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Note to Students. This text is an evolving entity. Please help make an UCLA education more
valuable by providing me feedback on this work. Small things like catching typos or big things like
highlighting sections that are not clear are both important.

My goal in teaching communications (and in authoring these notes) is to provide students with

1. the required theory,

2. an insight into the required tradeoffs between spectral efficiency, performance, and complexity
that are required for a communication system design,

3. demonstration of the utility and applicability of the theory in the homework problems and projects,

4. a logical progression in thinking about communication theory.

Consequently this textbook will be more mathematical than most and does not discuss a host of examples
of communication systems. Matlab is used extensively to illustrate the concepts of communication theory
as it is a great visualization tool. To me the beauty of communication theory is the logical flow of ideas.
I have tried to capture this progression in this text.

c©1996-2004 - Michael P. Fitz - The University of California Los Angeles
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Chapter 1

Introduction

The students that read this book have grown up with pervasive communications. A vast majority have
listened to broadcast radio and television, used a mobile phone, surfed the world wide web, and played a
compact or video disk recording. Hence there is no need for this book to motivate the student about the
utility of communication technology. They use it everyday. This chapter will consequently be focused
on the engineering aspects of communication technology that are not apparent from a user perspective.

1.1 Historical Perspectives on Communication Theory

Getting information from point A to point B using electricity or magnetism is the subject of this book.
This field was born in the mid-1800’s with the telegraph and continues today in a vast number of
applications. Humans have needed communications since prehistoric times for the building of wealth
and the waging of war. These social forces with the aid, at various points in time, of government
sponsored monopolies have continuously pushed forward the performance of communications. It is
perhaps interesting to note that the first electronic communications (telegraphy) was sending digital
data (words were turned into a series of electronic dashes and dots). As the invention of the telephone
took hold (1870s) communication became more focused on analog communication as voice was the
information source of most interest to convey. The first World War led to great advances in wireless
technology and television and radio broadcast soon followed. Again the transmitted information sources
were analog. The digital revolution was spawned by the need for the telephone network to multiplex and
automatically switch a variety of phone calls. A further technology boost was given during the second
World War in wireless communications and system theory. The cold war led to rapid advances in
satellite communications and system theory as the race for space gripped the world’s major technology
innovation centers. The invention of the semiconductor transistor and the march of Moore’s law has
spurred the march of innovation since the early 1980s. The evolving power of the microprocessor, the
embedded computer and the signal processor has enabled algorithms that were considered preposterous
at their formulation to see cost effective implementation. Distilling this 150 plus years of innovation
into a small part of an engineering curriculum is a challenge but one this book arrogantly attempts.

The relative growth rate of electronic communications is phenomenal. Consider for example transat-
lantic transmission of information using under sea cables. This system has gone from from roughly 10
bits/sec in 1866 to roughly 1012 bits/sec in the year 2000 [Huu03]. The world community has gone
in a very short period of time from accepting message delivery delays of weeks to down to seconds.
The period from 1850-1900 was one filled with a remarkable advances in technology. Remarkably the
advances in communications prior to 1900 can almost all be attributed to a single individual or inven-
tion. This started to change as technology became more complex in the 1900s. Large corporations
and research labs began to be formed to support the large and complex systems that were evolving.
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The evolution of these technologies and the personalities involved in their development are simply fas-
cinating. Several books that are worth some reading if you are interested in the history of the field are
[Huu03, Bur04, SW49, Bra95, Les69]. It is a rare invention that has an uncontested claim to ownership.
These intellectual property disputes have existed from the telegraph up until modern times, but the
tide of human innovation seems to be ever rising in spite of who gets credit for all the advances.

The ability to communicate has been markedly pushed by advances in technology but this book is
not about technology. From the invention of the microphone, the electric motor, the electronic tube,
the transistor, to the laser, engineers and physicist have made great technology leaps forward. These
technological leaps have made great advances in communications possible. As technology has advanced
the job of an engineer has become multifaceted and specialized over time. What once was a field where
non-experts could contribute1 prior to 1900 became a field where great specialization was needed in
the post 1900 era. Two areas of specialization formed through the 1900s; the devices engineer and the
systems engineer. The devices engineer is focused on designing technology to complete certain tasks.
Devices engineers for example build antennas, amplifiers and/or oscillators and are heavily involved with
current technology. Systems engineers try to put devices together in a way that will work as a system
to achieve an overall goal. System engineers try to form mathematical models for how systems operate
and use these models to design and specify systems. This text is written with a systems engineering
perspective. Systems engineering in communications did not really come to be a formalized field until
the early 1900s hence few of the references in this book were published before 1900. Some interesting
historical system engineering references are [Car26, Nyq28, Arm35, Har28, Ric45, Sha48, Wie49]. This
systems level perspective is very useful for education in that while technology will change greatly during
an engineer’s career the theory will be reasonably stable.

1.2 Goals For This Text

What this text is attempting to do is to show the mathematical and engineering underpinings to commu-
nication systems and systems engineering. While most students have used communication technology,
few realize that the technology is built upon a strong core of engineering principles and over 100 years
of hard work by a large group of talented people. Without a talented engineering workforce who under-
stood the fundamental theory and put this theory into practice, humans would not have been able to
deploy the pervasive communications society experiences. The goal for this text is to have some small
part in the education of the workforce that will implement the next 50 years of progress. To reach this
goal this text will focus on teaching the fundamentals of communication theory by

1. demonstrating that the mathematical tools the students have learned in their undergraduate
education are useful in engineering practice,

2. showing that with modern integrated circuits the theory is directly reflected in engineering prac-
tice,

3. detailing how engineering tradeoffs in a communication system are ever evolving and that these
tradeoffs involve performance, bandwidth efficiency, and complexity of the implementation.

Hopefully in addition to these professional goals, the reader of this text will come away with

1. A historical perspective on the hard work that has led to the current state of the art.

2. A sense of how fundamental engineering tools have real impact on system design.

1For example, Samuel Morse of Morse code and telegraph systems fame in the United States was a professor in the
liberal arts.
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3. A realization that fundamental engineering tools have changed little even as the technology to
implement designs has evolved at a whithering pace.

4. An understanding that communications engineering is a growing and evolving entity and that
continued education will be an important part of a career as a communication engineer.

1.3 Modern Communication System Engineering

Modern communication systems are very complex systems and no one engineer can be an expert in all
the areas of the system. The initial communication systems were very simple point-to-point commu-
nication systems (telegraphy) or broadcast systems (commercial radio). As these systems were simple
the engineering expertise could be common. As systems started to get more sophisticated (public
telephony) a bifurcation of the needed expertise to address problems became apparent. There was a
need to have an engineer who understood the details of the physical channel and how the information
was transmitted and decoded. In addition there was a need to have an engineer who abstracted the
problem at a higher level. This “higher level” engineer needed to think about switching architectures,
supporting multiple users, scalability of networks, fault tolerance, and supporting applications. As the
amount of information, system design options, and technology to implement these options grew further
subdisciplines grew within the communications engineering field.

Modern communication systems are typically designed in layers to compartmentalize the different
expertise and ease the interfacing of these multitude of expertises. In a modern system the communica-
tion system has a high level network architecture specification. This high level architecture is typically
broken down into layers for implementation. The advantage of the layered architecture in the design
process is that in designing a system for a particular layer the next lower layer can be dealt with as
an abstract entity and the higher layer functions do not impact the design. Another advantage to the
layered design is that components can be reused at each layer. This allows services and systems to be
developed much more quickly in that designs can reuse layers from previous designs when appropriate.
This layered design eliminated monolithic communications systems and allowed incremental changes
much more readily.

An example of this layered architecture is the open systems interconnection (OSI) model. The
OSI model was developed by the International Organization for Standardization (ISO) and has found
significant utilization in practice. The OSI reference model is shown in Fig. 1.1. Each layer of abstraction
communicates logically with entities at the same layer but produces this communication by calling
the next lower layer in the stack. Using this model for instance it is possible to develope different
applications (e.g., email versus web browsing) on the same base architecture (e.g., public phone system)
as well as provide a method to insert new technology at any layer of the stack without impacting the
rest of the system performance (e.g., replace a telephone modem with a cable modem). This concept
of a layered architecture has allowed communications to take great advantage of prior advances and
leap–frog technology along at a phenomenal pace.

This text is entirely focussed on what is known as physical layer communications. The physical
layer of communications refers to the direct transfer of physical messages (analog waveforms or digital
data bits) over a communications channel. The model for a physical layer communication abstraction is
shown in Fig. 1.2. Examples of physical communication channels include, copper wire pairs (telephony),
coaxial cables, radio channels (mobile telephony), or optical fibers. The engineering tools, the technol-
ogy, and design paradigms are significantly different at the physical layer than at the higher layers in
the stack. Consequently system engineering expertise in practice tends to have the greatest divide at
the boundary to the physical layer. Engineering education has followed that trend and typically course
work in telecommunications at both the undergraduate level and the graduate level tends to be bifur-
cated along these lines. To reflect the trend in both education and in industrial practice this book will
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Figure 1.1: The OSI reference model.

Figure 1.2: The physical layer model.

only try to educate in the area of physical layer communication systems. To reflect this abstraction the
perspective in this text will be on point-to-point communications. Certainly multiple access communi-
cations is very important in practice but it will not be considered in this text to maintain a consistent
focus. Students who want a focus more on the upper layers of the communication stack should refer to
[KR04, LGW00, Tan02].

1.4 Technology’s Impact on this Text

This text has been heavily influenced by the relatively recent trends in the field of physical layer
communications system engineering

• Advanced communication theory finding utility in practice,

• Baseband processing power increasing at a rate predicted by Moore’s law,

• Iterative processing as realized in turbo or low density parity check codes gaining wide spread
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acceptance in engineering practice.

Physical layer communications (with the perhaps partial exception of fiber optics) is filled with
examples of sophisticated communication theory being directly placed into practice. Examples include
wireless digital communications and high speed cable communications. A communication engineer
should truly feel lucky to live in a time when theory and practice are linked so closely. It allows people
to work on very complex and sophisticated algorithms and have the algorithms almost immediately be
put into practice. Because of this reason it is not surprising that many of the prominent communication
theorist have also been very successful entrepreneurs (Andrew Viterbi [VO79] and Irwin Jacobs [WJ65]
being two obvious examples). In this text we will attempt to feature the underlying theory as this
theory is so important in practical systems from mobile phones to television receivers.

The reason that theory is migrating to practice so quickly is the rapid advance of baseband pro-
cessing power. Moores law is now almost outstripping the ability of communication theory to use the
available processing. In fact a great paradigm shift occurred in the industry (in my humble opinion)
when Qualcomm, in championing the cellular standard IS-95, started the design philosophy of design-
ing a system that was too complicated for the current technology with the knowledge that Moore’s law
would soon enable the design to be implemented in a cost effective fashion. Because of this shift in the
design philosophy, future engineers are going to be exploring ways to better utilize this ever increasingly
cost efficient processing power. Since the future engineer will be using baseband processing power to
implement their algorithms, this text is written with a focus on the baseband signal processing. To re-
flect this focus, this text starts immediately with the complex envelope representation of carrier signals
and uses this representation throughout the entire text. This is a significant deviation from most of the
prior teaching texts but directly in line with the notation used in research and in industry.

