
ECE-894a Adaptive Filtering Autumn 2005

Homework #7 Nov. 23, 2005

HOMEWORK SOLUTIONS #7

1. (a) For the case Q = 10−5I, we find that λopt = 0.9326 and limn→∞ J(n)
∣

∣

RLS
= 0.002450 (or

-26.108 dB), and that µopt = 0.0742 and limn→∞ J(n)
∣

∣

LMS
= 0.002450 (or -26.108 dB)

which is identical to the RLS case.

(b) For the case Q = 10−5I, Fig. 1 and Fig. 2 show parameter trajectories and learning curves,

respectively. Averaging the experimental values, we find limn→∞ J(n)
∣

∣

RLS
= 0.002496 (or

-26.027 dB), and that limn→∞ J(n)
∣

∣

LMS
= 0.002504 (or -26.014 dB), which shows that

the experimental values match the theoretical quite well. As expected, LMS and RLS have

almost exactly the same steady-state performance. As can be seen from the plots, however,

RLS converges much faster than LMS.

(c) For the case Q = 10−5R, we find that λopt = 0.9147 and limn→∞ J(n)
∣

∣

RLS
= 0.002587

(or -25.873 dB), and that µopt = 0.0707 and limn→∞ J(n)
∣

∣

LMS
= 0.002427 (or -26.150

dB) which is slightly lower than for RLS. Fig. 1 and Fig. 2 show parameter trajectories and

learning curves, respectively. Averaging the experimental values, we find limn→∞ J(n)
∣

∣

RLS
=

0.002611 (or -25.832 dB), and that limn→∞ J(n)
∣

∣

LMS
= 0.002495 (or -26.029 dB), which

shows that the experimental values match the theoretical quite well. As expected, LMS has

slightly superior steady-state performance relative to RLS. As can be seen from the plots,

however, RLS converges much faster than LMS.

(d) For the case Q = 10−5R−1, we find that λopt = 0.9293 and limn→∞ J(n)
∣

∣

RLS
= 0.002475

(or -26.065 dB), and that µopt = 0.1108 and limn→∞ J(n)
∣

∣

LMS
= 0.002712 (or -25.667

dB) which is slightly higher than for RLS. Fig. 1 and Fig. 2 show parameter trajectories and

learning curves, respectively. Averaging the experimental values, we find limn→∞ J(n)
∣

∣

RLS
=

0.002490 (or -26.037 dB), and that limn→∞ J(n)
∣

∣

LMS
= 0.002686 (or -25.709 dB), which

shows that the experimental values match the theoretical quite well. As expected, LMS has

slightly inferior steady-state performance relative to RLS. Again, as can be seen from the

plots RLS converges much faster than LMS.

2. (a) Here we need to prove that tr(R)2 ≤ M tr(R2). The eigendecomposition R = UΛUH implies

R2 = UΛ2UH , so that tr(R) =
∑

i
λi and tr(R2) =

∑

i
λ2

i
, where λi are the eigenvalues of

R. Now define

λ = [λ1, λ2, . . . , λM ]t

1 = [1, 1, . . . , 1]t

noting that
∑

i
λi = 1t

λ, ‖1‖2 = M , and ‖λ‖2 =
∑

i
λ2

i
. Then from Cauchy-Schwarz and the

fact that λi ≥ 0,

|1t
λ|2 ≤ ‖1‖2‖λ‖2

⇒

(

∑

i

λi

)2

≤ M
∑

i

λ2
i

⇒ tr(R)2 ≤ M tr(R2)
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Figure 1: Parameter trajectories, Q = 10−5I.

(b) Here we need to prove that tr(R) tr(R−1) ≥ M2. Since λi > 0 we can define

x =
[

√

λ1,
√

λ2, . . . ,
√

λM

]t

y =

[

(

√

λ1

)

−1

,
(

√

λ2

)

−1

, . . . ,
(

√

λM

)

−1
]t

Then we see that ‖x‖2 =
∑

i
λi = tr(R), that ‖y‖2 =

∑

i
λ−1

i
= tr(R−1), and that xty = M .

Then from Cauchy-Schwarz

|xty|2 ≤ ‖x‖2‖y‖2

⇒ M2 ≤ tr(R) tr(R−1)
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Figure 2: Learning curves, Q = 10−5I.
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Figure 3: Parameter trajectories, Q = 10−5R.
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Figure 4: Learning curves, Q = 10−5R.
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Figure 5: Parameter trajectories, Q = 10−5R−1.
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Figure 6: Learning curves, Q = 10−5R−1.
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