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Frequency Selective Channels [Ch. 11]:

• Caused by multipath propagation and lossy media.

• Time dispersive; impulse response hz(t) on [0, Th].

• Assume hz(t) known at receiver but not transmitter.

• Goal: Communicate Kb bits with complexity O(Kb).

• Remember Eb denotes average received energy per bit.

Xz(t) Yz(t)hz(t)
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General M -ary MLWD:

• Optimal demodulation performed as before, but with

signal xi(t) replaced by x̃i(t)
∆
= xi(t) ∗ hz(t)

Î = arg max
i

[
Re

∫ ∞

−∞

Yz(t)x̃
∗
i (t)dt −

Ẽi

2

]

Ẽi
∆
=

∫ Tp+Th

0

|x̃i(t)|
2dt

Note: orthogonality may be hard to preserve!

• Performance now determined by

∆E(i, j) =

∫ Tp+Th

0

|x̃i(t) − x̃j(t)|
2dt
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Binary OCDM in Frequency Selective Channels:

xi(t) =
Kb∑
l=1

d(l)
ml

s(l)(t) where I = i = [m1,m2, . . . ,mKb
]

x̃i(t) =
Kb∑
l=1

d(l)
ml

(
s(l)(t) ∗ hz(t)

)︸ ︷︷ ︸
s̃(l)(t)

Î = arg max
i∈{0,...,M−1}

Kb∑
l=1

Re

[
d(l)∗

ml

∫ Tp+Th

0

Yz(t)s̃
(l)∗(t)dt︸ ︷︷ ︸

Q(l)

]

−
1

2

Kb∑
k=1

Kb∑
l=1

d(k)
mk

d(l)∗
ml

∫ Tp+Th

0

s̃(k)(t)s̃(l)∗(t)dt︸ ︷︷ ︸
V (k,l)

s̃
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Matrix Formulation:

Q̃ =




Q̃(1)

...

Q̃(Kb)


 , di =




d(1)
m1

...

d(Kb)
mKb


 , Ñ =




Ñ (1)

...

Ñ (Kb)




where Ñ (k) =
∫ Tp+Th

0 Wz(t)s̃(k)∗(t)dt.

Q̃ = EbGD + Ñ where [G]k,l = E−1
b V (k,l)

s̃

RÑ = E{ÑÑ
H
} = EbNoG

Î = arg max
i∈{0,...,M−1}

{
Re
[
dH

i Q̃
]
−

Eb

2
dH

i Gdi

}
Note: Kb matched filters but O(2Kb) processing.
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Can approximate performance via union bound:

PWE =
1

M

M−1∑
j=0

M−1∑
i=0,i %=j

1

2
erfc


√∆E(i, j)

4No




∆E(i, j) = Eb

(
di − dj

)H
G
(
di − dj

)
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Sub-optimum Binary-OCDM Demodulators:

1. Decorrelating (or Zero-Forcing) Detector:

D̂ = (EbG)−1Q̃ = D + (EbG)−1Ñ︸ ︷︷ ︸
Ñd

Re
{

D̂(k)
}

Î(k)=0
>
<

Î(k)=1

0 ∀k

Performance:

RÑd
=

No

Eb

G
−1

PBE(k) =
1

2
erfc

(√
Eb

No[G
−1]k,k

)

! Suppress interference perfectly at cost of noise gain.
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2. Linear MMSE Detector:

D̂ = W
H
MMSE

Q̃

Re
{

D̂(k)
}

Î(k)=0
>
<

Î(k)=1

0, ∀k

Noise+interference minimized in mean-square sense:

W
H
MMSE

= arg min
WH

E
[∥∥W HQ̃ − D

∥∥2
]

= (EbG + NoIKb
)−1

• Same O(K2
b ) complexity as ZF detector but better

performance, since balances noise & interference.

• Problems: still some noise gain, and needs Eb/No.
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Comparison of linear OCDM detectors:
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3. Successive Interference Cancellation (SIC):

Q̃
1

= Q̃

for l = 1, . . . ,Kb

1) find index kl of highest-SINR remaining bit.

2) detect I(kl) from Q̃
l
(e.g., MMSE, ZF).

3) cancel interference: Q̃
l+1

= Q̃
l
− Eb[G]:,kl

a(Î(kl)).

end

• No noise gain, but possible error propagation.

• Same O(K2
b ) complexity but better performance

than linear detectors (e.g., ZF, MMSE) when error

propagation is not a problem.
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Comparison of OCDM detectors:
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Other sub-optimal OCDM detectors:

• Parallel Interference Cancellation (often multi-stage)

– trys to cancel all interference from each bit estimate.

• Iterative Soft Interference Cancellation

– soft cancellation avoids error propagation.

– APPs for one iteration used as priors in next.

• Sequential Decoding (i.e., Tree Search)

– evaluate a small fraction of the 2Kb possibilities.

– near-MLWD performance, polynomial complexity.

– examples: sphere decoder, Fano alg, M -alg, T -alg.
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Binary OFDM in Frequency Selective Channels:

Recall OFDM:

Xz(t) =
Kb∑
l=1

D(l)
z u(t)ej2πflt for appropriate u(t) and {fl}

Yz(t) = Wz(t) + Xz(t) ∗ hz(t)

= Wz(t) +
Kb∑
l=1

D(l)
z

∫ Th

0

hz(τ)u(t − τ)ej2πfl(t−τ)dτ

= Wz(t) +
Kb∑
l=1

D(l)
z ej2πflt

∫ Th

0

hz(τ)u(t − τ)e−j2πflτdτ︸ ︷︷ ︸
∆
= ũ(l)(t)

Non-orthogonal {ũ(l)(t)} imply O(2Kb) complexity!
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Suboptimal Binary-OFDM Demodulation:

If u(t) is constant over the range t ∈ [−Th, Td], then

ũ(l)(t) =

∫ Th

0

hz(τ)u(t − τ)e−j2πflτdτ

= u(t)

∫ Th

0

hz(τ)e−j2πflτdτ

= u(t)Hz(fl)

for t ∈ [0, Td]. Over the same range t ∈ [0, Td],

Yz(t) = Wz(t) +
Kb∑
l=1

D(l)
z u(t) ej2πflt Hz(fl),

which looks like frequency-flat OFDM except for Hz(fl)!

13

Phil Schniter OSU ECE-809

Rather than using the optimal (but non-orthogonal) MFs{
ũ(k)∗(t)e−j2πfkt, t ∈ (−∞,∞)

}Kb

k=1
,

we use the suboptimal (but orthogonal) receiver pulses{
H∗

z (fk)u(t)e−j2πfkt, t ∈ [0, Td]
}Kb

k=1
,

yielding processing complexity O(Kb) instead of O(2Kb).

In this case, the kth bit decision is made as follows:

Re

[
H∗

z (fk)

∫ Td

0

Yz(t)e
−j2πfktdt

]
Î(k)=0

>
<

Î(k)=1

0
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Using Eb to denote avg bit energy received in [0, Td],

PBE(k) =
1

2
erfc



√√√√ |Hz(fk)|2

1
Kb

∑Kb

k=1 |Hz(fk)|2
Eb

No




PWE = 1 −
Kb∏
k=1

(
1 − PBE(k)

)
Notes:

• This scheme is called cyclic prefix OFDM.

• Weakest subchannel PBE dominates average PBE.

• Not all of received signal used: Eb < Eb.

• Time spent on prefix ! reduced rate, spectral efficiency.
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