Iterative processing has fundamentally changed how communication engineers view problems.
In 1948 Claude Shannon laid down the foundations of digital communications [Sha48]. In his seminal
work Shannon identified the fundamental upper limits for rates at which reliable communication can be
achieved on some important channels. This upper limit is known as channel capacity. Before the 1990’s
the digital communication engineer searched for ways to approach Shannon capacity at a reasonable
complexity. These pre-1990 techniques usually involve identifying optimal or slightly suboptimal demod-
ulation algorithms. The complexity of these algorithms usually grew exponentially as the performance
approached the capacity. At a particular time the complexity of the modulation was pushed as far as the
technology would allow. Since Moore’s law only allows a doubling of the complexity every 18 months,
performance was approaching capacity slowly. In 1993 a paper was published [BGT93] that changed
the course of the communications engineering philosophy. This paper forced communications engineers
to explore the ideas of message passing and suboptimal iterative decoding and led to the rediscovery of
some long latent work [Gal62] on powerful Shannon capacity approaching codes. This paradigm shift
led communication engineers to successfully adopt this suboptimal iterative decoding approach to a
wide variety of problems. Because of this new found tool it is important to teach the fundamentals of
digital communications in such a way that this tool is a natural consequence of the pedagogy. This
book is my attempt to integrate the fundamental ideas of message passing and probabilistic inference
into the core of digital communications in a way that a text written before 1993 would not attempt.
This approach will hopefully give a much better backgound to the modern communication engineer.

1.5 The Text Relation to Communication Curriculum

This book is written for the modern communications curriculum. Most modern communications cur-
riculum at the undergraduate level have a networking course hence no coverage is given for networking
in this book. Example texts that might be used in a networking course in a modern undergraduate
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curriculum include [KR04, LGW00, Tan02]. The course objectives that can be taught from this text
are (along with their ABET criteria)

• Students learn the bandpass representation for carrier modulated signals. (Criterion 3(a))

• Students engage in engineering design of communications system components. (Criteria 3(c),(k))

• Students learn to analyze the performance, spectral efficiency and complexity of the various options
for transmitting analog and digital message signals. (Criteria 3(e),(k))

• Students learn to characterize noise in communication systems. (Criterion 3(a))

Prerequisites for the undergraduate course that could be taught out of this book are probability and
random variables and a signal and systems course.

This text is written to compliment the digital communications curriculum at the graduate level. At
the graduate level this text is composed with the assumption that the following courses and example
texts complement the course:

1. Probability and random processes (Yates and Goodman) (pre-requisite)

2. Information theory and source coding (Cover and Thomas)

3. Error control coding (Algebraic, trellis and concatenated coding) (Lin and Costello)

4. Estimation and detection (Poor) (co-requisite)

5. Wireless communications (Stuber)

The material on random processes is covered but only to the level exactly needed for this text. The
abovementioned set of courses would provide an appropriate coverage of physical layer communications
at the graduate level and reflects what is taught in most graduate programs.

This book is constructed to align with the quote by Albert Einstein

Everything should be made as simple as possible, but not one bit simpler.

Consequently text will be void of advanced topics in communication theory that I did not see as funda-
mental in an introductory communication theory book. Examples here include details of information
theory and source coding. While these topics are critical to the training of a communications engineer
it is not necessary to the understanding of analog and digital information transmission. The goal is
essentially not to lose the proverbial forest for the trees. Many interesting advanced issues and systems
are pursued in the homework problems and projects. The text is written to build up a tool set in stu-
dents that allow them to flourish in their profession over a full career. Readers looking for a buzzword
level treatment of communications will not find the text satisfactory. Since the focus of this text is the
tools that will be important in the future, many ideas are not discussed in detail that traditionally were
prominent in communication texts (e.g., pulse modulations). While a communication text can often
take the form of an encyclopedia I have purposely avoided this format for a more focused tool oriented
version. Writing this paragraph I feel a little like my Mom telling me to “eat my vegtables” but as I
grow in age (and hopefully wisdom) I more fully appreciate the wisdom of my parents and of learning
fundamental tools in physical layer communication engineering.
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1.6 Book Overview

The book consists of five parts

I Mathematical Foundations

II Analog Communication

III Noise in Communications Systems

IV Fundamentals of Digital Communications

V Advanced Topics in Digital Communications

This organization allows a slow logical build up from a base knowledge in Fourier transforms, linear
systems, and probability to an understanding of the fundamental concepts in communication theory. A
significant effort has been made to make the development logical and to cover the important concepts.

1.6.1 Mathematical Foundations

This part of the book consists of three chapters that provide the mathematical foundations of communi-
cation theory. There are three pieces of test equipment that are critical for a communication engineer to
be able to use to understand and troubleshoot communication systems: the oscilloscope, the spectrum
analyzer, and the vector signal analyzer. Most communications laboratories contain this equipment and
examples of this equipment are

1. Digital oscilloscope and logic analyzer – Agilent 54622D

2. Spectrum analyzer – Agilent E4402B

3. Vector signal analyzer – Agilent 89600

The first chapter of this part of the book covers material that is included in the core undergraduate
electrical engineering curriculum that provides the theory for the operation for the oscilloscope (time
domain characterizations of signals) and the theory for the operation of the spectrum analyzer (fre-
quency domain characterization). The fundamental difference between a communication engineer and
a technician is that engineers will consider noise to provide a complete characterization of the system
tradeoffs. The tools used to charcterize noise are based on probability theory. The second chapter
reviews this material. Courses covering the material on signal and systems and probability theory are
taken before a course in communication theory. These two chapters are included strictly as review and
to establish notation for the remainder of the book. The chapter on bandpass signals and the complex
envelope notation is where the student steps into modern communication systems theory. This chap-
ter will teach students how to characterize bandpass signals in the time domain and in the frequency
domain. This chapter also introduces the vector diagram which is the theoretical basis of the vector
signal analyzer which is a tool that is frequently used by the modern communication engineer. These
mathematical foundations will provide the basis for communications engineering.

1.6.2 Analog Communication

This part of the book consists of four chapters that introduce the theory of bandpass analog communi-
cation. The approach taken here is to introduce analog communications before the concepts of random
processes. Consequently the message signal is treated as a known deterministic waveform in the dis-
cussion of analog communications. The downside of this approach is that many of the powerful results
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on the power spectrum of analog communication waveforms cannot be introduced. The advantage of
this approach is that since the message signals are known and deterministic, the tools of Fourier series,
Fourier transforms, and signals and systems can be applied to the understanding of analog modulation
systems. This approach allows students to ease into the world of communications by building upon
their prior knowledge in deterministic signal and system analysis. By tying these tools from early
undergraduate courses into the process of assessing the spectral efficiency and complexity of analog
communications, the student will see the efficacy of an education in the fundamentals of electrical engi-
neering. The first chapter of this part of the book presents the performance metrics in communications:
performance, complexity, and spectral efficiency. This three level tradeoff is a recurring theme in the
book. The following chapters introduce the classic methods of communicating analog information; am-
plitude and angle modulation. Amplitude modulation is a modulation format where the message signal
is impressed upon the amplitude of the bandpass signal. Similarly angle modulation is a modulation
format where the message signal is impressed in some way in the phase of the bandpass signal. Finally,
the important ideas in analog communications of multiplexing and the phase locked loop are presented.

Many of my professional colleagues have made the suggestion that analog modulation concepts
should be removed from the modern undergraduate curriculum. Comments such as “We do not teach
about vacuum tubes so why should we teach about analog modulations?” are frequently heard. I
heartily disagree with this opinion but not because I have a fondness for analog modulation but because
analog modulation concepts are so important in modern communication systems. The theory and
notation for analog signals learned in this text is a solid foundation for further explorations into modern
communication systems because modern digital communications use analog waveforms. For example
in the testing of modern communication systems and subsystems analog modulation and demodulation
concepts are used extensively. In fact most of my good problems for the analog communication chapters
have come as a result of my work in experimental wireless communications even though my research
work has always been focused on digital communication systems! Another example of the utility of
analog communications is that I am unaware of a synthesized signal generator that does not have an
option to produce amplitude modulated (AM) and frequency modulated (FM) test signals. While
modern communication engineers do not often design analog communication systems, the theory is still
a useful tool. Consequently this part of the book focuses on analog communications but using a modern
perspective that will provide students the tools to flourish in their careers.

1.6.3 Noise in Communication Systems

Understanding the effects of noise and interference on communication systems what makes a communica-
tion system engineer uniquely trained. I have always been struck by the fact the engineering technicians
have a training in time domain analysis, Fourier analysis, modulation techniques and demodulation
techniques. The main thing a technician does not understand is how to characterize how noise impacts
the tradeoffs that must be made in system design. On the other hand the understanding of noise is
often a frustrating subject for students as the level of mathematics and abstraction can often seem not
worth the gains in useful skills. The approach taken in this text is to introduce the minimal amount of
abstraction necessary to get useful results for engineering practice.

There are four topics/chapters that are presented in this section to introduce the techniques to ana-
lyze the impact of noise and interference. The first chapter focuses on the characterization of Gaussian
stationary random processes and how linear filters impact this characterization. This material builds
heavily on probability and random variable concepts. This text offers little new insights than has been
available since the 1950s [DR87, Pap84] other than a reordering of topic presentation. The next chapter
generalizes the concepts of random processes to the case of noise in bandpass communication receivers.
The impact of filters in the receiver on the noise characteristics is explored. After these preliminary
tools are in place, a revisiting of all the forms of analog communications in the presence of noise is
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completed. At this point an understanding of the tradeoffs associated with analog communications can
be completed and interpreted. A final short chapter introduces some concepts in random processes that
are useful for various topics in digital communications.

1.6.4 Digital Basics

This part of the book consists of five chapters that introduce the theory of memoryless digital com-
munication. The first chapter of this part of the book again presents the performance metrics in com-
munications: performance, complexity, and spectral efficiency and reinterprets these metrics for digital
communications. This re-emphasizes the tradeoff first introduced with analog modulation. The follow-
ing chapter introduces the classic methods of communicating one bit of information. This is developed
by going through a five step design process. The digital communication design problem is generalized
for the transmission of multiple bits of information in the following chapter. Here both optimum struc-
tures for decoding the entire word and the individual bits are considered. The unfortunate situation
exists with multiple bit transmission that the complexity of the optimum decoder grows exponentially
with the number of bits to be transmitted. To address this exponential growth in complexity signal
structures that offer reduced complexity optimum demodulation structures are introduced. Several ex-
amples of these reduced complexity modulations are used in engineering practice and these examples
are considered in detail. Finally the last chapter of this section considers techniques to greatly improve
the spectral efficiency of digital communications. The final section of this part of the book considers the
tools used to test digital communication systems in practice. The ideas and uses of the vector diagram
and the eye diagram in the testing of digital communication systems are explained and motivated.

1.6.5 Advanced Topics in Digital Communications

Not included this edition.

c©1996-2004 - Michael P. Fitz - The University of California Los Angeles



18 Introduction

c©1996-2004 - Michael P. Fitz - The University of California Los Angeles



Part I

Mathematical Foundations

c©1996-2004 - Michael P. Fitz - The University of California Los Angeles





Chapter 2

Complex Baseband Representation of
Bandpass Signals

2.1 Introduction

A majority of communication systems operate by modulating an information bearing waveform onto a
sinusoidal carrier. As examples, Table 2.1 lists the carrier frequencies of various methods of electronic
communication.

