
ECE-894a Adaptive Filtering Autumn 2005

Homework #2 Oct. 7, 2005

HOMEWORK SOLUTIONS #2

1. (a) Using

f = [f0, f1, . . . , fL]t,

eδ = [0, . . . , 0, 1, 0, . . . , 0]t (where the 1 is in the δth position),

v(n) = [v(n), v(n − 1), . . . , v(n − K − L)]t,

B =











b0

...
. . .

bK b0

. . .
...

bK











,

we see that the impulse response of B∗(z)F ∗(z) equals (Bf )∗ expressed as a column vector,

or (Bf)H = fHBH expressed as a row vector. Thus

y(n) = fHBHv(n).

Writing v(n − δ) = et

δ
v(n), we have

e(n) = fHBHv(n) − et

δv(n)

= (fHBH − et

δ)v(n)

= (Bf − eδ)
Hv(n)

since eδ is real-valued.

(b) As for the mean-squared error, we have

E{|e(n)|2} = E{e(n)eH(n)}

= E{(Bf − eδ)
Hv(n)vH(n)(Bf − eδ)}

= (Bf − eδ)
H E{v(n)vH(n)}

︸ ︷︷ ︸

σ2
vI

(Bf − eδ)

= (Bf − eδ)
H(Bf − eδ)σ

2
v

= ‖Bf − eδ‖
2σ2

v .

(c) To achieve E{|e(n)|2} = 0, the previous equation implies that we need Bf = eδ. In other

words,











b0

...
. . .

bK b0

. . .
...

bK


















f0

f1

...
fL








=











...
0
1
0
...











. (1)

P. Schniter, 2005 1



To solve the first equation in the matrix system, it is easily seen that we need f0 = 0. For the

second equation, since f0 = 0, we need f1 = 0, and so on. We could repeat this procedure from

the bottom to find that we need fL = 0, fL−1 = 0, and so on. In total, these equations imply

f = 0, which prevents satisfaction of the middle equation [bK , . . . , b1, b0][f0, f1, . . . , fL]t = 1!

Thus, we cannot achieve zero error; we cannot equalize the system.

It should be noted that our problem has more equations (L + K + 1) than unknowns (L + 1)

since K > 0. This implies that we cannot solve Bf = x for generic x, although there will

be solutions for special x (specifically, those in the column span of B). For certain B, then,

Bf = eδ will have a solution.

(d) With the trivial channel B∗(z) = z−δ, the choice F ∗(z) = 1 (i.e., f = [1, 0, 0, . . . ]t) equalizes

with delay δ. This can be seen by plugging the values bδ = 1 and bk

∣
∣
k 6=δ

= 0 into (1) and

noting that the first column of B equals eδ.

2. (a) Denoting the output of F ∗(z) by y1(n) and the output of G∗(z) by y2(n), we use the methods

and notation from the previous problem to write

y1(n) = fHBHv(n)

y2(n) = gHCHv(n)

y(n) = (fHBH + gHCH)v(n)

= (Bf + Cg)Hv(n)

= (
[
B C

]
[
f

g

]

)Hv(n)

e(n) = y(n) − v(n − δ)

= y(n) − et

δv(n)

= (
[
B C

]
[
f

g

]

− eδ)
Hv(n)

(b) As for the mean-squared error, we have

E{|e(n)|2} =

∥
∥
∥
∥

[
B C

]
[
f

g

]

− eδ

∥
∥
∥
∥

2

σ2
v .

To achieve E{|e(n)|2} = 0 for delay δ we need

[
B C

]
[
f

g

]

= eδ. (2)

For solutions to (2) to exist for any δ ∈ {0, L + K},
[
B C

]
must have at least L + K + 1

linearly independent columns. Note that
[
B C

]
has L + K + 1 rows and 2(L + 1) columns

[
B C

]
=











b0 c0

...
. . .

...
. . .

bK b0 cK c0

. . .
...

. . .
...

bK cK











.

A necessary condition, then, is that we have enough columns. This can be stated as:

2(L + 1) ≥ L + K + 1

⇔ L ≥ K − 1,

P. Schniter, 2005 2



In communication terminology, the equalizer length must be greater or equal to the channel

length minus one. But adequate equalizer length is not sufficient; consider, e.g., the case

where B∗(z) = C∗(z): there would be at most L + 1 linearly independent columns! Thus, a

necessary and sufficient condition is that
[
B C

]
must be full row rank (i.e., the rank equals

the number of rows, which in this case is L + K + 1).

(c) Solving for the solution to (2), we must keep in mind that
[
B C

]
may have more columns

than rows. While the straighforward matrix inverse doesn’t exist for non-square matrices, the

psuedo-inverse does:

[
f

g

]

=
[
B C

]H
([

B C
] [

B C
]H

)−1

︸ ︷︷ ︸
[
B C

]+

eδ

Note that
[
B C

] [
B C

]H
is full-rank and square, so the inverse is well defined. It is easily

verified that these coefficients solve (2).

