropped). Thus the reward expected if u is scheduled now
(at m0) falls on the bottom curve leading to retaining of user s (since p2α ≥ p1P

kα for
any k ≥ 0). In the next instance of F2 reception, the same logic holds (as long as greedy
policy is implemented all along until this instance) and so on for subsequent instances of
F2. Note that the condition greedy must be implemented since the beginning until ‘now’ is
quite natural given our interest in implementing the policy in the current interval. Thus
there is no loss of generality here.

These arguments establish the proposition.

Proposition 6. When the system is type II, the greedy policy is implemented as follows

• If feedback F3 was received from the user scheduled in the previous control interval
(call it user s), reschedule the user in the current control interval.

• If feedback F1 was received, schedule the other user.

• If feedback F2 was received, calculate the expected immediate reward if the other
user (identified as user u) is scheduled in the current interval (identified as m)
as follows: πm,uα where πm,u is the belief vector of user u in the current control
interval m. Now, schedule user s is p2α ≥ πm,uα. Otherwise, schedule user u.

Proof. Refer to Fig. 2. The argument for F3 and F1 are the same as in the previous case.
When F2 is received, as seen from the Fig. 2, the waiting user u could have an expected
reward greater than that of s if u had been dropped due to F1 at least k0 intervals earlier
or if p2P

kα does not monotonically increase to pssα (Fig. 2 shows such a situation).
Thus it is necessary to explicitly calculate the expected reward of user u before making
a greedy decision.
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Figure 2: Type II system

Note that the results in Lemma 2-4 and hence the implementation structure of the
greedy policy in Propositions 5-6 hold even when α1 > 0 as long as α1 ≤ α2 ≤ α3.

4 Comparison with the Genie aided system

In the two user, two state case, if the user scheduled (user s) in the previous control
interval was observed to be in the best state, the scheduler retains the schedule (and
hence accrues the best possible reward) since there is nothing more to gain by scheduling
to the other user, while a loss is possible if the other user was in the worst state. Similarly,
if user s was observed to be in the worst state, the scheduler switches to the other, since
there is nothing more to lose by scheduling to the other user (as compared to scheduling
s again), while a gain is possible if the other user was in the best state. Thus the two
user, two state system is equivalent, in performance, to a genie-aided system where the
scheduler learns about the states of both the users at the end of every interval.

This equivalence does not hold in the three state system. The nothing more to gain
argument works when s was observed to be in state 3 and the nothing more to lose
argument works when s was observed to be in state 1. However, when s was observed
to be in state 2, i.e., when F2 was received, by scheduling to the other user (user u), the
scheduler may either gain (if u was in state 3) or lose (if u was in state 3) as compared to
when it schedules s again. Thus with information about the state of the other user, there
is definitely a room for improvement. Thus the three state (in general, more than two
states) system is not equivalent to the genie-aided system. Note that, the genie aided
system can be redefined as follows: the scheduler learns about the state of both the
users iff s was observed in state 2. We see from the discussion so far that this modified
definition does not impart any performance loss in the genie-aided system.
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From the preceding discussion, it can be seen that the original three user system
approaches the genie-aided system under any of the following cases:

• p2α = p3α. Thus on receiving F2 from user s, nothing more can be gained by
scheduling the other user u (while a loss is possible on switching). Hence, s is
rescheduled. Thus there is no need to learn the previous control interval state of u.

• p2α = p1α. Thus on receiving F2 from user s, nothing more can be lost by schedul-
ing the other user u (while a gain is possible on switching). Hence, u is scheduled.
Again, there is no need to learn the previous control interval state of u.

With mathematical analysis, it can be seen that case 1 is possible iff α2 = α3 and
p21 = p31. While case 2 is possible iff α2 = α3 and p11 = p21. When the first set of
conditions is satisfied, it can be seen that the states 2 and 3 can be merged at a very
generic level (not specific to the type of information used for scheduling) with the reduced
transition matrix given as below:

[
p11 p12 + p13

p21 p22 + p23

]
(9)

where row 1 and column 1 corresponds to state 1 and row2 and column2 corresponds to
the merged state. Thus the channel is effectively modeled by a two-state Markov chain
thus explaining the equivalence with the genie-aided system.