Type of Transmission Center Frequency of Transmission
Telephone Modems 1600-1800 Hz

AM radio 530-1600 kHz
CB radio 27 MHz
FM radio 88-108 MHz
VHF TV 178-216 MHz

Cellular radio 850 MHz, 1.8GHz
Indoor Wireless Networks 2.4GHz

Commercial Satellite Downlink 3.7-4.2 GHz
Commercial Satellite Uplink 5.9-6.4 GHz

Fiber Optics 2 × 1014 Hz

Table 2.1: Carrier frequency assignments for different methods of information transmission.

One can see by examining Table 2.1 that the carrier frequency of the transmitted signal is not the
component which contains the information. Instead it is the signal modulated on the carrier which con-
tains the information. Hence a method of characterizing a communication signal which is independent
of the carrier frequency is desired. This has led communication system engineers to use a complex
baseband representation of communication signals to simplify their job. All of the communica-
tion systems mentioned in Table 2.1 can be and typically are analyzed with this complex baseband
representation. This chapter develops the complex baseband representation for deterministic signals.
Other references that develope these topics well are [Pro89, PS94, Hay83, BB99]. One advantage of
the complex baseband representation is simplicity. All signals are lowpass signals and the fundamental
ideas behind modulation and communication signal processing are easily developed. Also any receiver
that processes the received waveform digitally uses the complex baseband representation to develop the
baseband processing algorithms. In fact complex baseband representation is so prevalent in engineering
systems that the most widely used tool, Matlab, has been configured by default to process all variables

c©1996-2004 - Michael P. Fitz - The University of California Los Angeles



BT

G fxc
( )

fC− fC

22 Complex Baseband Representation of Bandpass Signals

in a program as complex signals. Hopefully by the time you are done with this course the utility of this
view will be apparent.

2.2 Baseband Representation of Bandpass Signals

The first step in the development of a complex baseband representation is to define a bandpass signal.

Definition 2.1 A bandpass signal, xc(t), is a signal whose one-sided energy spectrum is both: 1) cen-
tered at a non-zero frequency, fC , and 2) does not extend in frequency to zero (DC).

The two sided transmission bandwidth of a signal is typically denoted by BT Hertz so that the one-
sided spectrum of the bandpass signal is zero except in [fC − BT /2, fC + BT /2]. This implies that
a bandpass signal satisfies the following constraint: BT /2 < fC . Fig. 2.1 shows a typical bandpass
energy spectrum. Since a bandpass signal, xc(t), is a physically realizable signal it is real valued and
consequently the energy spectrum will always be even symmetric around f = 0. The relative sizes of
BT and fC are not important, only that the spectrum takes negligible values around DC. In telephone
modem communications this region of negligible spectral values is only about 300Hz while in satellite
communications it can be many Gigahertz.

Figure 2.1: Energy spectrum of a bandpass signal.

A bandpass signal has a representation of

xc(t) = xI(t)
√

2 cos(2πfct) − xQ(t)
√

2 sin(2πfct) (2.1)

= xA(t)
√

2 cos (2πfct + xP (t)) (2.2)

where fc is denoted the carrier frequency with fC − BT /2 ≤ fc ≤ fC + BT /2. The signal xI(t) in (2.1)
is normally referred to as the in-phase (I) component of the signal and the signal xQ(t) is normally
referred to as the quadrature (Q) component of the bandpass signal. xI(t) and xQ(t) are real valued
lowpass signals with a one-sided non–negligible energy spectrum no larger than BT Hertz. Two items
should be noted

• The center frequency of the bandpass signal, fC , (see Fig. 2.1) and the carrier frequency, fc are
not always the same. While fc can theoretically take a continuum of values, in most applications
an obvious value of fc will give the simplest representation1.

1This idea will become more obvious in Chapter ??.
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• The
√

2 term is included in the definition of the bandpass signal to ensure that the bandpass signal
and the baseband signal have the same power/energy. This will become apparent in Section. 2.4.

The carrier signal is normally thought of as the cosine term, hence the I component is in-phase with
the carrier. Likewise the sine term is 90◦ out-of-phase (in quadrature) with the cosine or carrier term,
hence the Q component is quadrature to the carrier. Equation (2.1) is known as the canonical form of a
bandpass signal. Equation (2.2) is the amplitude and phase form of the bandpass signal, where xA(t) is
the amplitude of the signal and xP (t) is the phase of the signal. A bandpass signal has two degrees of
freedom and the I/Q or the amplitude and phase representations are equivalent. The transformations
between the two representations are given by

xA(t) =
√

xI(t)2 + xQ(t)2 xP (t) = tan−1 [xQ(t), xI(t)] (2.3)

and

xI(t) = xA(t) cos (xP (t)) xQ(t) = xA(t) sin (xP (t)) . (2.4)

Note that the inverse tangent function in (2.3) has a range of [−π, π] (i.e., both the sign xI(t) and
xQ(t) and the ratio of xI(t) and xQ(t) are needed to evaluate the function). This inverse tangent
function is different than the single argument function that is on most calculators. The particulars of
the communication design analysis determine which form for the bandpass signal is most applicable.

A complex valued signal, denoted the complex envelope, is defined as

xz(t) = xI(t) + jxQ(t) = xA(t) exp [jxP (t)] .

The original bandpass signal can be obtained from the complex envelope by

xc(t) =
√

2� [xz(t) exp [j2πfct]] . (2.5)

Since the complex exponential only determines the carrier frequency, the complex signal xz(t) contains
all the information in xc(t). Using this complex baseband representation of bandpass signals greatly
simplifies the notation for communication system analysis. As the quarter goes along hopefully the
additional simplicity will become very evident.

Example 2.1: Consider the bandpass signal

xc(t) = 2 cos(2πfmt)
√

2 cos(2πfct) − sin(2πfmt)
√

2 sin(2πfct)

where fm < fc. A plot of this bandpass signal is seen in Fig. 2.2 with fc = 10fm. Obviously we have

xI(t) = 2 cos(2πfmt) xQ(t) = sin(2πfmt)

and
xz(t) = 2 cos(2πfmt) + j sin(2πfmt).

The amplitude and phase can be computed as

xA(t) =
√

1 + 3 cos2(2πfmt) xP (t) = tan−1 [sin(2πfmt), 2 cos(2πfmt)] .

A plot of the amplitude and phase of this signal is seen in Fig. 2.3.

The next item to consider is methods to translate between a bandpass signal and a complex envelope
signal. Basically a bandpass signal is generated from its I and Q components in a straightforward fashion
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Figure 2.2: Plot of the bandpass signal for Example 2.1.

Figure 2.3: Plot of the amplitude and phase for Example 2.1.
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2.3 Visualization of Complex Envelopes 25

Figure 2.4: Schemes for converting between complex baseband and bandpass representations. Note that
the LPF simply removes the double frequency term associated with the down conversion.

corresponding to (2.1). Likewise a complex envelope signal is generated from the bandpass signal with
a similar architecture. The idea behind bandpass to baseband downconversion can be understood by
using trigonometric identities to give

x1(t) = xc(t)
√

2 cos(2πfct) = xI(t) + xI(t) cos(4πfct) − xQ(t) sin(4πfct)

x2(t) = xc(t)
√

2 sin(2πfct) = −xQ(t) + xQ(t) cos(4πfct) + xI(t) sin(4πfct). (2.6)

In Fig. 2.4 the lowpass filters remove the 2fc terms in (2.6). Note in Fig. 2.4 the boxes with π/2 are
phase shifters (i.e., cos (θ − π/2) = sin(θ)) typically implemented with delay elements. The structure
in Fig. 2.4 is fundamental to the study of all carrier modulation techniques.

2.3 Visualization of Complex Envelopes

The complex envelope is a signal that is a complex function of time. Consequently the complex envelope
needs to be characterized in three dimensions (time, in-phase, and quadrature). For example, the
complex envelope given as

xz(t) = exp [j2πfmt] (2.7)

can be represented as a three dimensional plot as shown in Fig. 2.5-a). It is often difficult to comprehend
all that is going on in a three dimensional plot when the complex envelope is a typical communication
signal hence communication engineers often project these signals into two dimensions. Examples of this
two dimensional projection are shown in Fig. 2.5-a) (xI(t) versus xQ(t)), Fig. 2.6-a) (t versus xI(t)),
and Fig. 2.6-b) (t versus xQ(t)). All of these methods of viewing and visualizing a complex envelope
signal are used in engineering practice.

The vector diagram is the two dimensional projection where xI(t) is plotted versus xQ(t). The vec-
tor diagram represents the time trajectory of the complex envelope, xz(t) in the complex plane. This
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a) The three dimensional plot. b) The projection onto the xI(t), xQ(t) plane.

Figure 2.5: Plots of a complex exponential.

a) The projection onto the t, xI(t) plane. b) The projection onto the t, xQ(t) plane.

Figure 2.6: Plots of the two time functions.
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2.4 Spectral Characteristics of the Complex Envelope 27

Figure 2.7: The vector diagram for the bandpass signal in Example 2.1.

vector diagram often gives significant insight into the performance or characteristics of a communication
system and it will be used often in future sections of this text. The vector diagram first gained utility
in the days when the standard tool for examining the time domain characteristics of a communication
signal was the dual channel analog oscilloscope. To produce a vector diagram with a dual channel os-
cilloscope one puts xI(t) into one channel and xQ(t) into the second channel and configure the scope to
plot channel one versus channel two. Since this visualization was simply with the early test instruments,
it has found significant utility in engineering practice.

Example 2.2: The vector diagram for the bandpass signal given in Example 2.1 is shown in Fig. 2.7. It
should be noted that the point xz(t) = (2, 0) corresponds to time t = n/fm where n is an integer, e.g.,
2 cos(2πn) = 2 and sin(2πn) = 0. Likewise t = n/fm + 1/(4fm) corresponds to the point xz(t) = (0, 1).

2.4 Spectral Characteristics of the Complex Envelope

2.4.1 Basics

It is of interest to derive the spectral representation of the complex baseband signal, xz(t), and compare
it to the spectral representation of the bandpass signal, xc(t). Assuming xz(t) is an energy signal, the
Fourier transform of xz(t) is given by

Xz(f) = XI(f) + jXQ(f) (2.8)

where XI(f) and XQ(f) are the Fourier transform of xI(t) and xQ(t), respectively, and the energy
spectrum is given by

Gxz(f) = |Xz(f)|2 = GxI (f) + GxQ(f) + 2�
[
XI(f)X∗

Q(f)
]

(2.9)

where GxI (f) and GxQ(f) are the energy spectrum of xI(t) and xQ(t), respectively. The signals xI(t)
and xQ(t) are lowpass signals with a one-sided bandwidth of less than BT /2 so consequently Xz(f) and
Gxz(f) can only take nonzero values for |f | < BT /2.
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Figure 2.8: The energy spectrum resulting from xI(t) being a computer generated voice signal and xQ(t)
being a sinusoid.

Example 2.3: Consider the case when xI(t) is set to be the message signal from Example 1.0(computer
voice saying “bingo”) and xQ(t) = cos (2000πt). XI(f) will be a lowpass spectrum with a bandwidth of
2500Hz while XQ(f) will have two impulses located at ±1000Hz. Fig. 2.8 show the measured complex
envelope energy spectrum for these lowpass signals. The complex envelope energy spectrum has a
relation to the voice spectrum and the sinusoidal spectrum exactly as predicted in (2.8). Note here
BT = 5000Hz.