3. AR process design using Yule-Walker method:

(a) Parameter design:

M a0, a1, . . . σ2
v

2 -1.7625, 0.9503 8.8919e-03

4 -3.5707, 5.1243, -3.4867, 0.9511 8.1109e-05

5 -4.4752, 8.4404, -8.3603, 4.3470, -0.9511 7.7452e-06

(c) Empirically estimated autocorrelation compared to desired autocorrelations:

0 20 40 60 80 100 120 140 160 180 200
−0.6

−0.4

−0.2

0

0.2

0.4

0.6
yule−walker design

desired
AR model

0 2 4 6 8 10 12 14 16 18 20
−0.6

−0.4

−0.2

0

0.2

0.4

0.6
zoomed view

desired
AR model

Figure 1: Yule-Walker design for M = 2.

P. Schniter, 2005 3



0 20 40 60 80 100 120 140 160 180 200
−0.5

0

0.5

1
yule−walker design

desired
AR model

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1
zoomed view

desired
AR model

Figure 2: Yule-Walker design for M = 4.

0 20 40 60 80 100 120 140 160 180 200
−0.5

0

0.5

1
yule−walker design

desired
AR model

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1
zoomed view

desired
AR model

Figure 3: Yule-Walker design for M = 5.

P. Schniter, 2005 4



4. AR process design using Extended Yule-Walker method:

(a) Parameter design:

L a0, a1, . . . , a4 σ2
v

10 -4.2455, 7.6262, -7.2003, 3.5637, -0.7393 4.7480e-05

20 -4.0111, 6.8570, -6.1784, 2.9211, -0.5787 1.1132e-04

100 -4.0323, 6.9606, -6.3555, 3.0573, -0.6194 6.4985e-05

(c) Empirically estimated autocorrelation compared to desired autocorrelations:

(Note that increasing L results in a better match to desired r(k) for large k but at the expense

of mismatching the values at small k. For example, Fig. 6 shows that r(0) is not well matched

when L is large.)

0 20 40 60 80 100 120 140 160 180 200
−0.5

0

0.5

1
extended yule−walker design

desired
AR model

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1
zoomed view

desired
AR model

Figure 4: Extended Yule-Walker design for M = 5 and L = 10.

P. Schniter, 2005 5



0 20 40 60 80 100 120 140 160 180 200
−0.5

0

0.5

1
extended yule−walker design

desired
AR model

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1
zoomed view

desired
AR model

Figure 5: Extended Yule-Walker design for M = 5 and L = 20.

0 20 40 60 80 100 120 140 160 180 200
−0.5

0

0.5

1
extended yule−walker design

desired
AR model

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1
zoomed view

desired
AR model

Figure 6: Extended Yule-Walker design for M = 5 and L = 100.

P. Schniter, 2005 6



Matlab Code:

% fits a bessel function autocorrelation w/ an AR model

fmbyFs = 0.1; % normalized frequency

P = 1; % power

M = 5; % AR model order

Me = 100; % extended yule walker fitting order

Mp = 200; % plotting order

N = 10e4;

% desired autocorrelation sequence

rr = P/2*besselj(0,2*pi*fmbyFs*[0:Mp]).’;

% standard yule-walker

r_y = rr(2:M+1);

R_y = toeplitz(rr(1:M).’,rr(1:M));

a_y = -R_y\r_y;

sig2_v = [1; a_y]’*rr(1:M+1);

v1 = randn(1,N);

u = filter(1,[1; a_y],v1*sqrt(sig2_v));

tmp = xcorr(u,u,Mp,’unbiased’); r_hat = tmp(Mp+1:2*Mp+1);

% plot standard

figure(1)

subplot(211)

h1a=plot([0:Mp],rr,...

[0:Mp],r_hat,’g--’);

legend(h1a,’desired’,’AR model’);

title(’yule-walker design’);

subplot(212)

h1b=plot([0:20],rr(1:21),’b.-’,...

[0:20],r_hat(1:21),’g-o’);

legend(h1b,’desired’,’AR model’);

title(’zoomed view’);

% extended yule-walker

tmp = toeplitz(rr(1:Me).’,rr(1:Me)); R_e = tmp(:,1:M);

r_e = rr(2:Me+1);

a_e = -pinv(R_e)*r_e;

A = [convmtx([1;a_e],M+1),[zeros(1,M); convmtx(flipud([1;conj(a_e)]),M)]];

tmp = A.’\[zeros(M,1);1;zeros(M,1)]; r_e1 = [tmp(M+1:2*M+1);zeros(Me-M,1)];

for k=M+2:Me+1, r_e1(k) = -a_e’*r_e1(k-[1:M]); end;

sig2_ve = r_e1’*rr(1:Me+1)/norm(r_e1)^2;

u_e = filter(1,[1; a_e],v1*sqrt(sig2_ve));

tmp = xcorr(u_e,u_e,Mp,’unbiased’); r_hat_e = tmp(Mp+1:2*Mp+1);

% plot extended

figure(2)

subplot(211)

h2a=plot([0:Mp],rr,...

[0:Mp],r_hat_e,’g--’);

legend(h2a,’desired’,’AR model’);

title(’extended yule-walker design’);

subplot(212)

h2b=plot([0:20],rr(1:21),’b.-’,...

[0:20],r_hat_e(1:21),’g-o’);

legend(h2b,’desired’,’AR model’);

title(’zoomed view’);

P. Schniter, 2005 7


