
ECE-894a Adaptive Filtering Autumn 2005

Homework #6 Nov. 2, 2005

HOMEWORK SOLUTIONS #6

1. (a) For the adaptive stepsize algorithm I used α = 0.0004 and µmax = 0.1, yielding average

µ(n) =0.0372. Recall that µopt = 0.0340, indicating that this algorithm does quite a good

job of adapting the stepsize to minimize steady-state MSE. Fig. 1 shows that the parameters

track the true parameters quite well, and Fig. 2 shows that the steady-state error value is

essentially optimal. Fig. 3 shows that the stepsize adapts quite quickly to a value near the

optimal.
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Figure 1: Adaptive-stepsize LMS: parameter trajectories.

(b) For the variable stepsize algorithm I used ρ = 0.0005 and µmax = 0.1. This algorithm does

not seem to perform as well as the previous: note from Fig. 4 that the trajectories sometimes

adapt too slowly. Fig. 5 shows that the slow adaptation manifests itself as MSE bursts above

the minimum. Examining Fig. 6, we find that µ(n) change erratically, and are often much

smaller than optimal. My conclusion is that this algorithm, while computationally simple,

does not appear to work very well.
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Figure 2: Adaptive-stepsize LMS: error trajectory.
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Figure 3: Adaptive-stepsize LMS: stepsize trajectory.
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Figure 4: Variable-stepsize LMS: parameter trajectories.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−40

−30

−20

−10

0

10

J(
n)

 [d
B

]

ρ=0.0005, µ
max

=0.1

|e(n)|2

J(n)
J(∞) for µ

opt

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−11.5

−11

−10.5

−10

−9.5

−9

−8.5

−8

iteration

J(
n)

 [d
B

]

|e(n)|2

J(n)
J(∞) for µ

opt

Figure 5: Variable-stepsize LMS: error trajectory.
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Figure 6: Variable-stepsize LMS: stepsize trajectories.
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2. (a) The choice ∆ = 5 gives the lowest Jmse as a function of ∆. (See Fig. 7.)
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Figure 7: Jmin versus ∆.

(b) Fig. 8 compares SE-LMS to LMS. With equal steady-state error, the SE-LMS algorithm

clearly takes longer to converge. Thus LMS can be considered to offer superior performance

(at the cost of a more expensive implementation).

(c) Fig. 9 compares SR-LMS to LMS. Surprisingly, the SR-LMS algorithm converges only slightly

slower than LMS (for equal steady-state MSE)!

(d) Fig. 10 compares DFT-based TDAF to LMS using a flat power spectrum initialization (i.e.,

λ̂(0) = 1). Though there is a slight improvement over LMS, the improvement may not

be quite what we expect. This can be explained by looking at Fig. 11, which shows that

λ̂(n) has not adapted much from its unity initialization during the convergence stage of the

adaptation. We know that when λ̂(n) ≈ 1, the TDAF should behave nearly identical to

LMS (since rotating the parameter space by a unitary matrix preserves the shape of the MSE

contours.)

(e) If we initialize TDAF at the correct locations (which may not be possible in practice) then

the convergence of TDAF can be significantly faster than that of LMS, as shown in Fig. 12.

Using the same forgetting factor as in the previous experiment, we find that the values λ̂(n)

stay quite close to the optimal values (see Fig. 13).
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Figure 8: SE-LMS versus LMS.
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Figure 9: SR-LMS versus LMS.
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Figure 10: DFT-based TDAF versus LMS (λ̂(0) = 1).
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Figure 11: Evolution of λ̂(n) (from λ̂(0) = 1) using γ = 0.02.
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Figure 12: DFT-based TDAF versus LMS (λ̂(0) = λ).
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Figure 13: Evolution of λ̂(n) (from λ̂(0) = λ) using γ = 0.02.
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