Eq. (2.8) gives a simple way to transform between the lowpass signal spectrums to the complex
envelope spectrum. A similar simple formula exists for the opposite transformation. Note that xI(t) and
xQ(t) are both real signals so that XI(f) and XQ(f) are Hermitian symmetric functions of frequency
and it is straightforward to show

Xz (−f) = X∗
I (f) + jX∗

Q(f)
X∗

z (−f) = XI(f) − jXQ(f). (2.10)

This leads directly to

XI(f) =
Xz(f) + X∗

z (−f)
2

XQ(f) =
Xz(f) − X∗

z (−f)
j2

. (2.11)

Since xz(t) is a complex signal, in general, the energy spectrum, Gxz(f), has none of the usual properties
of real signal spectra which have a spectral magnitude is an even function of f and a spectral phase
that is an odd function of f .

An analogous derivation produces the spectral characteristics of the bandpass signal. Examining
(2.1) and using the Frequency Translation Theorem of the Fourier transform, the Fourier transform of
the bandpass signal, xc(t), is expressed as

Xc(f) =
[

1√
2
XI (f − fc) +

1√
2
XI (f + fc)

]
−

[
1√
2j

XQ (f − fc) −
1√
2j

XQ (f + fc)
]

.
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Figure 2.9: The complex envelope energy spectrum of the bandpass signal in Fig. 2.1 with fc = fC .

This can be rearranged to give

Xc(f) =
[
XI(f − fc) + jXQ(f − fc)√

2

]
+

[
XI(f + fc) − jXQ(f + fc)√

2

]
. (2.12)

Using (2.10) in (2.12) gives

Xc(f) =
1√
2
Xz(f − fc) +

1√
2
X∗

z (−f − fc). (2.13)

This is a very fundamental result. Equation (2.13) states that the Fourier transform of a bandpass
signal is simply derived from the spectrum of the complex envelope. For positive values of f , Xc(f) is
obtained by translating Xz(f) to fc and scaling the amplitude by 1/

√
2. For negative values of f , Xc(f)

is obtained by flipping Xz(f) around the origin, taking the complex conjugate, translating the result to
−fc, and scaling the amplitude by 1/

√
2 . This also demonstrates that if Xc(f) only takes values when

the absolute value of f is in [fc − BT /2, fc + BT /2], then Xz(f) only takes values in [−BT /2, BT /2].
The energy spectrum of xc(t) can also be expressed in terms of the energy spectrum of xz(t) as

Gxc(f) =
1
2
Gxz(f − fc) +

1
2
Gxz(−f − fc). (2.14)

Since Exc =
∫ ∞
−∞ Gxc(f)df =

∫ ∞
−∞ Gxz(f)df , (2.14) guarantees that the energy of the complex envelope

is identical to the energy of the bandpass signal. Additionally (2.14) guarantees that the energy spec-
trum of the bandpass signal is an even function of frequency as it should be for a real signal. Considering
these results, the spectrum of the complex envelope of the signal shown in Fig. 2.1 will have a form
shown in Fig. 2.9 when fc = fC . Other values of fc would produce a different but equivalent complex
envelope representation. This discussion of the spectral characteristics of xc(t) and xz(t) should rein-
force the idea that the complex envelope contains all the information in a bandpass waveform.
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Figure 2.10: The bandpass spectrum corresponding to Fig. 2.8. BT = 5000Hz

Example 2.4: (Example 2.1 continued)

xI(t) = 2 cos(2πfmt) xQ(t) = sin(2πfmt)

XI(f) = δ(f − fm) + δ(f + fm) XQ(f) =
1
2j

δ(f − fm) − 1
2j

δ(f + fm)

Xz(f) = XI(f) + jXQ(f) = 1.5δ(f − fm) + 0.5δ(f + fm)

and using (2.13) gives the bandpass signal spectrum as

Xc(f) =
1.5√

2
δ(f − fc − fm) +

1
2
√

2
δ(f − fc + fm) +

1.5√
2
δ(f + fc + fm) +

1
2
√

2
δ(f + fc − fm).

Note in this example BT = 2fm.

Example 2.5: For the complex envelope derived in Example 2.3 the measured bandpass energy spectrum
for fc=7000Hz is shown in Fig. 2.10. Again the measured output is exactly predicted by (2.14). In this
example we have BT = 5000Hz.

2.4.2 Bandwidth of Bandpass Signals

The ideas of bandwidth of a signal extend in an obvious way to bandpass signals. Recall engineers
define bandwidth as being the amount of positive spectrum that a signal occupies. For bandpass energy
signals we have the following two definitions

Definition 2.2 If a signal xc(t) has an energy spectrum Gxc(f) then BX is determined as

10 log
(

max
f

Gxc(f)
)

= X + 10 log (Gxc(f1)) (2.15)
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where Gxc(f1) > Gxc(f) for 0 < f < f1 and

10 log
(

max
f

Gxc(f)
)

= X + 10 log (Gxc(f2)) (2.16)

where Gxc(f2) > Gxc(f) for f > f2 where f2 − f1 = BX .

Definition 2.3 If a signal xc(t) has an energy spectrum Gxc(f) then BP = min(f2 − f1) such that

P =
2

∫ f2

f1
Gxc(f)df

Exc

(2.17)

where f2 > f1.

Note the reason for the factor of 2 in (2.20) is that half of the energy of the bandpass signal is associated
with positive frequencies and half of the energy is associated with negative frequencies.

Again, for bandpass power signals similar ideas hold with Gxc(f) being replaced with Sxc(f, T ).

Definition 2.4 If a signal xc(t) has a sampled power spectral density Sxc(f, T ) then BX is determined
as

10 log
(

max
f

Sxc(f, T )
)

= X + 10 log (Sxc(f1, T )) (2.18)

where Sxc(f1, T ) > Sxc(f, T ) for 0 < f < f1 and

10 log
(

max
f

Sxc(f, T )
)

= X + 10 log (Sxc(f2, T )) (2.19)

where Sxc(f2, T ) > Sxc(f, T ) for f > f2 where f2 − f1 = BX .

Definition 2.5 If a signal xc(t) has an power spectrum Sxc(f, T ) then BP = min(f2 − f1) such that

P =
2

∫ f2

f1
Sxc(f, T )df

Pxc(T )
(2.20)

where f2 > f1.

2.5 Linear Systems and Bandpass Signals

This section discusses methods for calculating the output of a linear, time-invariant (LTI) filter with
a bandpass input signal using complex envelopes. Linear system outputs are characterized by the
convolution integral given as

yc(t) =
∫ ∞

−∞
xc(τ)h(t − τ)dτ (2.21)

where h(t) is the impulse response of the filter. Since the input signal is bandpass, the effects of an
arbitrary filter, h(t), in (2.21) can be modeled with an equivalent bandpass filter, hc(t), with no loss
in generality. The bandpass filter, Hc(f), only needs to equal the true filter, H(f) over the frequency
support of the the bandpass signal and the two filters need not be equal otherwise. Because of this
characterization the bandpass filter is often simpler to model (and for instance simulate).
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a) A lowpass filter. b) An input/output equivalent bandpass filter.

Figure 2.11: An example of a filter and its bandpass equivalent filter.

Example 2.6: For example consider the lowpass filter given in Fig. 2.11-a). Since the bandpass signal
only has a non-zero spectrum in a bandwidth of BT around the carrier frequency, fc, the bandpass filter
shown in Fig. 2.11-b) would be input–output equivalent to the filter in Fig. 2.11-a).

This bandpass LTI system also has a canonical representation given as

hc(t) = 2hI(t) cos(2πfct) − 2hQ(t) sin(2πfct). (2.22)

The complex envelope for this bandpass impulse response and transfer function associated with this
complex envelope are given by

hz(t) = hI(t) + jhQ(t) Hz(f) = HI(f) + jHQ(f)

where the bandpass system impulse response is

hc(t) = 2� [hz(t) exp [j2πfct]] .

The representation of the bandpass system in (2.22) has a constant factor of
√

2 difference from the
bandpass signal representation of (2.1). This factor results because the system response at baseband
and at bandpass should be identical. This notational convenience permits a simpler expression for the
system output (as is shown shortly). Using similar techniques as in Section 2.4, the transfer function is
expressed as

Hc(f) = Hz(f − fc) + H∗
z (−f − fc). (2.23)
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Example 2.7: Consider the signal

xc(t) = (cos(2πfmt) + cos(6πfmt)) cos(2πfct) − (sin(2πfmt) + sin(6πfmt)) sin(2πfct) (2.24)

that is input into a bandpass filter with a transfer function of

Hc(f) =
{

2 fc − 2fm ≤ |f | ≤ fc + 2fm

0 elsewhere.
(2.25)

Since the frequency domain representation of xc(t) is

Xc(f) =
1√
2

[δ (f − (fc + fm)) + δ(f − (fc + 3fm) + δ(f + (fc + fm) + δ(f + (fc + 3fm)] (2.26)

the output bandpass signal wil have the frequency domain representation of

Yc(f) =
2√
2

[δ(f − (fc + fm) + δ(f + (fc + fm)] (2.27)

The complex envelopes of the input and output signals are

xz(t) = exp [j2πfmt] + exp [j6πfmt] yz(t) = 2 exp [j2πfmt] (2.28)

consequently it makes sense to have

Hz(f) =
{

2 |f | ≤ 2fm

0 elsewhere.
(2.29)

and Hc(f) = Hz(f − fc) + H∗
z (−f − fc).

Equation (2.23) and (2.13) combined with the convolution theorem of the Fourier transform produces
an expression for the Fourier transform of yc(t) given as

Yc(f) = Xc(f)Hc(f) =
1√
2

[Xz(f − fc) + X∗
z (−f − fc)] [Hz(f − fc) + H∗

z (−f − fc)] .

Since both Xz(f) and Hz(f) only take values in [−BT /2, BT /2], the cross terms in this expression will
be zero and Yc(f) is given by

Yc(f) =
1√
2

[Xz(f − fc)Hz(f − fc) + X∗
z (−f − fc)H∗

z (−f − fc)] . (2.30)

Since yc(t) will also be a bandpass signal, it will also have a complex baseband representation. A
comparison of (2.30) with (2.13) demonstrates the Fourier transform of the complex envelope of yc(t),
yz(t), is given as

Yz(f) = Xz(f)Hz(f).

Linear system theory produces the desired form

yz(t) =
∫ ∞

−∞
xz(τ)hz(t − τ)dτ = xz(t) ∗ hz(t). (2.31)
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Example 2.8: (Example 2.1 continued) The input signal and Fourier transform are

xz(t) = 2 cos(2πfmt) + j sin(2πfmt) Xz(f) = 1.5δ(f − fm) + 0.5δ(f + fm).

Assume a bandpass filter with

HI(f) =
{

2 −2fm ≤ f ≤ 2fm

0 elsewhere
HQ(f) =


j f

fm
−fm ≤ f ≤ fm

j fm ≤ f ≤ 2fm

−j −2fm ≤ f ≤ −fm

0 elsewhere

(2.32)

This produces

Hz(f) =


2 − f

fm
−fm ≤ f ≤ fm

1 fm ≤ f ≤ 2fm

3 −2fm ≤ f ≤ −fm

0 elsewhere

(2.33)

and now the Fourier transform of the complex envelope of the filter output is

Yz(f) = Hz(f)Xz(f) = 1.5δ(f − fm) + 1.5δ(f + fm). (2.34)

The complex envelope and bandpass signal are given as

yz(t) = 3 cos(2πfmt) yc(t) = 3 cos(2πfmt)
√

2 cos(2πfct) (2.35)

In other words, convolving the complex envelope of the input signal with the complex envelope of the
filter response produces the complex envelope of the output signal. The different scale factor was in-
troduced in (2.22) so that (2.31) would have a familiar form. This result is significant since yc(t) can
be derived by computing a convolution of baseband (complex) signals which is generally much simpler
than computing the bandpass convolution. Since xz(t) and hz(t) are complex, yz(t) is given in terms of
the I/Q components as

yz(t) = yI(t) + jyQ(t) = [xI(t) ∗ hI(t) − xQ(t) ∗ hQ(t)] + j [xI(t) ∗ hQ(t) + xQ(t) ∗ hI(t)] .

