ECE-894a Adaptive Filtering Autumn 2005

Homework #3 Oct. 7, 2005

HOMEWORK ASSIGNMENT $#3$

Due Wed. Oct. 12, 2005 (in class)

1. As derived in class, the autocorrelation sequence of a MA process generated by the length-K FIR system $B^*(z)$ and driven by σ_v^2 -variance white noise can be computed from

$$
r(l) = \sum_{i=0}^{K-1-l} b_{i+l}^{*} b_i \sigma_v^2.
$$
 (1)

If, on the other hand, we are given $\{r(l)\}\$ and asked to solve for $\{b_i\}$ and σ_v^2 , we have no simple equation. Instead, we use spectral factorization to solve the problem. The basic procedure is

- Compute the roots $\{\rho_i\}_{i=1}^{2(K-1)}$ of the polynomial $R(z) = \sum_{i=-K+1}^{K-1} r(i)z^i$. A valid autocorrelation sequence will always have roots that come in pairs mirrored across the unit circle in the complex plane.
- Choose the subset of roots $\{\rho_i'\}_{i=1}^{K-1}$ which lie inside the unit circle. These are called minimumphase roots. (If $R(z)$ has any root pairs on the unit circle, put one from each pair in $\{\rho_i'\}$.)
- From the minimum phase roots, construct $B^*(z) = \prod_{i=1}^{K-1} (1 z/\rho'_i) = \sum_{i=0}^{K-1} b_i^* z^i$. Note that $\{\rho'_i\}$ are the roots of $B^*(z)$ and that $b_0 = 1$.
- Set $\sigma_v^2 = r(0) \left(\sum_{i=0}^{K-1} |b_i|^2 \right)^{-1}$.

For this problem, do the following:

- (a) Create a MA model characterized by $\{\sigma_v^2, b_1, b_2, \ldots, b_K\}$, where $\sigma_v^2 = 0.5$ and $\{b_i\}_{i=1}^4$ are randomly chosen complex numbers. (As always, $b_0 = 1$.) Compute the corresponding autocorrelation sequence $\{r(l)\}\$ using (1).
- (b) Using the minimum-phase spectral factorization procedure outlined above, compute another MA model $\{\sigma_w^2, c_1, c_2, \ldots, c_K\}$ to match $\{r(l)\}.$
- (c) Using (1), compute the autocorrelation sequence of the MA model $\{\sigma_w^2, c_1, c_2, \ldots, c_K\}$.
- (d) Does $\{\sigma_v^2, b_1, b_2, \ldots, b_K\} = \{\sigma_w^2, c_1, c_2, \ldots, c_K\}$? Should they be equal? Comment.

Useful Matlab commands are: randn, roots, poly, find.

2. Communication channels are often modelled as LTI FIR systems plus an additive noise (see Fig. 1). Here we investigate the design of MMSE equalizers.

Figure 1: Linear Channel Equalization

- (a) Derive an expression for the MSE cost $J_{\text{mse}} = \mathbb{E}\{|e(n)|^2\}$ in terms of the equalizer coefficient vector $\boldsymbol{f} = [f_0, f_1, \dots, f_M]^t$, the source and noise autocorrelation matrices $(\boldsymbol{R}_s$ and $\boldsymbol{R}_w)$, the delay Δ , and the channel convolution matrix H composed from the impulse response $h = [h_0, h_1, \ldots, h_L]^t$. Assume that $\{w(n)\}\$ is uncorrelated with $\{s(n)\}.$
- (b) Using the MSE cost derived above, find an expression for the MMSE equalizer vector (f_{\star}) and the MMSE (J_{min}) . Assume that $(\boldsymbol{H}^{H} \boldsymbol{R}_{s} \boldsymbol{H} + \boldsymbol{R}_{w})^{-1}$ exists.
- (c) Assuming a two-tap equalizer, the two-tap channel

$$
\mathbf{h} = [h_0, h_1]^t = [1, -0.5]^t,
$$

and autocorrelation matrices

$$
\boldsymbol{R}_w = \begin{pmatrix} 0.01 & 0.005 \\ 0.005 & 0.01 \end{pmatrix}, \qquad \boldsymbol{R}_s = \boldsymbol{I},
$$

calculate J_{min} and plot the MSE contours as a function of the two equalizer parameters for the choices $\Delta = 0, 1, 2$ and f_k between -1.5 and 1.5. Superimpose the principle ellipse axes and mark the location of the optimal parameters. The result should look something like Fig. 2. Make sure to use equally scaled x and y axes! (Hint: Derive an expression for the equalizer input autocorrelation matrix and compute its eigenvalues/vectors. Use eig, contour, plot, hold, axis equal.)

(d) For the same parameters as part (c), experimentally estimate the MMSE costs by generating sequences $\{w(n)\}\$ and $\{s(n)\}\$ (with specified autocorrelation properties), calculating the MMSE equalizer f_{\star} , and using them to compute $\{e(n)\}\$ of length $N = 10^5$. Then compute $\widehat{J_{\min}} = \frac{1}{N} \sum_{n=1}^{N} |e(n)|^2$. (Hint: $\{w(n)\}\$ may be generated by an AR-1 model whose parameters are determined by the Yule-Walker equations.)

Figure 2: Example MSE cost contours