
ECE-894a Adaptive Filtering Autumn 2005

Homework #3 Oct. 7, 2005

HOMEWORK ASSIGNMENT #3

Due Wed. Oct. 12, 2005 (in class)

1. As derived in class, the autocorrelation sequence of a MA process generated by the length-K FIR

system B∗(z) and driven by σ2
v
-variance white noise can be computed from

r(l) =

K−1−l∑

i=0

b∗i+lbiσ
2
v . (1)

If, on the other hand, we are given {r(l)} and asked to solve for {bi} and σ2
v
, we have no simple

equation. Instead, we use spectral factorization to solve the problem. The basic procedure is

• Compute the roots {ρi}
2(K−1)
i=1 of the polynomial R(z) =

∑K−1
i=−K+1 r(i)zi. A valid autocor-

relation sequence will always have roots that come in pairs mirrored across the unit circle in

the complex plane.

• Choose the subset of roots {ρi
′}K−1

i=1 which lie inside the unit circle. These are called minimum-

phase roots. (If R(z) has any root pairs on the unit circle, put one from each pair in {ρ′
i
}.)

• From the minimum phase roots, construct B∗(z) =
∏

K−1
i=1 (1− z/ρ′

i
) =

∑
K−1
i=0 b∗

i
zi. Note that

{ρ′
i
} are the roots of B∗(z) and that b0 = 1.

• Set σ2
v

= r(0)
(∑K−1

i=0 |bi|
2
)
−1

.

For this problem, do the following:

(a) Create a MA model characterized by {σ2
v
, b1, b2, . . . , bK}, where σ2

v
= 0.5 and {bi}

4
i=1 are

randomly chosen complex numbers. (As always, b0 = 1.) Compute the corresponding auto-

correlation sequence {r(l)} using (1).

(b) Using the minimum-phase spectral factorization procedure outlined above, compute another

MA model {σ2
w, c1, c2, . . . , cK} to match {r(l)}.

(c) Using (1), compute the autocorrelation sequence of the MA model {σ2
w
, c1, c2, . . . , cK}.

(d) Does {σ2
v
, b1, b2, . . . , bK} = {σ2

w
, c1, c2, . . . , cK}? Should they be equal? Comment.

Useful Matlab commands are: randn, roots, poly, find.
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2. Communication channels are often modelled as LTI FIR systems plus an additive noise (see Fig. 1).

Here we investigate the design of MMSE equalizers.
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Figure 1: Linear Channel Equalization

(a) Derive an expression for the MSE cost Jmse = E{|e(n)|2} in terms of the equalizer coefficient

vector f = [f0, f1, . . . , fM ]t, the source and noise autocorrelation matrices (Rs and Rw),

the delay ∆, and the channel convolution matrix H composed from the impulse response

h = [h0, h1, . . . , hL]t. Assume that {w(n)} is uncorrelated with {s(n)}.

(b) Using the MSE cost derived above, find an expression for the MMSE equalizer vector (f?)

and the MMSE (Jmin). Assume that (HHRsH + Rw)−1 exists.

(c) Assuming a two-tap equalizer, the two-tap channel

h = [h0, h1]
t = [1,−0.5]t,

and autocorrelation matrices

Rw =

(
0.01 0.005
0.005 0.01

)
, Rs = I,

calculate Jmin and plot the MSE contours as a function of the two equalizer parameters

for the choices ∆ = 0, 1, 2 and fk between −1.5 and 1.5. Superimpose the principle ellipse

axes and mark the location of the optimal parameters. The result should look something

like Fig. 2. Make sure to use equally scaled x and y axes! (Hint: Derive an expression for

the equalizer input autocorrelation matrix and compute its eigenvalues/vectors. Use eig,

contour, plot, hold, axis equal.)

(d) For the same parameters as part (c), experimentally estimate the MMSE costs by generat-

ing sequences {w(n)} and {s(n)} (with specified autocorrelation properties), calculating the

MMSE equalizer f
?
, and using them to compute {e(n)} of length N = 105. Then com-

pute Ĵmin = 1
N

∑
N

n=1 |e(n)|2. (Hint: {w(n)} may be generated by an AR-1 model whose

parameters are determined by the Yule-Walker equations.)
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Figure 2: Example MSE cost contours

P. Schniter, 2005 3