Fig 2.12 shows the lowpass equivalent model of a bandpass system. The two biggest advantages of
using the complex baseband representation are that it simplifies the analysis of communication systems
and permits accurate digital computer simulation of filters and the effects on communication systems
performance.

2.6 Conclusions

The complex baseband representation of bandpass signals permits accurate characterization and analysis
of communication signals independent of the carrier frequency. This greatly simplifies the job of the
communication system engineer. A linear system is often an accurate model for a communication system,
even with the associated transmitter filtering, channel distortion, and receiver filtering. As demonstrated
in Fig 2.13, the complex baseband methodology truly simplifies the models for a communication system
performance analysis.
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Figure 2.12: Block diagram illustrating the relation between the input and output complex envelope of
bandpass signals for a linear time invariant system.

2.7 Homework Problems

Problem 2.1. Many integrated circuit implementations of the quadrature upconverters produce a
bandpass signal having a form

xc(t) = xI(t)
√

2 cos (2πfct) + xQ(t)
√

2 sin (2πfct) (2.36)

from the lowpass signals xI(t) and xQ(t) as opposed to (2.1). How does this sign difference affect the
transmitted spectrum? Specifically for the complex envelope energy spectrum given in Fig. 2.9 plot the
transmitted bandpass energy spectrum.
Problem 2.2. Find the form of xI(t) and xQ(t) for the following xc(t)

a) xc(t) = sin (2π(fc − fm)t).

b) xc(t) = cos (2π(fc + fm)t).

c) xc(t) = cos (2πfct + φp).

Problem 2.3. If the lowpass components for a bandpass signal are of the form

xI(t) = 12 cos(6πt) + 3 cos(10πt)

and
xQ(t) = 2 sin(6πt) + 3 sin(10πt).

a) Calculate the Fourier series of xI(t) and xQ(t).

b) Calculate the Fourier series of xz(t).

c) Assuming fc=40Hz calculate the Fourier series of xc(t).

d) Calculate and plot xA(t). Computer might be useful.

e) Calculate and plot xP (t). Computer might be useful.
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Figure 2.13: A comparison between a) the actual communication system model and b) the complex
baseband equivalent model.

Problem 2.4. A bandpass filter has the following complex envelope representation for the impulse
response

hz(t) =
{

2
(

1
2 exp

[
− t

2

])
+ j2

(
1
4 exp

[
− t

4

])
t ≥ 0

0 elsewhere
(2.37)

a) Calculate Hz(f). Hint: The transforms you need are in a table somewhere.

b) With xz(t) from Problem 2.3 as the input, calculate the Fourier series for the filter output, yz(t).

c) Plot the output amplitude, yA(t), and phase, yP (t).

d) Plot the resulting bandpass signal, yc(t) using fc=40Hz.

Problem 2.5. The picture of a color television set proposed by the National Television System Com-
mittee (NTSC) is composed by scanning in a grid pattern across the screen. The scan is made up
of three independent beams (red, green, blue). These independent beams can be combined to make
any color at a particular position. In order to make the original color transmission compatible with
black and white televisions the three color signals (xr(t), xg(t), xb(t)) are transformed into a lumi-
nance signal (black and white level), xL(t), and two independent chrominance signals, xI(t) and xQ(t).
These chrominance signals are modulated onto a carrier of 3.58MHz to produce a bandpass signal for
transmission. A commonly used tool for video engineers to understand these coloring patterns is the
vectorscope representation shown in Figure 2.14.

a) If the video picture is making a smooth transition from a blue color (at t=0) to green color (at
t=1), make a plot of the waveforms xI(t) and xQ(t).

b) Plot xI(t) and xQ(t) that would represent a scan across a red and green striped area. For con-
sistency in the answers assume the red starts and t=0 and extends to t = 1, the green starts at
t = 1+ and extends to t = 2, · · · .
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Figure 2.14: Vector scope representation of the complex envelope of the 3.58MHz chrominance carrier.

Problem 2.6. Consider two lowpass spectra, XI(f) and XQ(f) in Figure 2.15 and sketch the energy
spectrum of the complex envelope, Gxz(f).

Figure 2.15: Two lowpass Fourier transforms.

Problem 2.7. (Design Problem) A key component in the quadrature up/down converter is the
generator of the sine and cosine functions. This processing is represented in Figure 2.16 as a shift in
the phase by 90◦ of a carrier signal. This function is done in digital processing in a trivial way but if
the carrier is generated by an analog source the implementation is more tricky. Show that this phase
shift can be generated with a time delay as in Figure 2.17. If the carrier frequency is 100MHz find the
value of the delay to achieve the 90◦ shift.
Problem 2.8. The lowpass signals, xI(t) and xQ(t), which comprise a bandpass signal are given in
Figure 2.18.

a) Give the form of xc(t), the bandpass signal with a carrier frequency fc, using xI(t) and xQ(t).

b) Find the amplitude, xA(t), and the phase, xP (t), of the bandpass signal.
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Figure 2.16: Sine and cosine generator.

Figure 2.17: Sine and cosine generator implementation for analog signals.

c) Give the simplest form for the bandpass signal over [2T, 3T ].

Figure 2.18: xI(t) and xQ(t).

Problem 2.9. The amplitude and phase of a bandpass signal is plotted in Figure 2.19. Plot the
in-phase and quadrature signals of this baseband representation of a bandpass signal.
Problem 2.10. The block diagram in Fig. 2.20 shows a cascade of a quadrature upconverter and a
quadrature downconverter where the phases of the two (transmit and receive) carriers are not the same.
Show that yz(t) = yI(t)+jyQ(t) = xz(t) exp[−jθ(t)]. Specifically consider the case when the frequencies
of the two carriers are not the same and compute the resulting output energy spectrum GYz(f).
Problem 2.11. A periodic real signal of bandwidth W and period T is xI(t) and xQ(t) = 0 for a
bandpass signal of carrier frequency fc > W .
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Figure 2.19: The amplitude and phase of a bandpass signal.

Figure 2.20: A downconverter with a phase offset.

a) Can the resulting bandpass signal, xc(t), be periodic with a period of Tc < T? If yes give an
example.

b) Can the resulting bandpass signal, xc(t), be periodic with a period of Tc > T? If yes give an
example.

c) Can the resulting bandpass signal, xc(t), be periodic with a period of Tc = T? If yes give an
example.

d) Can the resulting bandpass signal, xc(t), be aperiodic? If yes give an example.

Problem 2.12. In communication systems bandpass signals are often processed in digital processors.
To accomplish the processing, the bandpass signal must first be converted from an analog signal to a
digital signal. For this problem assume this is done by ideal sampling. Assume the sampling frequency,
fs, is set at four times the carrier frequency.
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a) Under what conditions on the complex envelope will this sampling rate be greater than the Nyquist
sampling rate (see Section ??) for the bandpass signal?

b) Give the values for the bandpass signal samples for xc(0), xc

(
1

4fc

)
, xc

(
2

4fc

)
, xc

(
3

4fc

)
, and

xc

(
4

4fc

)
.

c) By examining the results in b) can you postulate a simple way to downconvert the analog signal
when fs = 4fc and produce xI(t) and xQ(t)? This simple idea is frequently used in engineering
practice and is known as fs/4 downconversion.

Problem 2.13. A common implementation problem that occurs in an I/Q upconverter is that the sine
carrier is not exactly 90◦ out of phase with the cosine carrier. This situation is depicted in Fig. 2.21.

a) What is the actual complex envelope, xz(t), produced by this implementation as a function of
x̃I(t), x̃Q(t), and θ?

b) Often in communication systems it is possible to correct this implementation error by preprocessing
the baseband signals. If the desired output complex envelope was xz(t) = xI(t) + jxQ(t) what
should x̃I(t) and x̃Q(t) be set to as a function of xI(t), xQ(t), and θ to achieve the desired complex
envelope with this implementation?

Figure 2.21: The block diagram for Problem 2.13.

Problem 2.14. A commercial airliner is flying 15,000 feet above the ground and pointing its radar
down to aid traffic control. A second plane is just leaving the runway as shown in Fig. 2.22. The
transmitted waveform is just a carrier tone, xz(t) = 1 or xc(t) =

√
2 cos (2πfct)

The received signal return at the radar receiver input has the form

yc(t) = AP

√
2 cos (2π(fc + fP )t + θP ) + AG

√
2 cos (2π(fc + fG)t + θG) (2.38)

where the P subscript refers to the signal returns from the plane taking off and the G subscript refers to
the signal returns from the ground. The frequency shift is due to the Doppler effect you learned about
in your physics classes.

a) Why does the radar signal bouncing off the ground (obviously stationary) produce a Doppler
frequency shift?
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Figure 2.22: An airborne air traffic control radar example.

b) Give the complex baseband form of this received signal.

c) Assume the radar receiver has a complex baseband impulse response of

hz(t) = δ(t) + βδ(t − T ) (2.39)

where β is a possibly complex constant, find the value of β which eliminates the returns from the
ground at the output of the receiver. This system was a common feature in early radar systems
and has the common name Moving Target Indicator (MTI) as stationary target responses will be
canceled in the filter given in (2.39).

Modern air traffic control radars are more sophisticated than this problem suggests. An important point
of this problem is that radar and communication systems are similar in many ways and use the same
analytical techniques for design.
Problem 2.15. A baseband signal (complex exponential) and two linear systems are shown in Fig. 2.23.
The top linear system in Fig. 2.23 has an impulse response of

hz(t) =


1√
Tp

0 ≤ t ≤ Tp

0 elsewhere
(2.40)

The bottom linear system in Fig. 2.23 is an ideal delay element (i.e., yz(t) = xz(t − τd)).

a) Give the bandpass frequency response Hc(f).

b) What is the input power? Compute yz(t).

c) Select a delay, τd, in the bottom system in Fig. 2.23 such that arg [yz(t)] = 2πf0(t− τd) for all f0.

d) What is the output power as a function of f0, Pyz(f0)?

e) How large can f0 be before the output power, Pyz(f0), is reduced by 10dB compared to the output
power when f0 = 0, Pyz(0)?
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Figure 2.23: The block diagram for Problem 2.15.

Problem 2.16. The following bandpass filter has been implemented in a communication system that
you have been tasked to simulate:

Hc(f) =



1 fc + 7500 ≤ |f | ≤ fc + 10000
2 fc + 2500 ≤ |f | < fc + 7500
4
3

fc ≤ |f | < fc + 2500

3
4

fc − 2500 ≤ |f | < fc

0 elsewhere

(2.41)

You know because of your great engineering education that it will be much easier to simulate the system
using complex envelope representation.

a) Find Hz(f).

b) Find HI(f) and HQ(f).

c) If xz(t) = exp(j2πfmt) find xc(t).

d) If xz(t) = exp(j2πfmt) compute yz(t) for 2000 ≤ fm < 9000.