However, it is interesting to note that, when the second set of conditions is satis-
fied, such a merger is not possible between states 1 and 2 since we still have p13 ≤ p23

making them different in their relationship with state 3. However, in the context of the
ARQ based scheduling problem (specifically case 2 in the preceding discussion), they are
synonymous and render the original system equivalent to the genie-aided system.

5 Bounds On the System Sum Reward Capacity

Proposition 7. For the type I system, a lower bound to the sum reward capacity, SLB,I ,
is given as

SLB,I ≥ p2α − p2
ss(1)(p2α − p1α) (10)

where p2
ss(1) is the steady state probability that the state of the user is 1.

This bound is obtained by replacing expected reward given F3, i.e., p3α with p2α in
the sum reward evaluation of the greedy policy. Thus this is in fact a lower bound to
the greedy policy. Note that SLB,I decreases as the steady state probability of the less
rewarding state 1 (pss(1)) increases. Also notice that as p1α → p2α, SLB → p2α. This
is expected in light of the approach we used in obtaining SLB, since the only reward that
we accrue in any control interval is now p2α. Also, the bound approaches the system sum
reward capacity when states 2 and 3 become increasingly synonymous. This happens as
α2 → α3 and p31 → p21. The last statement comes from our discussion in the previous
section, on the equivalence with the genie-aided system.
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Proposition 8. For the type II system, a lower bound to the sum reward capacity is
given as

SLB,II = (2pss(3) − p2
ss(3))p3α + (1 − pss(3))2p3α (11)

The proof proceeds as follows: In any control interval the expected immediate reward
after a feedback F2 is received in the previous interval is replaced by the reward that would
be expected if the other (not scheduled in the previous interval) user were scheduled. Note
that, by the implementation structure of the greedy policy, this latter reward is ≤ the
reward corresponding to the greedy choice2. Next we replace p2α with p1α giving the
sum reward capacity lower bound.

Note that SLB,II is the same as a two user system that accrues reward p3α if at least
one of the users are in state 3 and reward p1α if none of them are in state 3. This
interpretation is strikingly similar to the interpretation we made in the two-state tow
user problem in our preliminary research. However, note that the present interpretation
does not yield to the case when the state of both users are available. For instance, if
none of the users is in state 3 and at least one of them is in state 2, then, ideally, if the
states of both the users are known, a reward of p2α must be accrued instead of p1α.
This demonstrates the loss in performance due to lack of knowledge of both user states,
thus differentiating the 3-state system from the 2-state system.

Proposition 9. An upper bound to the system sum reward capacity is given as

SUB = (2pss(3) − p2
ss(3))p3α + (2pss(1)pss(2) + p2

ss(2))p2α + p2
ss(1)p1α (12)

The bound is actually the sum reward capacity of the genie-aided system. Here if at
least one of the users was in state 3 in the previous interval, the greedy policy schedules
that user and accrues a reward p3α. If none of the users were in state 3 but at least one
of them in state 2, that user is scheduled and a reward of p2α is accrued. If both the
users were in state 1, a reward of p1α is accrued.

6 On the Optimality of the Greedy Policy

We proceed by introducing the following properties of the P matrix.

Lemma 10. When p2P [001]T ≤ p23 (condition (A)), then p2P
k+1[001]T ≤ p2P

k[001]T

∀k ≥ 0. Also the steady state element pss(3) ≤ p23 and p2P
k[001]T monotonically de-

creases to pss(3) as k → ∞. (A) is also a necessary condition for the preceding statement
to hold.

Lemma 11. Under (A) from previous lemma, p1P
k[001]T monotonically increases to

pss(3) as k → ∞, i.e, p1P
k+1[001]T ≥ p1P

k[001]T∀k ∈ 0, 1, 2, . . . and p1 limk→∞ P k[001]T =
pss(3) ≤ p23

2The replacement is only with respect to the accrued reward in the sum reward expression, while the
actual schedule decision is always maintained as greedy, so as not to disturb the initial conditions of the
problem for the future intervals.
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This result can be obtained by replacing α in Lemma 4 by [0 0 1]T , and using pss(3) ≤
p23 from Lemma 10.

