
ECE-894a Adaptive Filtering Autumn 2005

Homework #2 Sep. 27, 2005

HOMEWORK ASSIGNMENT #2

Due Fri. Oct. 7, 2005 (in class)

1. Consider the block diagram in Fig. 1, where an FIR filter F ∗(z) follows an FIR filter B∗(z) driven

by white noise v(n) with variance σ2
v . Assume B∗(z) =

∑K

k=0
b∗kz−k and F ∗(z) =

∑L

k=0
f∗

kz−k. Is

it possible to force y(n) = v(n − δ) for some delay δ? In other words, is it possible for F ∗(z) to

invert the effect of B∗(z)? This problem is known as “baud spaced equalization of an FIR channel”

in the digital communication literature.

v(n)

u(n)

y(n)B∗(z) F ∗(z)

Figure 1: Single channel equalization.

(a) Using f := [f0, f1, . . . , fL]t, the “standard basis vector” eδ := [0, . . . , 0, 1, 0, . . . , 0]t (where the

1 is in the δth position), v(n) := [v(n), v(n−1), . . . , v(n−K−L)]t, and convolution matrix B

(defined as in the lecture), write a vector/matrix equation for the error e(n) := y(n)−v(n−δ).

(b) Derive an expression for E{|e(n)|2} involving B, f , eδ and σ2
v and the `2 norm (i.e., ‖x‖2

2 :=
∑

n |xn|
2 = xHx).

(c) Assuming b0 6= 0 6= bK and K > 0, can we achieve E{|e(n)|2} = 0 for some choice of f and δ?

Prove your claim.

(d) Repeat (c) for the trivial channel B∗(z) = z−δ.

2. Now consider the two-channel model in Fig. 2. As in the previous problem, B∗(z) and C∗(z) are

length-(K +1) FIR filters, F ∗(z) and G∗(z) are length-(L+1) FIR filters, and v(n) is variance-σ2
w

white noise. Such multi-channel models arise in applications employing multiple sensors/antennas

or in so-called “fractionally-spaced” equalizers that are used in modern digital communications.

We are interested in determining whether it is possible to force y(n) = v(n − δ).

+v(n) y(n)

B∗(z)

C∗(z)

F ∗(z)

G∗(z)

Figure 2: Multiple channel equalization.

The main questions are: Given FIR B∗(z) and C∗(z), can we perfectly recover the input signal

(with delay δ) using length-K FIR filters F ∗(z) and G∗(z)? If so, what conditions must the

channels B∗(z) and C∗(z) satisfy?
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(a) Using the quantities f ,g,B,C, eδ, and v(n), defined as in the previous problem, write a

vector/matrix equation for the error e(n) := y(n) − v(n − δ). (Hint: It may help to stack f

and g into a single column vector for later parts of this problem.)

(b) Translate the condition E{|e(n)|2} = 0 into a vector/matrix equation involving [f t,gt]t, [B,C],

and eδ. What conditions on the rank of [B,C] are required if we want to achieve E{|e(n)|2} =

0 for any δ ∈ {0, 1, . . . , L + K}? What does this imply about the minimum length of f & g?

(c) Assuming the rank conditions in part (c) are satisfied, provide equations for the equalizing

coefficients [f t,gt]t for a fixed choice δ ∈ {0, 1, . . . , L+K−1}. (Hint: use the psuedo-inverse.)

3. The gain of a narrowband multipath communications channel can be modelled by a WSS complex

random process h(n) = hI(n) + jhQ(n), where hI(n) and hQ(n) are the real-valued “in-phase”

and “quadrature” components, respectively, and n is a discrete time index. Under “isotropic

scattering,” the in-phase and quadrature components have temporal correlation specified by

E[hI(n)hI(n − k)] = E[hQ(n)hQ(n − k)] =
P

2
J0

(

2πkfm/Fs

)

E[hI(n)hQ(n − k)] = 0 ∀k

where J0(·) is a zero-order Bessel function of the first kind, P is the total received power, fm is

the ratio of mobile velocity to carrier wavelength, and Fs is the symbol rate.

Our goal is to generate a model of the in-phase component in Matlab using AR models of order

M = 2, 4, 5. Assume that fm/Fs = 0.1 and P = 1.

(a) Using the Yule-Walker equations and the correlations r(k) = E[hI(n)hI(n − k)] specified

above, solve for the AR filter coefficients {a1, a2, . . . , aM} and the input variance σ2
v for each

of the M above. (Hint: use besselj, toeplitz.)

(b) Verify each of your designs by generating a random sequence of length N = 10, 000 satisfying

the conditions for v(n) and then filtering it to produce the sequence u(n). (Hint: use randn,

filter.)

(c) Estimate the autocorrelation of u(n) via

r̂u(k) =
1

N − k

N−1−k
∑

n=0

u(n + k)u(n)

and plot it along with the desired autocorrelation for 0 ≤ k ≤ 200. Also show a close-up plot

of 0 ≤ k ≤ 20. Fig. 3 shows an example for one particular choice of M . (Hint: use xcorr,

subplot, plot, legend, title.)

Do not use any of the built-in Yule-Walker commands. Please turn in your Matlab code with

your homework.

4. You may have noticed that the ability to match the desired autocorrelation sequence in the previous

problem was somewhat dissappointing, even for the higher-order AR models. We are now going

to repeat the previous design task using the “extended Yule-Walker equations” to see if we can

improve the results. The idea is that the standard Yule-Walker equations exactly fit the first M+1

autocorrelation values but ignore the rest; instead we will attempt an approximate least-squares

(LS) fit to the first L+1 � M +1 autocorrelation values.
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Figure 3: Desired and measured autocorrelations from Yule-Walker AR model.

Extended Yule-Walker Procedure:

i. Choose a = [a1, a2, . . . , aM ]t as the LS solution to
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which in can be accomplished using the psuedoinverse, i.e., a = −R+

Lr∗L, where RL

and r∗L are created as above from the desired autocorrelation sequence. (Hint: use

toeplitz, pinv.)

ii. Next we find the actual autocorrelation sequence {ru(k)} generated by the AR

model. Using the properties

M
∑

k=0

akru(k − `) =

M
∑

k=0

a∗

kru(` − k) =

{

σ2
v ` = 0

0 ` > 0

we write the system of equations
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which yields a unique solution for {ru(−M), . . . , ru(M)} when {ak} and σ2
v are

known. Given these initial values of ru(k), others can easily be calculated through

the recursive filtering operation

ru(`) = −

M
∑

k=1

a∗

kru(` − k), ` ≥ M + 1.

For now, assume σ2
v = 1 and calculate {ru(k)

∣

∣

σ2
v
=1

for k = 0..L}. (Hint: use

convmtx, inv.)

iii. The final step is to select σ2
v that best fits {ru(k)} to the desired {r(k)}. First, realize

that the autocorrelation scales linearly with the the input variance, i.e., ru(k) =

σ2
v · ru(k)

∣

∣

σ2
v
=1

. It follows that the LS optimization problem and solution are:

min
σ2

v

L
∑
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∣

∣
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∣

∣
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v
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− r(k)
∣

∣

∣

2
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v

∣

∣
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=

∑L

k=0
ru(k)

∣

∣
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v
=1

r(k)

∑L

k=0

(

ru(k)
∣

∣
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v
=1

)2
.

For this problem, generate the same plots as in the problem 4 but using the Extended Yule-Walker

procedure outlined above. Assume a fifth order AR model (i.e., M = 5) and fitting lengths of

L = 10, 20, 100. Explain the advantages and disadvantages of choosing L � M .
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