Problem 2.17. Consider two bandpass filters

hz1(t) =


1√
0.2

0 ≤ t ≤ 0.2

0 elsewhere,
(2.42)

hz2(t) =
sin(10πt)

10πt
(2.43)

Consider the filters and an input signal having a complex envelope of xz(t) = exp(j2πfmt).

a) Find xc(t).

b) Find Hz(f).

c) Find Hc(f).

d) For fm = 0, 7, 14Hz find yz(t).

Problem 2.18. Find the amplitude signal, xA(t), and phase signal, xP (t) for
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a) xz(t) = z(t) exp(jφ) where z(t) is a complex valued signal.

b) xz(t) = m(t) exp(jφ) where m(t) is a real valued signal.

Problem 2.19. A bandpass signal has a complex envelope given as

xz(t) = j exp [−j2πfmt] + 3 exp [j2πfmt] (2.44)

where fm > 0.

a) Find xI(t) and xQ(t).

b) Plot the frequency domain representation of this periodic signal using impulse functions.

c) Plot the frequency domain representation of the bandpass signal using impulse functions.

d) What is the bandpass bandwidth of this signal, BT ?

Problem 2.20. A bandpass signal has a complex envelope given as

xz(t) = j exp [−j2πfmt] + 3 exp [j2πfmt] (2.45)

where fm > 0. This signal is put into a bandpass filter which has a complex envelope characterized
with

HQ(f) =
{

1 |f | ≤ 4000
0 elsewhere

HI(f) =


−j −4000 ≤ f ≤ 0
j 0 ≤ f ≤ 4000
0 elsewhere.

(2.46)

The output of the filter at bandpass is denoted yc(t) and at baseband is denoted yz(t).

a) What is Hz(f).

b) Find yz(t) as a function of fm.

c) Plot the frequency domain representation of the bandpass signal using impulse functions for the
case fm = 2000Hz.

Problem 2.21. If F {xz(t)} = Xz(f) what is F {x∗
z(t)}?

Problem 2.22. An often used pulse in radar systems has a complex envelope of

xz(t) =
{

Ac exp
[
j2πg0t

2
]

0 ≤ t ≤ Tp

0 elsewhere
(2.47)

a) What are xA(t) and xP (t).

b) Plot the bandpass signal, xc(t) for fc = 10Hz and g0 = 100Hz/sec, Ac = 1, and Tp = 1.

c) What is the Exz?

d) Plot Gxz(f)? Estimate B98 when g0 = 10Hz/sec and Tp.

Problem 2.23. The amplitude and phase of a bandpass signal is plotted in Figure 2.24. Plot the
in-phase and quadrature signals of this baseband representation of a bandpass signal.
Problem 2.24. A complex baseband signal is given as xz(t) = xI(t) + jxQ(t) where xI(t) and xQ(t)
are real lowpass signals. Find
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Figure 2.24: The amplitude and phase of a bandpass signal.

a) The bandpass signal, xc(t), represented by xz(t),

b) Xz(f) and X∗
z (f) in terms of XI(f) and XQ(f),

c) XQ(f) in terms of Xz(f),

d) Xc(f) in terms of XI(f) and XQ(f),

e) Show that |Xc(f)| is an even function of frequency.

2.8 Example Solutions

Problem 2.2.

a) Using sin(a − b) = sin(a) cos(b) − cos(a) sin(b) gives

xc(t) = sin(2πfct) cos(2πfmt) − cos(2πfct) sin(2πfmt). (2.48)

By inspection we have

xI(t) =
−1√

2
sin(2πfmt) xQ(t) =

−1√
2

cos(2πfmt). (2.49)

b) Recall xc(t) = xA(t)
√

2 cos(2πfct + xP (t)) so by inspection we have

xz(t) =
1√
2

exp(j2πfmt) xI(t) =
1√
2

cos(2πfmt) xQ(t) =
1√
2

sin(2πfmt). (2.50)
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c) Recall xc(t) = xA(t)
√

2 cos(2πfct + xP (t)) so by inspection we have

xz(t) =
1√
2

exp(jφp) xI(t) =
1√
2

cos(φp) xQ(t) =
1√
2

sin(φp). (2.51)

Problem 2.6.
We can write

XI(f) = Arect
(

f

2f1

)
and XQ(f) = j

Af

f1
rect

(
f

2f1

)
Then

GXI
(f) = |XI(f)|2 = A2rect

(
f

2f1

)
GXQ

(f) = |XQ(f)|2 =
A2f2

f2
1

rect
(

f

2f1

)
XI(f)X∗

Q(f) = −jA2f

f1
rect

(
f

2f1

)
�XI(f)X∗

Q(f) = −A2f

f1
rect

(
f

2f1

)
Hence

GXz(f) = GXI
(f) + GXQ

(f) + 2�XI(f)X∗
Q(f)

= A2

[
rect

(
f

2f1

)
+

(
f

f1

)2

rect
(

f

2f1

)
− 2

f

f1
rect

(
f

2f1

)]

GXz(f) =
(

f − f

f1

)2

rect
(

f

2f1

)
.

Problem 2.11. xI(t) is periodic with period T. Because of this xI(t) can be represented in a Fourier
series expansion

xI(t) =
∞∑

k=−∞
xk exp

[
j2πkt

T

]
(2.52)

If the bandwidth of the signal is less than WHz then the Fourier series will be truncated to a finite
summation. Define km to be the largest integer such that km/T ≤ W then

xI(t) =
km∑

k=−km

xk exp
[
j2πkt

T

]
. (2.53)

The bandpass signal will have the form

xc(t) = xI(t)
√

2 cos(2πfct)

= xI(t)
[

1√
2

exp (j2πfct) +
1√
2

exp (−j2πfct)
]

(2.54)

=
km∑

k=−km

1√
2
xk

(
exp

[
j2π

(
k

T
+ fc

)
t

]
+ exp

[
j2π

(
k

T
− fc

)
t

])
.
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Since the bandpass signal has a representation as a sum of weighted sinusoids there is a possibility that
the bandpass signal will be periodic. This bandpass signal will only be period if all the frequencies are
an integer multiple of a fundamental frequency, 1/Tc.

a) The bandpass signal can be periodic with Tc < T . For example choose xI(t) to be a 2Hz sinusoid,
i.e., xI(t) = cos(2π(2)t) and the carrier frequency to be fc = 6Hz. Clearly here T = 1/2 seconds.
The bandpass signal in this case is

xc(t) = xI(t)
√

2 cos(2π(6)t)

=
√

2
4

(exp[j2π(−8)t] + exp[j2π(−4)t] + exp[j2π(4)t] + exp[j2π(8)t]) . (2.55)

The bandpass signal is a sum of four sinusoids that have frequencies of f1 = −8, f2 = −4, f3 = 4,
f4 = 8. Clearly the fundamental frequency bandpass signal is 4Hz and Tc = 0.25 < 0.5.

b) The bandpass signal can be periodic with Tc < T . For example choose xI(t) to be a 3Hz sinusoid,
i.e., xI(t) = cos(2π(3)t) and the carrier frequency to be fc = 5Hz. Here T = 1/3 seconds. The
bandpass signal in this case is

xc(t) = xI(t)
√

2 cos(2π(5)t)

=
√

2
4

(exp[j2π(−8)t] + exp[j2π(−2)t] + exp[j2π(2)t] + exp[j2π(8)t]) . (2.56)

The bandpass signal is a sum of four sinusoids that have frequencies of f1 = −8, f2 = −2, f3 = 2,
f4 = 8. The fundamental frequency of the bandpass signal is 2Hz and Tc = 0.5 > 1/3.

c) The bandpass signal can be periodic with Tc = T . For example choose xI(t) to be a 2Hz sinusoid,
i.e., xI(t) = cos(2π(2)t) and the carrier frequency to be fc = 4Hz. Here T = 0.5 seconds. The
bandpass signal in this case is

xc(t) = xI(t)
√

2 cos(2π(4)t)

=
√

2
4

(exp[j2π(−6)t] + exp[j2π(−2)t] + exp[j2π(2)t] + exp[j2π(6)t]) . (2.57)

The bandpass signal is a sum of four sinusoids that have frequencies of f1 = −6, f2 = −2, f3 = 2,
f4 = 6. The fundamental frequency of the bandpass signal is 2Hz and Tc = 0.5.

d) The bandpass signal can be aperiodic. For example again choose xI(t) to be a 2Hz sinusoid, i.e.,
xI(t) = cos(2π(2)t). Here T = 0.5 seconds. The bandpass signal in this case is

xc(t) = xI(t)
√

2 cos(2π(fc)t) (2.58)

=
√

2
4

(exp[j2π(−2 − fc)t] + exp[j2π(−fc + 2)t] + exp[j2π(fc − 2)t] + exp[j2π(fc + 2)t]) .

The bandpass signal will be aperiodic if the two frequency are not integer multiples of a common
frequency. That implies that the two bandpass frequencies must be irrational numbers. Choosing
fc =

√
2 will produce an aperiodic signal.

2.9 Mini-Projects

Goal: To give exposure

1. to a small scope engineering design problem in communications
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2. to the dynamics of working with a team

3. to the importance of engineering communication skills (in this case oral presentations).

Presentation: The forum will be similar to a design review at a company (only much shorter) The
presentation will be of 5 minutes in length with an overview of the given problem and solution. The
presentation will be followed by questions from the audience (your classmates and the professor). All
team members should be prepared to give the presentation.
Project 2.1. In engineering often in the course of system design or test anomalous performance
characteristics often arise. Your job as an engineer is to identify the causes of these characteristics and
correct them. Here is an example of such a case.

Get the Matlab file bpex1.m from the class web page. In this file the carrier frequency was chosen
as 7kHz. If the carrier frequency is chosen as 8kHz an anomalous output is evident from the quadrature
downconverter. This is most easily seen in the output energy spectrum, Gyz(f). Postulate a reason
why this behavior occurs. Hint: It happens at 8kHz but not at 7kHz and Matlab is a sampled data
system. What problems might one have in sampled data system? Assume that this upconverter and
downconverter were products you were designing how would you specify the performance characteristics
such that a customer would never see this anomalous behavior?
Project 2.2. A signal has a form

xc(t) = xI(t)
√

2 cos (2πfct + θ) − xQ(t)
√

2 sin (2πfct + θ) (2.59)

It is known that

xI(t) = cos (200πt) xI(t) = cos (400πt) . (2.60)

The values of θ and fc are unknown. The signal has been recorded with a sample frequency of 22050Hz
(assume Nyquist criterion was satisfied) and is available in the file CompenvPrjt2.mat on the class web
page. Using this file make an estimate of θ and fc. Detail the logic that led to the estimates.
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Chapter 3

Random Processes

An additive noise is characteristic of almost all communication systems. This additive noise typically
arises from thermal noise generated by random motion of electrons in the conductors comprising the
receiver. In a communication system the thermal noise having the greatest effect on system performance
is generated at and before the first stage of amplification. This point in a communication system is where
the desired signal takes the lowest power level and consequently the thermal noise has the greatest impact
on the performance. This characteristic is discussed in more detail in Chapter 4. This chapter’s goal
is to introduce the mathematical techniques used by communication system engineers to characterize
and predict the performance of communication systems in the presence of this additive noise. The
characterization of noise in electrical systems could comprise a course in itself and often does at the
graduate level. Textbooks that provide more detailed characterization of noise in electrical systems are
[DR87, Hel91, LG89, Pap84]

A canonical problem formulation needed for the analysis of the performance of a communication
systems design is given in Fig. 3.1. The thermal noise generated within the receiver is denoted W (t).
This noise is then processed in the receiver and will experience some level of filtering, represented with
the transfer function HR(f). The simplest analysis problem is examining a particular point in time,
ts and characterize the resulting noise sample, N(ts), to extract a parameter of interest (e.g., average
signal–to–noise ratio (SNR)). Additionally we might want to characterize two or more samples, e.g.,
N(t1) and N(t2), output from this filter.