Proposition 12. When p12 = p22 = p32 and p23p31 ≥ p21p13, greedy policy is optimal
among the policies that retain the schedule when feedback F3 is received.

Conjecture 13. When p12 = p22 = p32 and p23p31 ≥ p21p13, greedy policy is globally
optimal.

The premise behind our conjecture is that, in light of the positive correlation property
of the Markov chain, there is no obvious reason why the globally optimal policy would
reject an user that was in the best state possible in the previous control interval. Thus
it appears that the globally optimal policy belongs to the class that retains the schedule
when F3 is received suggesting that it is indeed the greedy policy itself.

7 Conclusion

We have considered the problem of scheduling under partial channel state information
assumption in a Markov-modeled two-user downlink system with a channel state feedback
provision. We classified the system in two types based on the transition probability
matrix of the Markov chains and the reward structure. For each type, we established the
implementation structure of the greedy policy. For the type I system, we showed that
the greedy policy can be implemented via a simple round robin algorithm as was seen
in our earlier work for the two-state Markov model. We studied the conditions under
which the original system simplifies to the genie aided system and provided insights
on these conditions. By appropriately bounding the immediate reward accrued in any
control interval, we obtained bounds to the sum reward capacity of the system. Under
some conditions on the P matrix, by restricting the search space to a specific class of
schedulers, we showed that the greedy policy is ‘constrained search space’ optimal and
conjectured, with reasons, that the greedy policy is globally optimal as well.

A Proof of Lemma 2

Let β = [β1 β2 β3]
T , with β1 ≤ β2 ≤ β3. Consider the inequality p3β ≥ p2β. This can

be rewritten as,

β1p31 + β2p32 + β3p33 ≥ β1p21 + β2p22 + β3p23

⇔ β1(p31 − p21) ≥ β2(p22 − p32) + β3(p23 − p33)

⇔ β1(p21 − p31) ≤ −β2(p22 − p32) + β3(p33 − p23)

(13)

Since β2 ≥ β1, it is now sufficient to prove β2(p21 − p31 + p22 − p32) ≤ β3(p33 − p23), i.e.,
β2(p33 − p23) ≤ β3(p33 − p23) which is indeed true. Consider the inequality p2β ≥ p1β,

β1p21 + β2p22 + β3p23 ≥ β1p11 + β2p12 + β3p13

⇔ β2 + p23(β3 − β2) − p21(β2 − β1) ≥ β2 + p13(β3 − β2) − p11(β2 − β1) (14)
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The last inequality is indeed true, since p23 ≥ p13, p21 ≤ p11 and β3 ≥ β2 ≥ β1. Thus if
β1 ≤ β2 ≤ β3 and β = [β1 β2 β3]

T ,

p3β ≥ p2β ≥ p1β (15)

We can write, for i ∈ 1, 2, 3, piP
k+1α = pi[p1P

kα p2P
kα p3P

kα]T . Thus if p1P
kα ≤

p2P
kα ≤ p3P

kα, we have, using (15), p1P
k+1α ≤ p2P

k+1α ≤ p3P
k+1α. Since α1 = 0 ≤

α2 ≤ α3 = 1, the lemma is established using induction.

B Proof of Lemma 3 and Lemma 4

Consider p3P
k+1α = p31p1P

kα+p32p2P
kα+p33p3P

kα. Since p1P
kα ≤ p2P

kα ≤ p3P
kα

from Lemma 2, we have p3P
k+1α ≤ p3P

kα. Lemma 4 can be proved similarly.

