
ECE-894a Adaptive Filtering Autumn 2005

Homework #5 Oct. 19, 2005

HOMEWORK ASSIGNMENT #5

Due Tues. Oct. 26, 2005 (in class)

1. In this problem we will investigate adaptive forward linear prediction. Assume the configuration

in Fig. 1, where W ∗(z) =
∑

M−1
k=0 w∗

k
z−k and {d(n)} is an AR-P process with feedback coefficients

{a1, a2, . . . , aP } driven by zero-mean white input noise {v(n)} with variance σ2
v . We refer to e(n)

as the “forward prediction error”.

z−1

u(n)

e(n)d(n)

y(n)W ∗(z)

+
−

Figure 1: Adaptive Forward Linear Predictor

(a) Derive expressions for the E{|e(n)|2}-minimizing coefficient vector w? and the corresponding

minimum error variance σ2
e

∣∣
min

in terms of the autocorrelation sequence of {d(n)}.

(b) Assuming that M ≥ P , rewrite w? and σ2
e

∣∣
min

in terms of a = [a1, a2, . . . , aP ]t and σ2
v .

(c) What can we say about the ability of a M th-order predictor to whiten an AR-P process when

M ≥ P? When M < P? (Hint: Examine the transer function from v(n) to e(n).)

(d) From here on assume that M = 2 and that {d(n)} is a real-valued AR-2 process generated

from feedback taps [a1, a2] = [0.6,−0.1] and driving noise variance σ2
v

= 0.2. We would now

like to simulate LMS adaptation of w and compare to GD-MSE optimization of w. To do

this, you will generate four plots, each showing MSE contours superimposed with principle

axes, MMSE solution, GD-MSE trajectories, and ten LMS parameter trajectories. For each

LMS trajectory, you will re-generate the random input {d(n)}. Use trajectory lengths of

N = 5000. The four plots will correspond to the different combinations of

w(0) =

{(
1
0

)
,

(
0
−1

)}
and µ = {.02, .2}.

(Note that most of your code can be reused from previous homework assignments.) An

example of one plot is given in Fig. 2.

(e) Finally, we would like to evaluate the excess MSE of LMS. To do this, empirically estimate

the mean-square prediction error (i.e., σ̂2
e

= 1
N−1

∑
N

n=1 |e(n)|2) using µ = 0.02, N = 106, and

w(0) = w?. Compare your answer to the expression derived in class:

Jemse ≈
µ

2
tr(R)Jmin.
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Figure 2: Example LMS and GD-MSE trajectories.

2. In this problem we study fixed-stepsize LMS for time-varying system identification. In Fig. 3, h(n)

represents the time-n impulse response of an unknown linear system, w(n) is the time-n impulse

response of an adaptive filter that is used to identify the system, {z(n)} represents measurement

noise, and {x(n)} the input process. As usual, our goal is minimization of E{|e(n)|2}.

Assume that {x(n)} is a zero-mean WSS random process with full rank autocorrelation matrix

Rx, that {z(n)} is zero-mean white noise with variance σ2
z uncorrelated with {x(n)}, and that

{h(n)} is generated by the random walk model h(n + 1) = h(n) + q(n) with zero-mean i.i.d.

vector process {q(n)} having autocorrelation Q = E{q(n)qH(n)}.

x(n) e(n)

z(n)

wH(n)

hH(n)

+

+

−

Figure 3: Adaptive Time-Varying System Identification

(a) For w and h of the same length, derive an expression for E{|e(n)|2|w(n), h(n)}. In other

words, fix w(n) and h(n), then express your answer in terms of the statistics of {x(n)} and

{z(n)}.

(b) Under the same assumptions as (a), derive expressions for the MMSE identifier

w?(n) = arg min
w(n)

E{|e(n)|2|w(n), h(n)}

and the corresponding MMSE error Jmin(n) = min
w(n) E{|e(n)|2|w(n), h(n)}.
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(c) Say that we want to generate {q(n)} for a particular Q = E{q(n)qH(n)} using q(n) = Bν(n)

where {ν(n)} has uncorrelated elements (i.e., E{ν(n)νH(n)} = I). How might we choose B?

(d) For the remaining parts of this problem, assume that

• {x(n)} is generated by an AR-4 model with feedback coefficients

[a1, a2, a3, a4] = [0.6,−0.1, 0.1, 0.1] and driving noise variance σ2
v

= 0.5.

• σ2
z = 0.1.

• Q = 10−4 ×
(

1.1 0.1 0.1
0.1 1.1 0.1
0.1 0.1 1.1

)

• h(0) = [−1, 0, 1]t.

• h and w have equal length.

Calculate, in Matlab, the optimal stepsize µopt and the resulting steady-state MSE, i.e.,

limn→∞ J(n), using the non-stationary EMSE equations derived in the lecture.

(e) Simulate LMS adaptation of w(n) using length-2500 sequences, the optimal stepsize, and

initial value w(n) = 0. Generate a plot that superimposes the true parameters {h(n)}

and adapted estimates {w(n)} versus n. Generate a second plot that superimposes |e(n)|2,

E{|e(n)|2|w(n), h(n)}, and the value of limn→∞ J(n) that you calculated in (d), all on a dB

scale. The results should look something like Fig. 4.

0 500 1000 1500 2000 2500
−2

−1.5

−1

−0.5

0

0.5

1

1.5

iteration

ta
ps

system
filter

0 500 1000 1500 2000 2500
−80

−70

−60

−50

−40

−30

−20

−10

0

10

iteration

J(
n)

 [d
B

]

|e(n)|2

J(n)
J(∞)

Figure 4: LMS time-varying system identification.

(f) Now we take a closer look at the non-stationary EMSE approximation. Plot theoretical EMSE

as a function of µ over the range 10−3 to 10−1. For each value µ ∈ {0.1, µopt, 0.01, 0.002},

run LMS for many iterations (≥ 50000 samples) intialized at w(0) = w?(0) and empirically

estimate the EMSE in two ways: using time-averages of |e(n)|2 and of E{|e(n)|2|w(n), h(n)}.

Superimpose these two sets of EMSE estimates onto the theoretical EMSE plot. The result

should look something like Fig. 5.
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Figure 5: EMSE versus µ.
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