To accomplish this analysis task this chapter first characterizes the thermal noise, W (t). It turns
out that W (t) is accurately characterized as a stationary, Gaussian, and white random process. Conse-
quently our first task is to define a random process (see Section 3.1). The exposition of the characteristics
of a Gaussian random process (Section 3.2) and a stationary Gaussian random process (Section 3.3)
then will follow. A brief discussion of the characteristics of thermal noise is then followed by an analysis
of stationary random processes and linear systems. In conclusion, we return and solve the canonical
problem posed in Fig. 3.1 in Section 3.6.

Figure 3.1: The canonical communications noise formulation.
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3.1 Basic Definitions

Understanding random processes is fundamental to communications engineering. Random or stochastic
processes are indexed families of random variables where the index is normally associated with different
time instances.

Definition 3.1 Let (Ω,F , P ) be a probability space. A real random process, X(ω, t), is a single-valued
function or mapping from Ω to real valued functions of an index set variable t.

The index set in this text will always be time but generalizations of the concept of a random process to
other index sets is possible (i.e., space in image processing). The idea behind the definition of a random
process is shown in Fig. 3.2. Essentially there is an underlying random experiment. The outcome of this
random experiment is then mapped to a function of time. The example in Fig. 3.2 shows the mapping of
three of the possible experiment outcomes into three different functions of time. The function X(ω1, t)
for ω1 fixed is called a sample path of the random process. Communication engineers observe the
sample paths of random processes and the goal of this chapter is to develop the tools to characterize
these sample paths. From this point forward in the text the experimental outcome index will be dropped
and random processes will be represented as X(t).

Figure 3.2: A pictorial explanation of the definition of a random process .

Property 3.1 A sample of a random process is a random variable.

If we focus on a random process at a particular time instance then we have a mapping from a random
experiment to a real number. This is exactly the definition of a random variable (see Section ??).
Consequently, the first important question in the canonical problem stated at the beginning of this
chapter has been answered: the sample N(ts) of the random process, N(t), is a random variable.
Consequently to characterize this sample of a random process we use all the tools that characterize a
random variable (distribution function, density function, etc.). If random processes are indexed sets of
random variables then a complete statistical characterization of the random process would be available
if the random variables comprising the random process were completely characterized. In other words
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for a random process, N(t), if M samples of the random process are taken at various times and if the
PDF given by

fN(t1),N(t2),··· ,N(tM ) (n1, n2, · · · , nM )

for arbitrary M is known then the random process is completely characterized. This full character-
ization, in general, is very difficult to do. Fortunately, the case of the Gaussian random process is
the exception to the rule since Gaussian random processes are very often accurate models for noise in
communication systems.

Point 1: The canonical problem can be solved when the random variable N(ts) or set of random
variables, N(t1) and N(t2), can be statistically characterized with a PDF or a CDF

3.2 Gaussian Random Processes

Definition 3.2 A Gaussian random process is a random process where any set of samples taken from
the random process are jointly Gaussian random variables.

Many important random processes in communication system analysis are well modeled as Gaussian
random processes. This is important since Gaussian random variables are simply characterized. A
complete characterization of Gaussian random variables (their joint PDF) is obtained by knowing their
first and second order moments.

Property 3.2 If N(t) is a Gaussian random process then one sample of this process, N(ts), is com-
pletely characterized with the PDF

fN(ts)(ns) =
1√

2πσ2
N (ts)

exp
(
−(ns − mN (ts))2

2σ2
N (ts)

)
(3.1)

where
mN (ts) = E [N(ts)] σ2

N (ts) = var (N(ts)) .

Consequently the complete characterization of one sample of a random process only requires the mean
value and the variance of N(ts) to be evaluated. Section ?? has more discussion a PDF of a Gaussian
random variable.

Property 3.3 Most thermally generated noise corrupting a communication system typically has a zero
mean.

This is motivated by the physics of thermal noise generation. If the average voltage or current in a
conductor is not zero that means that electrons are on average leaving the device. Physically this non-
zero mean is not possible without an external force to induce an average voltage or current flow. All
random processes will be assumed to have a zero mean throughout the remainder of this
chapter.

Property 3.4 If N(t) is a Gaussian random process then two samples of this process, N(t1) and N(t2),
are completely characterized with the PDF

fN(t1)N(t2)(n1, n2) =
1

2π
√

σ2
N (t1)σ2

N (t2)(1 − ρN (t1, t2)2)
×

exp
[ −1
1 − ρN (t1, t2)2

(
n2

1

2σ2
N (t1)

− 2ρN (t1, t2)n1n2

2σN (t1)σN (t2)
+

n2
2

2σ2
N (t2)

)]
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where

σ2
N (ti) = E

[
N2(ti)

]
ρN (t1, t2) =

E [N(t1)N(t2)]
σN (t1)σN (t2)

.

The joint PDF of two Gaussian random variables can be characterized by evaluating the variance
of each of the samples and the correlation coefficient between the two samples. Recall a correlation
coefficient describes how similar two random variables behave. The two random variables in this case
are samples from the same random process. Section ?? has more discussion a PDF of a bivariate
Gaussian random variable. Similarly three or more samples of a Gaussian random process can be
characterized by evaluating the variance of each of the samples and the correlation coefficient between
each of the samples [LG89, DR87].

Property 3.5 The correlation function,

RN (t1, t2) = E [N(t1)N(t2)] . (3.2)

contains all the information needed to characterize the joint distribution of any set of samples from a
zero mean Gaussian random process.

Proof: Property 3.4 shows that only σ2(t) and ρ(t1, t2) need to be identified to characterize the joint
PDF of Gaussian random variables. To this end

σ2
N (t) = RN (t, t) = E

[
N2(t)

]
ρN (t1, t2) =

RN (t1, t2)√
RN (t1, t1)RN (t2, t2)

. �

The correlation function plays a key role in the analysis of Gaussian random processes.

Point 2: When the noise, N(t), is a Gaussian random process the canonical problem can be solved with
knowledge of the correlation function, RN (t1, t2). The correlation function completely characterizes any
joint PDF of samples of the process N(t).

3.3 Stationary Random Processes

If the statistical description of a random process does not change over time, it is said to be a stationary
random process. For example Fig. 3.3-a) shows a sample function of a nonstationary noise and Fig. 3.3-
b) shows a sample function of a stationary noise. The random process plotted in Fig. 3.3-a) appears to
have a variance, σ2

N (t), that is growing with time, while the random process in Fig. 3.3-b) appears to
have a constant variance. Examples of random processes which are not stationary are prevalent

• Temperature in Columbus, Ohio

• The level of the Dow-Jone’s Industrial Average.

In these nonstationary random processes the statistical description of the resulting random variables
will change greatly depending on when the process is sampled. For example the average temperature
in Columbus, OH is significantly different in July than in January. Nonstationary random processes
are much more difficult to characterize than stationary processes. Fortunately the thermal noise that
is often seen in communication systems is well modeled as stationary over the time spans which are of
interest in understanding communication system’s performance.
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a) Nonstationary noise b) Stationary noise

Figure 3.3: Sample functions of random processes.

3.3.1 Basics

Definition 3.3 A random process, N(t), is called stationary if the density function describing M sam-
ples of the random process is independent of time shifts in the sample times, i.e.,

fN(t1),N(t2),··· ,N(tM )(n1, n2, · · · , nM ) = fN(t1+t0),N(t2+t0),··· ,N(tM+t0)(n1, n2, · · · , nM )

for any value of M and t0.

In particular the random variable obtained by sampling a stationary random processes is statistically
identical regardless of the selected sample time, i.e., fN(t)(n1) = fN(t+t0)(n1). Also two samples
taken from a stationary random process will have a statistical description that is a function of the
time difference between the two time samples but not the absolute location of the time samples, i.e.,
fN(0),N(t1)(n1, n2) = fN(t0),N(t1+t0)(n1, n2).

3.3.2 Gaussian Processes

Stationarity for Gaussian random processes implies a fairly simple complete description for the random
process. Recall a Gaussian random process is completely characterized with RN (t1, t2) = E [N(t1)N(t2)].
Since fN(t)(n1) = fN(t+t0)(n1) this implies that the mean (E [N(t)] = 0) and the variance (σ2

N (ti) =
σ2

N ) are constants. Since fN(0),N(t1)(n1, n2) = fN(t0),N(t1+t0)(n1, n2) we know from Property 3.4 that
RN (0, t1) = RN (t0, t0+t1) for all t0. This implies that the correlation function is essentially a function of
only one variable, RN (t1, t2) = RN (τ) = E [N(t)N(t − τ)] where τ = t1 − t2. For a stationary Gaussian
process this correlation function RN (τ) completely characterizes any statistical event associated with
the noise N(t).

The correlation function gives a description of how rapidly the random process is changing with
time. For a stationary random process the correlation function can be expressed as

RN (τ) = σ2
NρN (τ) (3.3)

where ρN (τ) is the correlation coefficient between two samples taken τ seconds apart. Recall that if
ρN (τ) ≈ 0 then the two samples will behave statistically in an independent fashion. If ρN (τ) ≈ 1 then
the two samples will be very close in value (statistically dependent).
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Figure 3.4: Sample functions for several Gaussian random processes parameterized by (3.5). Note this
plot show samples of random processes where the sample rate is fs = 22050Hz. The jaggedness and
piecewise linear nature of the high bandwidth noise is due to this sampling. A higher sampling rate
would result in a smoother appearance.

The idea of a correlation function has been introduced before in the context of deterministic signal
analysis. For deterministic signals the correlation function of a signal x(t) was defined as

Vx(τ) =

∞∫
−∞

x(t)x∗(t − τ)dt (3.4)

This correlation function also was a measure of how rapidly a signal varied in time just like the corre-
lation function for random processes measures the time variations of a noise. Table 3.1 summarizes the
comparison between the correlation functions for random processes and deterministic energy signals.

Point 3: When the noise, N(t), is a stationary Gaussian random process the canonical problem can be
solved solely by knowing the form of RN (τ) = E [N(t)N(t − τ)]

Example 3.1: Consider a correlation coefficient parameterized as

ρN (τ) = sinc (2Wτ) . (3.5)

For two samples taken τ=250µs apart, a process characterized with W = 400Hz would have these
samples behaving very similar (ρN (.00025) = 0.935) while a process characterized with W = 6400Hz
would have ρN (.00025) = −0.058 and essentially the two samples will be independent. Fig. 3.4 shows a
plot of several sample functions of Gaussian random processes whose correlation function is given (3.5)
with different values of W . The process parameterized with W = 6400Hz varies rapidly over 250µs
while the process parameterized with W = 400Hz is nearly constant.
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Signal Definition Units Correlation value at τ = 0

Deterministic Vx(τ) =
∞∫

−∞
x(t)x∗(t − τ)dt Joules Vx(0) = Ex (Energy of x(t))

Random RN (τ) = E [N(t)N(t − τ)] Watts RN (0) = σ2
N (Average power of N(t))

Table 3.1: Summary of the important characteristics of the correlation function.