C Proof of Lemma 10

Let p2P
k[001]T ≤ p2P

k−1[001]T . Multiplying both sides by p22 and adding to both sides
p21p1P

k−1[001]T + p23p3P
k−1[001]T ,

p21p1P
k−1[001]T + p22p2P

k[001]T + p23p3P
k−1[001]T ≤ p2P

k[001]T (16)

If we show that p21p1P
k[001]T + p23p3P

k[001]T ≤ p21p1P
k−1[001]T + p23p3P

k−1[001]T ,
then using (16), p21p1P

k[001]T + p22p2P
k[001]T + p23p3P

k[001]T ≤ p2P
k[001]T , i.e,

p2P
k+1[001]T ≤ p2P

k[001]T . Consider the inequality

p21p1P
k[001]T + p23p3P

k[001]T ≤ p21p1P
k−1[001]T + p23p3P

k−1[001]T

⇔ p2P
k+1[001]T − p22p2P

k[001]T ≤ p2P
k[001]T − p22p2P

k−1[001]T

⇔ p2(P
k+1[001]T − P k[001]T ) ≤ p22(p2P

k[001]T − p2P
k−1[001]T )

⇒ p2P
k+1[001]T ≤ p2P

k[001]T (17)

where the last inequality is from the initial assumption that p2P
k[001]T −p2P

k−1[001]T ≤
0.

With p2P
1[001]T ≤ p2P

0[001]T , i.e, p2P [001]T ≤ p23, using induction, we have the
p2P

k+1[001]T ≤ p2P
k[001]T ∀k ≥ 0. Since steady state exists, by the definition of

steady state, limk→∞ P k =



pss

pss

pss


. Thus p2 limk→∞ P k[001]T = pss(3) and pss(3) ≤ p23

by the monotonic decrease property of p2P
k[001]T . Also note that the direction of the

inequalities throughout this proof can be changed and we can prove that p2P
k[001]T

monotonically increases to pss(3) as k → ∞ if p2P [001]T ≥ p23. This establishes that
p2P [001]T ≤ p23 is a necessary condition for the first part of the Lemma to hold.
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D Proof of Proposition 12

Let the probability transition matrix satisfy the following conditions:

p12 = p22 = p32 (18)

p23p31 ≥ p21p13 (19)

The preceding inequality along with condition (18) is equivalent to condition (A) in
Lemma 10. Thus under (18) and (19), both Lemma 10 and Lemma 11 hold true. From
Lemma 10, p23 ≥ pss(3). From (18), pss(2) = p22. Thus p2α − pssα = p22α2 + p23 −
pss(2)α2 − pss(3) = p23 − pss(3) ≥ 0. The system is thus type I.

Consider a control interval m > 1 with belief vectors πm,1, πm,2 and action am. If
we can show for any m that, assuming the greedy policy will be implemented in all the
future control intervals, the greedy policy is optimal in control interval m, then using
induction from interval 1, where greedy is indeed optimal, we could establish the long

term optimality of the greedy policy. Let {
�

k}k≤m−1 = {̂� k}k≤m−1and let Sk be the state
vector such that Sk(i) is the state of the channel of user i in interval k. We rewrite the
net expected reward as follows

Vm(πm,1, πm,2, {am, {̂� k}k≤m−1}) = πm,am
α

+
∑

Sm

PSm|πm,1,πm,2
(Sm|πm,1, πm,2)V̂m−1(Sm, âm−1),

where V̂m−1 is the expected future reward conditioned on the state vector in control
interval m. The hat on this quantity emphasizes the use of the greedy policy in all
k ≤ m − 1. PSm|πm,1,πm,2

(Sm|πm,1, πm,2) is the conditional probability of the current
state vector Sm given the belief vectors πm,1, πm,2. The scheduling decision in the next
control interval, âm−1, is based on the greedy policy and is a function of the ARQ feedback
received in the current control interval k, i.e., Sm(am). The decision logic was summarized
in Proposition 5. We now proceed to compare the net expected reward when am = 1 and
am = 2. The net expected reward when am = 1 is written as follows,

Vm(πm,1, πm,2, {am = 1, {̂� k}k≤m−1})

= πm,1α + PSm|πm,1,πm,2
(Sm = [1 1]|πm,1, πm,2)V̂m−1

(
Sm = [1 1], âm−1 = 2

)

+PSm|πm,1,πm,2
(Sm = [1 2]|πm,1, πm,2)V̂m−1

(
Sm = [1 2], âm−1 = 2

)

+PSm|πm,1,πm,2
(Sm = [1 3]|πm,1, πm,2)V̂m−1

(
Sm = [1 3], âm−1 = 2

)

+PSm|πm,1,πm,2
(Sm = [2 1]|πm,1, πm,2)V̂m−1

(
Sm = [2 1], âm−1 = 1

)

