
EE-894a Adaptive Filtering Autumn 2003

Homework #3 Oct. 14, 2003

HOMEWORK SOLUTIONS #3

1. (a) Using σ2
v = 0.5 and the randomly generated coefficients below for b, we obtain the autocor-

relation sequence r shown below. Note that it is conjugate symmetric (i.e., r(k) = r∗(−k)).

b =

1.0000

-0.1961 + 1.0579i

0.1681 + 0.3363i

0.3307 + 0.7559i

-0.0373 - 0.3903i

r =

-0.0112 - 0.1171i

-0.0225 + 0.2616i

0.2296 - 0.0644i

0.0388 + 0.2187i

0.9401

0.0388 - 0.2187i

0.2296 + 0.0644i

-0.0225 - 0.2616i

-0.0112 + 0.1171i

(b) The roots of B ∗ (z) are plotted in complex plane below. Note the symmetry across the unit

circle.
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(c) Building polynomial C∗(z) from the minimum phase roots and choosing the corresponding

σ2
w yields the coefficients below. It was verified that these coefficients generate exactly the

autocorrelation r above.
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c =

1.0000

0.1933 + 0.3312i

0.1783 - 0.1347i

0.0276 + 0.4190i

-0.0167 - 0.1749i

sig2w =

0.6695

(d) Note that c 6= b and that σ2
w
6= 0.5 though both MA models generate the same autocorrelation

sequence. Thus, while these models are not equal, we could say that they are equivalent.

We can understand the situation in this way: Every finite-lag autocorrelation sequence {r(k)}

leads to a set of zeros with unit-circle symmetry. An MA model constructed using any one

zero from each pair (and appropriate noise variance) will produce a random process with auto-

correlation {r(k)}. Since there are many ways to choose one zero from each pair, there will be

many MA models yielding the same autocorrelation. In other words, the choice of minimum-

phase roots was not necessary to solve the problem; we could have chosen “maximum phase”

roots (i.e., those outside the unit circle) or some “mixed phase” combination.

2. (a) The MSE cost is

e(n) = y(n) − s(n − ∆)

= (Hf − e∆)Hs(n) − fHw(n)

Jmse = E{|e(n)|2}

= E{(Hf − e∆)Hs(n)sH(n)(Hf − e∆)} + E{fHw(n)wH(n)f}

since {s(n)} and {w(n)} are uncorrelated.

= (Hf − e∆)H E{s(n)sH(n)}(Hf − e∆) + fH E{w(n)wH(n)}f

= (Hf − e∆)HRs(Hf − e∆) + fHRwf

(b) At the point f = f
?
, we know ∇fJmse = 0. So, setting

∇fJmse = 2HHRs(Hf − e∆) + 2Rwf

to zero implies

f
?

= (HHRsH + Rw)−1HHRse∆.

Notice HHRsH +Rw = E{u(n)uH(n)} := Ru. We can solve for the MMSE by plugging f?

into Jmse:

Jmse = eH

∆(RH

s
HR−1

u
HH − I)Rs(HR−1

u
HHRs − I)e∆ + eH

∆RH

s
HR−1

u
RwR−1

u
HHRse∆

= eH

∆RH

s
HR−1

u
RuR−1

u
HHRse∆ − 2eH

∆RH

s
HR−1

u
HHRse∆ + eH

∆Rse∆

= eH

∆Rse∆ − eH

∆RH

s
HR−1

u
HHRse∆

= σ2

s
− eH

∆RH

s
H(HHRsH + Rw)−1HHRse∆.

(c) Principle axes have directions {u1, u2} and lengths {
√

λ−1

1
,

√
λ−1

2
}, where Ru = UΛUH

denotes the eigendecomposition of Ru and where U = [u1u2] and Λ = [ λ1

λ2
]. MSE cost

contours are plotted below.
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Figure 1: MSE cost contours for ∆ = 0.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

f
0

f 1

MSE contours

MMSE parameters
principle axes

Figure 2: MSE cost contours for ∆ = 1.

(d) The AR-1 noise model is specified by the feedback gain a1 = −rw(0)−1r∗(1) and the driving

noise variance σ2
v =

∑1

i=0
air(i) (where a0 = 1).

Note: the experimental Ĵmin values below are based on psuedorandom numbers and thus

change from simulation to simulation.

∆ Jmin Ĵmin

0 0.0615 0.0617
1 0.1956 0.1956
2 0.7654 0.7632
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Figure 3: MSE cost contours for ∆ = 2.

3. From Jmfe = E{|y(n) − d(n)|4} = E{(|y(n) − d(n)|2)2} we have

∇fJmfe = E{2|y(n) − d(n)|2 · ∇f |y(n) − d(n)|2}

= E{2|y(n) − d(n)|2[∇f (y(n) − d(n)) · (y(n) − d(n))∗ + ∇f (y(n) − d(n))∗ · (y(n) − d(n))]}

where

∇f (y(n) − d(n)) = ∇f (fHu(n) − d(n)) = 2u(n)

∇f (y(n) − d(n))∗ = ∇f (uH(n)f − d∗(n)) = 0

so that

∇fJmfe = 4 E{u(n)|y(n) − d(n)|2(y(n) − d(n))∗}.

With the instantaneous gradient approximation, we arrive at the LMF algorithm:

f(n + 1) = f (n) −
µ

2
∇fJmfe

= f (n) − 2µu(n)|y(n) − d(n)|2(y(n) − d(n))∗
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