ECE-894a Adaptive Filtering Autumn 2005
Homework #7 Nov. 23, 2005

1.

(a)

(b)

HOMEWORK SOLUTIONS #7

For the case Q = 1071, we find that Aopy = 0.9326 and lim, . J(n)|,, s = 0-002450 (or
-26.108 dB), and that popr = 0.0742 and lim,—.o J(n)| = 0.002450 (or -26.108 dB)
which is identical to the RLS case.

For the case Q = 107°I, Fig. 1 and Fig. 2 show parameter trajectories and learning curves,
respectively. Averaging the experimental values, we find lim,, ., J (n)‘RLS = 0.002496 (or
-26.027 dB), and that lim,_ . J(n)’LMS = 0.002504 (or -26.014 dB), which shows that
the experimental values match the theoretical quite well. As expected, LMS and RLS have
almost exactly the same steady-state performance. As can be seen from the plots, however,
RLS converges much faster than LMS.

For the case Q = 107°R, we find that Aop; = 0.9147 and lim,, e J(n)|, ¢ = 0-002587
(or -25.873 dB), and that piopr = 0.0707 and limy .0 J(n)| , = 0.002427 (or ~26.150
dB) which is slightly lower than for RLS. Fig. 1 and Fig. 2 show parameter trajectories and
learning curves, respectively. Averaging the experimental values, we find lim,, . J(n) |RLS =
0.002611 (or ~25.832 dB), and that lim, .o J(n)| = 0.002495 (or -26.029 dB), which
shows that the experimental values match the theoretical quite well. As expected, LMS has
slightly superior steady-state performance relative to RLS. As can be seen from the plots,
however, RLS converges much faster than LMS.

For the case Q = 107°R ™!, we find that Aot = 0.9293 and lim,, oo J(n)‘RLS = 0.002475
(or -26.065 dB), and that oy = 0.1108 and lim, . J(n)}LMS = 0.002712 (or -25.667
dB) which is slightly higher than for RLS. Fig. 1 and Fig. 2 show parameter trajectories and
learning curves, respectively. Averaging the experimental values, we find lim,, . J(n) |RLS =
0.002490 (or ~26.037 dB), and that lim,—.. J(n)| , = 0.002686 (or ~25.709 dB), which
shows that the experimental values match the theoretical quite well. As expected, LMS has
slightly inferior steady-state performance relative to RLS. Again, as can be seen from the
plots RLS converges much faster than LMS.

Here we need to prove that tr(R)? < M tr(R?). The eigendecomposition R = UAU# implies
R? = UA*U", so that tr(R) = 3., A; and tr(R?) = 3, A?, where )\; are the eigenvalues of
R. Now define

A = DA ]

1 = [1,1,...,1]

noting that >, A\; = 1*A, ||1]|? = M, and ||A|? = >, A?. Then from Cauchy-Schwarz and the
fact that \; > 0,
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Figure 1: Parameter trajectories, Q = 107°I.

(b) Here we need to prove that tr(R)tr(R~!) > M?2. Since )\; > 0 we can define
t
X = |:\/)‘_17\/)\—27"'7\/)\M:|
—1 -1 —17¢t

Then we see that ||x||? = 3", A; = tr(R), that [ly[|> = >, A\; ' = tr(R™!), and that x'y = M.
Then from Cauchy-Schwarz

y

X'y < [x[Pllyl?
= M? < tr(R)tr(R7h)
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H= o = 0.074162, A = Aopt =0.93258
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Figure 2: Learning curves, Q = 107°L.
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Figure 3: Parameter trajectories, Q = 107°R.
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p= ”opt =0.070711, A= >\0pt =0.91474
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Figure 4: Learning curves, Q = 107 °R.
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Figure 5: Parameter trajectories, Q = 107°R™".
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M=y, = 011083, A=A =0.92929
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Figure 6: Learning curves, Q = 107°R™".
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