+PSm|πm,1,πm,2
(Sm = [2 2]|πm,1, πm,2)V̂m−1

(
Sm = [2 2], âm−1 = 1

)

+PSm|πm,1,πm,2
(Sm = [2 3]|πm,1, πm,2)V̂m−1

(
Sm = [2 3], âm−1 = 1

)

+PSm|πm,1,πm,2
(Sm = [3 1]|πm,1, πm,2)V̂m−1

(
Sm = [3 1], âm−1 = 1

)

+PSm|πm,1,πm,2
(Sm = [3 2]|πm,1, πm,2)V̂m−1

(
Sm = [3 2], âm−1 = 1

)

+PSm|πm,1,πm,2
(Sm = [3 3]|πm,1, πm,2)V̂m−1

(
Sm = [3 3], âm−1 = 1

)
(20)

13



Note that the scheduler uses the information of the state of the scheduled user (user
1) alone in the scheduling decisions, consistent with the problem setup. Also note that
when Sm(1) = 2, the schedule is retained. This is consistent with the implementation
structure of the greedy policy seen in Proposition 5, where the scheduler retains the
scheduling choice even F2 is received. As was discussed in the same proposition, this
is a greedy decision only if an user was never dropped in the past for giving feedback
F3. Since we are restricting to the class of schedulers that retains the schedule when
F3 is satisfied3, this is indeed a greedy decision. Since the Markov channel statistics are
identical across the users, we have V̂k

(
Sk+1 = [x y], âk = 1]

)
= V̂k

(
Sk+1 = [y x], âk = 2]

)
.

Expanding the net expected reward when am = 2 along the lines of (20) and using the
preceding symmetry property, we have,

Vm(πm,1, πm,2, {am = 1, {̂� k}k≤m−1}) − Vm(πm,1, πm,2, {am = 2, {̂� k}k≤m−1})

= πm,1α − πm,2α

+
[
V̂m−1

(
Sm = [3 2], âm−1 = 1

)
− V̂m−1

(
Sm = [2 3], âm−1 = 1

)]
×

[
πm,1(3)πm,2(2) − πm,1(2)πm,2(3)

]
(21)

Let âm indicate the greedy choice among the users in the current control interval, i.e.,
âm = arg maxi∈1,2 Rm(πm,i). Let ãm indicate the other user. The net expected reward
can now be rewritten as,

Vm(πm,1, πm,2, {am = âm, {̂� k}k≤m−1}) − Vm(πm,1, πm,2, {am = ãm, {̂� k}k≤m−1})

= πm,âm
α − πm,ãm

α

+
[
V̂m−1

(
Sm = [3 2], âm−1 = 1

)
− V̂m−1

(
Sm = [2 3], âm−1 = 1

)]
×

[
πm,âm

(3)πm,ãm
(2) − πm,âm

(2)πm,ãm
(3)

]
(22)

where, by definition, πm,âm
α ≥ πm,ãm

α. We now proceed to show that the quantity

V̂m−1

(
Sm = [3 2], âm−1 = 1

)
− V̂m−1

(
Sm = [2 3], âm−1 = 1

)
is non-negative. With

V̂k

(
Sk+1 = [x y]

)
:= V̂k

(
Sk+1 = [x y], âk = 1

)
, and expanding V̂m−1

(
Sm = [x y]

)
along

the lines of (20) with πm−1,1 = px and πm−1,2 = py and am−1 = 1, we have the following.

V̂m−1

(
Sm = [3 2]

)
− V̂m−1

(
Sm = [2 3]

)

= p3α − p2α +
[
V̂m−2

(
Sm−1 = [3 2]

)
− V̂m−2

(
Sm−1 = [2 3]

)]
(p33p22 − p23p32)(23)

By the property of the P matrix, p33 ≥ p23 and p22 ≥ p32. Also, we have seen in
Lemma3 that r3 ≥ r2 ≥ r1. Thus if V̂m−2

(
Sm−1 = [3 2]

)
− V̂m−2

(
Sm−1 = [2 3]

)
≥ 0,

then V̂m−1

(
Sm = [3 2]

