Adaptive Filtering

Homework #7

HOMEWORK SOLUTIONS #7

- 1. (a) For the case $\mathbf{Q} = 10^{-5}\mathbf{I}$, we find that $\lambda_{\text{opt}} = 0.9326$ and $\lim_{n\to\infty} J(n)\Big|_{\text{RLS}} = 0.002450$ (or -26.108 dB), and that $\mu_{\text{opt}} = 0.0742$ and $\lim_{n\to\infty} J(n)\Big|_{\text{LMS}} = 0.002450$ (or -26.108 dB) which is identical to the RLS case.
 - (b) For the case $\mathbf{Q} = 10^{-5}\mathbf{I}$, Fig. 1 and Fig. 2 show parameter trajectories and learning curves, respectively. Averaging the experimental values, we find $\lim_{n\to\infty} J(n)|_{\text{RLS}} = 0.002496$ (or -26.027 dB), and that $\lim_{n\to\infty} J(n)|_{\text{LMS}} = 0.002504$ (or -26.014 dB), which shows that the experimental values match the theoretical quite well. As expected, LMS and RLS have almost exactly the same steady-state performance. As can be seen from the plots, however, RLS converges much faster than LMS.
 - (c) For the case $\mathbf{Q} = 10^{-5}\mathbf{R}$, we find that $\lambda_{\text{opt}} = 0.9147$ and $\lim_{n\to\infty} J(n)\Big|_{\text{RLS}} = 0.002587$ (or -25.873 dB), and that $\mu_{\text{opt}} = 0.0707$ and $\lim_{n\to\infty} J(n)\Big|_{\text{LMS}} = 0.002427$ (or -26.150 dB) which is slightly lower than for RLS. Fig. 1 and Fig. 2 show parameter trajectories and learning curves, respectively. Averaging the experimental values, we find $\lim_{n\to\infty} J(n)\Big|_{\text{RLS}} = 0.002611$ (or -25.832 dB), and that $\lim_{n\to\infty} J(n)\Big|_{\text{LMS}} = 0.002495$ (or -26.029 dB), which shows that the experimental values match the theoretical quite well. As expected, LMS has slightly superior steady-state performance relative to RLS. As can be seen from the plots, however, RLS converges much faster than LMS.
 - (d) For the case $\mathbf{Q} = 10^{-5} \mathbf{R}^{-1}$, we find that $\lambda_{\text{opt}} = 0.9293$ and $\lim_{n\to\infty} J(n)\Big|_{\text{RLS}} = 0.002475$ (or -26.065 dB), and that $\mu_{\text{opt}} = 0.1108$ and $\lim_{n\to\infty} J(n)\Big|_{\text{LMS}} = 0.002712$ (or -25.667 dB) which is slightly higher than for RLS. Fig. 1 and Fig. 2 show parameter trajectories and learning curves, respectively. Averaging the experimental values, we find $\lim_{n\to\infty} J(n)\Big|_{\text{RLS}} = 0.002490$ (or -26.037 dB), and that $\lim_{n\to\infty} J(n)\Big|_{\text{LMS}} = 0.002686$ (or -25.709 dB), which shows that the experimental values match the theoretical quite well. As expected, LMS has slightly inferior steady-state performance relative to RLS. Again, as can be seen from the plots RLS converges much faster than LMS.
- 2. (a) Here we need to prove that $\operatorname{tr}(\mathbf{R})^2 \leq M \operatorname{tr}(\mathbf{R}^2)$. The eigendecomposition $\mathbf{R} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^H$ implies $\mathbf{R}^2 = \mathbf{U} \mathbf{\Lambda}^2 \mathbf{U}^H$, so that $\operatorname{tr}(\mathbf{R}) = \sum_i \lambda_i$ and $\operatorname{tr}(\mathbf{R}^2) = \sum_i \lambda_i^2$, where λ_i are the eigenvalues of \mathbf{R} . Now define

$$egin{array}{rcl} oldsymbol{\lambda} &=& [\lambda_1,\lambda_2,\ldots,\lambda_M]^T \ oldsymbol{1} &=& [1,1,\ldots,1]^t \end{array}$$

noting that $\sum_i \lambda_i = \mathbf{1}^t \boldsymbol{\lambda}$, $\|\mathbf{1}\|^2 = M$, and $\|\boldsymbol{\lambda}\|^2 = \sum_i \lambda_i^2$. Then from Cauchy-Schwarz and the fact that $\lambda_i \geq 0$,

$$\begin{aligned} |\mathbf{1}^{t}\boldsymbol{\lambda}|^{2} &\leq \|\mathbf{1}\|^{2}\|\boldsymbol{\lambda}\|^{2} \\ \Rightarrow & \left(\sum_{i}\lambda_{i}\right)^{2} \leq M\sum_{i}\lambda_{i}^{2} \\ \Rightarrow & \operatorname{tr}(\mathbf{R})^{2} \leq M\operatorname{tr}(\mathbf{R}^{2}) \end{aligned}$$

Figure 1: Parameter trajectories, $\mathbf{Q} = 10^{-5} \mathbf{I}$.

(b) Here we need to prove that $\operatorname{tr}(\mathbf{R})\operatorname{tr}(\mathbf{R}^{-1})\geq M^2$. Since $\lambda_i>0$ we can define

$$\mathbf{x} = \left[\sqrt{\lambda_1}, \sqrt{\lambda_2}, \dots, \sqrt{\lambda_M}\right]^t$$
$$\mathbf{y} = \left[\left(\sqrt{\lambda_1}\right)^{-1}, \left(\sqrt{\lambda_2}\right)^{-1}, \dots, \left(\sqrt{\lambda_M}\right)^{-1}\right]^t$$

Then we see that $\|\mathbf{x}\|^2 = \sum_i \lambda_i = \operatorname{tr}(\mathbf{R})$, that $\|\mathbf{y}\|^2 = \sum_i \lambda_i^{-1} = \operatorname{tr}(\mathbf{R}^{-1})$, and that $\mathbf{x}^t \mathbf{y} = M$. Then from Cauchy-Schwarz

$$\begin{aligned} |\mathbf{x}^t \mathbf{y}|^2 &\leq \|\mathbf{x}\|^2 \|\mathbf{y}\|^2 \\ \Rightarrow & M^2 &\leq \operatorname{tr}(\mathbf{R}) \operatorname{tr}(\mathbf{R}^{-1}) \end{aligned}$$

Figure 2: Learning curves, $\mathbf{Q} = 10^{-5} \mathbf{I}$.

Figure 3: Parameter trajectories, $\mathbf{Q} = 10^{-5} \mathbf{R}$.

Figure 4: Learning curves, $\mathbf{Q} = 10^{-5} \mathbf{R}$.

Figure 5: Parameter trajectories, $\mathbf{Q} = 10^{-5} \mathbf{R}^{-1}$.

Figure 6: Learning curves, $\mathbf{Q} = 10^{-5} \mathbf{R}^{-1}$.