
ECE-894a Adaptive Filtering Autumn 2005

Homework #7 Nov. 23, 2005

HOMEWORK ASSIGNMENT #7

Due Wed. Nov. 23, 2005

1. Recall homework problem 5.2 where we examined LMS in a time-varying system identification

application. We will now examine RLS in this application. Refering to the notation and diagram

of problem 5.2, assume that

• {x(n)} is generated by an AR-2 model with [a1, a2] = [0.6,−0.1] and driving noise σ2
v

= 0.5.

• σ2
z = 0.002.

• h(0) = [−1, 0, 1]t.

• h and w have equal length.

You will need results from the steady-state RLS analysis handout to answer the following questions.

(a) Assuming Q = 10−5I, calculate, in Matlab, the optimal RLS forgetting factor λopt and the

corresponding (theoretical) level of RLS steady-state MSE, as well as the optimal LMS stepsize

µopt and the corresponding (theoretical) level of LMS steady-state MSE.

(b) Simulate both LMS and RLS adaptation of w(n) using length-2500 sequences, the optimal

µ & λ, δ = 1, and initialization w(n) = 0. Generate a plot that superimposes the true

parameters {h(n)} and adapted estimates {w(n)} versus n. Generate a second plot that

superimposes J(n) for LMS and RLS with the limn→∞ J(n) values calculated in (a), all in

a dB scale. The results should look something like Fig. 1 and Fig. 2. Finally, average the

experimentally-derived steady-state MSE (after convergence) for comparison with theoretical

values. Which algorithm converges faster? Which tracks better?

(c) Repeat (a) & (b) for Q = 10−5R. Which algorithm converges faster? Which tracks better?

(d) Repeat (a) & (b) for Q = 10−5R−1. Which algorithm converges faster? Which tracks better?

2. Prove the following inequalities (which were seen in the steady-state RLS analysis) assuming R−1

exists:

(a)

√

tr(R)2

M tr(R2)
≤ 1

(b)
1

M

√

tr(R) tr(R−1) ≥ 1

Hint: Use the Cauchy-Schwarz inequality for vectors, |xHy|2 ≤ ‖x‖2‖y‖2, and the fact that the

trace of a matrix equals the sum of its eigenvalues.
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Figure 1: RLS/LMS time-varying system identification.
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Figure 2: RLS/LMS time-varying system identification.
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