)
− V̂m−1

(
Sm = [2 3]

)
≥ 0. Expanding V̂m−2

(
Sm−1 = [3 2]

)
−

V̂m−2

(
Sm−1 = [2 3]

)
≥ 0 along the lines of (23) repeatedly and using V̂1

(
Sm = [3 2]

)
−

V̂1

(
Sm = [2 3]

)
= r3 − r2 ≥ 0, by induction, we can show that V̂m−2

(
Sm−1 = [3 2]

)
−

V̂m−2

(
Sm−1 = [2 3]

)
≥ 0. Thus V̂m−1

(
Sm = [3 2]

)
− V̂m−1

(
Sm = [2 3]

)
≥ 0. Applying

3This is the only instance in the proof where we constrain the search space.
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this inequality in (22), we see that the optimality of the greedy policy (in the specified
class of policies) can be established if we show that the following condition (condition
(S)) holds:

πm,âm
(3)πm,ãm

(2) ≥ πm,âm
(2)πm,ãm

(3). (24)

It appears that the preceding condition is too generic to hold true. However, by con-
straining the belief vectors to the set of values that will be encountered in the ARQ based
scheduling problem, we will now show that, (24) indeed holds true.

We first introduce the following result: From Lemma 10, p2P
k[001]T monotonically

decreases to pss[001]T = pss(3) as k increases. Since p2P
k[010] = p22 = pss(2), the

expected reward from an user given the channel of the user was in state 2 k + 1 intervals
earlier, given by, p2P

kα = α(2)pss(2) + p2P
k[001]T monotonically decreases to pssα.

We proceed with studying the sufficient condition under various belief vectors encoun-
tered in the ARQ based scheduling problem. Assume the scheduling process has begun
in a control interval earlier than m and is performed uninterrupted till the horizon, i.e,
control interval 1 - assumption (A)4. The belief vector of the greedy choice âm and the
other user ãm, for the type I system under consideration, falls under one of the following
cases.

• 1. User âm was scheduled in the previous control interval, m + 1, and had given
a feedback F3. The belief vector πm,âm

= p3. The other user was either scheduled
in k + 1 control intervals earlier (with k ∈ 1, 2, . . .) with any of the three possible
feedback or was never scheduled in the past. Thus the belief vector of ãm is of the
form piP

k with i ∈ 1, 2, 3 and k ∈ 1, 2, . . .. Note that if ãm was never scheduled in
the past, then πm,ãm

= pss which still falls in the preceding form.

• 2. User ãm was scheduled in the previous control interval and had given a feedback
F1. User âm was either scheduled k + 1 control intervals earlier (with k ∈ 1, 2, . . .)
with any of the three possible feedbacks or was never scheduled in the past. The
belief vectors are given by πm,ãm

= p1 and πm,âm
= piP

k with i ∈ 1, 2, 3 and
k ∈ 1, 2, . . ..

• 3. User âm was scheduled in the previous control interval and had given a feedback
F2. User ãm was scheduled k + 1 control intervals earlier (with k ∈ 1, 2, . . .) with
feedback F1 or was never scheduled in the past. The belief vectors are given by
πm,âm

= p2 πm,ãm
= p1P

k with k ∈ 1, 2, . . ..

• 4. User âm was scheduled in the previous control interval and had given a feedback
F2. User ãm was scheduled k + 1 control intervals earlier (with k ∈ 1, 2, . . .) with

4Note that there is no loss of generality in this assumption for the following reason: The problem
setup and the optimality analysis of any policy implicitly assumes uninterrupted scheduling until the
horizon. This is to be in tune with the interval to interval evolution of the underlying Markov chains.
Thus when the uninterrupted scheduling process begins at a control interval M , for all m < M condition
(A) is satisfied automatically. In the control interval M , however, part of the condition, i.e, scheduling

process began earlier, does not hold. But at the origin, i.e., the control interval M , the belief vectors of
all the users take the steady state value, pss. Thus, by all symmetry, the question of what scheduling
decision to make and hence the question of the optimality of the greedy policy at M becomes irrelevant.
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feedback F2. The belief vectors are given by πm,âm
= p2 πm,ãm

= p2P
k with

k ∈ 1, 2, . . ..

• 5. User âm was scheduled in the previous control interval and had given a feedback
F2. User ãm was scheduled L + 1 or more control intervals earlier with feedback
F3. L is the number of coherence intervals such that, reward expected from an user
that was observed to be in state 2 in the previous control interval is higher than the
reward expected from an user that was observed in state 3 k + 1 control intervals
earlier iff k ≥ L. Mathematically, L is such that,

p2α ≥ p3P
kα if k ≥ Lp2α < p3P

kα if k < L (25)

Note that such an L exists since p2α ≤ p3α and both p2P
kα and p3P

kα mono-
tonically decreases (with k) to pssα ≤ p2α. The belief vectors are hence given as
πm,âm

= p2, πm,ãm
= p3P

k with k ≥ L.

• 6. User ãm was scheduled in the previous control interval and had given a feedback
F2. User âm was scheduled k + 1 control intervals earlier with feedback F3 with
k < L. The belief vectors are as follows: πm,âm

= p3P
k with k < L and πm,ãm

= p2.

The above list is exhaustive. In fact, cases 5 and 6 will never appear since we are
considering the class of schedulers that never drop an user when it sends an F3. However,
we will show that even for these cases the sufficient condition is satisfied. In all the above
6 cases, Rm(âm) ≥ Rm(ãm) as required by the definition of âm. We now focus on the
sufficient condition (S) for each of the above cases.

• 1. Sufficient condition (S) is given as follows:

πm,âm
(3)πm,ãm

(2) ≥ πm,âm
(2)πm,ãm

(3)

i.e., p33piP
k[010]T ≥ p32piP

k[001]T , ∀i ∈ 1, 2, 3, k ∈ 1, 2, . . . (26)

Since p12 = p22 = p32, we have

piP
k[010]T = p12 = p22 = p32∀i ∈ 1, 2, 3, k ∈ 1, 2, . . . (27)

Also, piP
k[001]T = piP

k−1P [001]T = piP
k−1[p13 p23 p33]

T ≤ p33, since p33 ≥ p23 ≥
p13 by the property of the P matrix. Thus (S) holds for case 1.

• 2. (S) is as follows: piP
k[001]T p12 ≥ piP

k[010]Tp13, ∀i ∈ 1, 2, 3, k ∈ 1, 2, . . ..

From the symmetry property (27), p12 = piP
k[010]T . Also since p13 ≤ p23 ≤ p33

we can show piP
k[001]T ≥ p13. Thus (S) is satisfied for case 2.

• 3. (S): p23p1P
k[010]T ≥ p22p1P

k[001]T . From Lemma 11, p1P
k[001]T monoton-

ically increases to pss(3) as k increases as 0, 1, 2, . . .. Since p23 ≥ pss(3) (using
Lemma9), we have p23 ≥ p1P

k[001]T . Also, p1P
k[010]T = p22 from the symmetry

property in (27). Thus (S) holds for case 3.
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• 4. (S): p23p2P
k[010]T ≥ p22p2P

k[001]T . From Lemma 10, p2P
k[001]T mono-

tonically decreases from p23 to pss(3) as k increases as 0, 1, 2, . . .. Thus p23 ≥
p2P

k[001]T . This inequality along with the symmetry property (27) establishes (S)
for case 4.

• 5. (S): p23p3P
k[010]T ≥ p22p3P

k[001]T with k ≥ L. Note that for all k ≥ L,

p2α ≥ p3P
kα

⇒ α2p22 + p23 ≥ α2p3P
k[010]T + p3P

k[001]T

⇒ p23 ≥ p3P
k[001]T (28)

where we have used the symmetry property p22 = p3P
k[010]T in obtaining the

last inequality. (S) is established by using the symmetry property along with the
preceding inequality.

• 6. (S): p3P
k[001]T p22 ≥ p3P

k[010]Tp23 with k < L. For k < L, p2α < p3P
kα.

Expanding both the sides along the lines of case 5 and using the symmetry property
of (27), (S) can be established for case 6.

Thus the sufficient condition for the constrained search space optimality of the greedy
policy is satisfied.
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