3.3.3 Frequency Domain Representation

Stationary noise can also be described in the frequency domain. Frequency domain analysis has been
very useful for providing an alternate view (compared to time domain) in deterministic signal analysis.
This characteristic holds true for stationary random processes. Using the definition of a finite time
Fourier transform given in (??), i.e.,

NTm(f) =
∫ Tm

−Tm

N(t) exp [−j2πft] dt, (3.6)

the finite time average power spectral density (units Watts per Hertz) is given as

SN (f, Tm) =
1

2Tm
E

[
|NTm(f)|2

]
. (3.7)

Definition 3.4 The power spectral density of a random process N(t) is

SN (f) = lim
Tm→∞

SN (f, Tm).

Intuitively, random processes that vary rapidly must have power at higher frequencies in a very similar
way as deterministic signals. This definition of the power spectral density puts that intuition on a solid
mathematical basis. The power spectral density is a function which defines how the average power of
a random process is distributed as a function of frequency. An additional relation to the correlation
function can be made.

Property 3.6 The power spectrum of a real valued1 random process is always a non-negative and even
function of frequency, i.e., SN (f) ≥ 0 and SN (f) = SN (−f).

Proof: The positivity of SN (f) is a direct consequence of Definition 3.4 and (3.7). The evenness is due
to Property ??. �

Property 3.7 (Wiener-Khinchin) The power spectral density for a stationary random process is
given by

SN (f) = F {RN (τ)} .

Proof: The power spectral density (see Definition 3.4) can be rewritten as

SN (f) = lim
Tm→∞

1
2Tm

E
[
|NTm(f)|2

]
.

1This chapter only considers real valued random processes but the next chapter will extend these ideas to the complex
envelope of a bandpass noise, hence the need to distinguish between a real and a complex random process.
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Using the definition in (3.6) gives

E
[
|NTm(f)|2

]
= E

[∫ Tm

−Tm

N(t1) exp [−j2πft1] dt1

∫ Tm

−Tm

N(t2) exp [j2πft2] dt2

]
=

∫ Tm

−Tm

∫ Tm

−Tm

E [N(t1)N(t2)] exp [−j2πf(t1 − t2)] dt1dt2. (3.8)

Making a change of variables τ = t1 − t2 and using the stationarity of N(t) reduces (3.8) to

E
[
|NTm(f)|2

]
=

∫ Tm

−Tm

∫ Tm−t2

−Tm−t2

RN (τ) exp [−j2πfτ ] dτdt2. (3.9)

Taking the limit gives the desired result. �

Actually the true Wiener-Khinchin theorem is a bit more general but this form is all that is needed for
this text.

The power spectral density can be used to find the average power of a random process with a direct
analogy to Rayleigh’s energy theorem. Recall that

RN (τ) = F−1 {SN (f)} =
∫ ∞

−∞
SN (f) exp (j2πfτ) df (3.10)

so that the total average power of a random process is given as

RN (0) = σ2
N =

∫ ∞

−∞
SN (f)df. (3.11)

Equation (3.11) demonstrates that the average power of a random process is the area under the power
spectral density curve.

Example 3.2: If

RN (τ) = σ2
N sinc (2Wτ) . (3.12)

then

SN (f) =

 σ2
N

2W
|f | ≤ W

0 elsewhere
(3.13)

A random process having this correlation–spectral density pair has power uniformly distributed over
the frequencies from −W to W .

The duality of the power spectral density of random signals, SN (f) and the energy spectral density of
deterministic energy signals, Gx(f), is also strong. Table 3.2 summarizes the comparison between the
correlation functions for random processes and deterministic energy signals.

Point 4: When the noise, N(t), is a stationary Gaussian random process the canonical problem can
be solved with knowledge of the power spectral density of the random process, SN (f). The power
spectral density determines the correlation function, RN (τ) through an inverse Fourier transform. The
correlation function completely characterizes any joint PDF of samples of the process N(t).
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Signal Definition Units Correlation Value at τ = 0
Deterministic Gx(f) = F {Vx(τ)} Joules/Hz Vx(0) = Ex =

∫ ∞
−∞ Gx(f)df Gx(f) ≥ 0

Random SN (f) = F {RN (τ)} Watts/Hz RN (0) = σ2
N =

∫ ∞
−∞ SN (f)df SN (f) ≥ 0

Table 3.2: Summary of the duality of spectral densities.

3.4 Thermal Noise

An additive noise is characteristic of almost all communication systems. This additive noise typically
arises from thermal noise generated by random motion of electrons in conductors. From the kinetic
theory of particles, given a resistor R at a physical temperature of T degrees Kelvin, there exists a
random additive noise voltage, W (t), across the resistor. This noise is zero mean, stationary2, and
Gaussian distributed (due to the large number of randomly moving electrons and the Central Limit
Theorem), with a spectral density given as [Zie86]

SW (f) =
2Rh|f |

exp
[

h|f |
KT

]
− 1

(3.14)

where h = 6.62 × 10−34 is Planck’s constant and K = 1.3807 × 10−23 is Boltzmann’s constant. The
major characteristic to note is that this spectral density is constant up to about 1012 Hz at a value of
2KTR. Since a majority of communications occurs at frequencies much lower than 1012 Hz3 an accurate
model of the thermal noise is to assume a flat spectral density (white noise). This spectral density is
a function of the receiver temperature. The lower the temperature of the receiver the lower the noise
power.

Additive white Gaussian noise (AWGN) is a basic assumption made about the corrupting noise in
most communication systems performance analyses. White noise has a constant spectral density given
as

SW (f) =
N0

2
(3.15)

where N0/2 is the noise power spectral density. Note that since

E[W 2(t)] =
∫ ∞

−∞
SW (f)df (3.16)

this thermal noise model has an infinite average power. This characteristic is only a result of modeling
(3.14) with the simpler form in (3.15). Traditionally some engineers have been loath to admit to the idea
of negative frequencies hence they are not comfortable with the model in (3.15). These engineers like to
think about noise power distributed over positive only frequencies with a spectral density of double the
height. In the literature one will often see people denote N0/2 as the two-sided noise spectral density
and N0 as the one-sided noise spectral density.

The autocorrelation function of AWGN is given by

RW (τ) = E [W (t)W (t − τ)] =
N0

2
δ(τ). (3.17)

AWGN is a stationary random process so a great majority of the analysis in communication systems
design can utilize the extensive theory of stationary random processes. White noise has the interesting

2As long as the temperature is constant.
3Fiber optic communication is a notable exception to this statement.
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a) The measured PSD. b) The measured histogram.

Figure 3.5: Characteristics of sampled wideband Gaussian noise.

characteristic that two samples of the process W (t) will always be independent no matter how closely
the samples are taken. Consequently white noise can be thought of as a very rapidly varying noise with
no predictability.

A resistor in isolation will produce an approximate white noise with a two-sided spectral density of
2KTR. If this system is placed in an electronic system the greatest value of the average power that
would be able to be transferred out of the resistor is one fourth of value that would be exist if the
resistor was shorted (using the maximum power transfer theorem of linear systems, see Problem 3.13).
Hence an important number for communication system engineers to remember is N0 = KT . For room
temperature (T = 290◦K) N0 = 4 × 10−21 Watts/Hz (-174dBm/Hz). When signals get amplified by
active components in a receiver the value of this noise spectral density will change. We explore some of
these ideas in the homework and refer the interested student to the detailed references [Zie86, Cou93,
Skl88] on the ideas of noise figure, link budgets, and computing output signal to noise ratio.

This noise spectral density at the input to a communication system is very small. If this thermal
noise is to corrupt the communication signal then the signal must also take a small value. Consequently
it is apparent from this discussion that thermal noise is only going to be significant when the signal at
the receiver has been attenuated to a relatively small power level.

Example 3.3: The noise plotted in Fig. 3.3-b) could result from sampling an AWGN at a sample rate
of fs = 22050Hz. The rapidly varying characteristic of the noise samples predicted by (3.17) is evident
from Fig. 3.3-b). The measured power spectrum (see (3.7)) for this process is shown in Fig. 3.5-a).
This PSD, while extremely jagged due to the consideration of a finite time interval, clearly shows the
whiteness of the noise. Fig. 3.5-a) show the histogram of the samples of the AWGN. The Gaussian
nature of this histogram is also clearly evident.

Point 5: The dominant noise in communication systems is often generated by the random motion of
electrons in conductors. This noise process is accurately modeled as stationary, Gaussian, and white.

3.5 Linear Systems and Random Processes

The final step in solving the canonical problem is to characterize the output of a linear time-invariant
filter when the input is a white Gaussian stationary random process.
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Property 3.8 Random processes that result from linear filtering of Gaussian random processes are also
Gaussian processes.

Proof: The technical machinery needed to prove this property is beyond the scope of this class but
most advanced texts concerning random processes will prove this. For example [DR87]. It should be
noted that a majority of the important ideas can be understood by examining Problem ??.24. �

Property 3.9 A random process that results from linear filtering of a zero mean process will also be
zero mean.

Proof: Assume the filter input is W (t), the filter impulse response is hR(t), and the filter output is
N(t).

E [N(t)] = E

[∫ ∞

−∞
hR(λ)W (t − λ)dλ

]
=

∫ ∞

−∞
hR(λ)E [W (t − λ)] dλ = 0. � (3.18)

Property 3.10 A Gaussian random process that results from linear time-invariant filtering of another
stationary Gaussian random process is also a stationary Gaussian process.

Proof: Assume the filter input is W (t), the filter impulse response is hR(t), and the filter output is
N(t). Since we know the output is Gaussian, the stationarity of N(t) only requires that the correlation
function of N(t) be a function of τ only, i.e., RN (t1, t2) = RN (τ). The two argument correlation function
of N(t) is given as

RN (t1, t2) = E [N(t1)N(t2)]

= E

[∫ ∞

−∞
hR(λ1)W (λ1 − t1)dλ1

∫ ∞

−∞
hR(λ2)W (λ2 − t2)dλ2

]
. (3.19)

Rearranging gives

RN (t1, t2) =
∫ ∞

−∞
hR(λ1)

∫ ∞

−∞
hR(λ2)E [W (λ1 − t1)W (λ2 − t2)] dλ1dλ2

=
∫ ∞

−∞
hR(λ1)

∫ ∞

−∞
hR(λ2)RW (λ1 − t1 − λ2 + t2)dλ1dλ2

=
∫ ∞

−∞
hR(λ1)

∫ ∞

−∞
hR(λ2)RW (λ1 − λ2 − τ)dλ1dλ2

= g(τ). � (3.20)

Point 6: The output noise in the canonical problem, N(t), is accurately modeled as a stationary
Gaussian process.

The canonical problem given in Fig. 3.1 can now be solved by finding the correlation function or spectral
density of the stationary Gaussian random process N(t). For the canonical problem W (t) is a white
noise so that (3.20) can be rewritten as

RN (τ) =
∫ ∞

−∞
hR(λ1)

∫ ∞

−∞
hR(λ2)

N0

2
δ(λ1 − λ2 − τ)dλ1dλ2. (3.21)

Using the sifting property of the delta function gives

RN (τ) =
N0

2

∫ ∞

−∞
hR(λ1)hR(λ1 − τ)dλ1 =

N0

2
VhR

(τ) (3.22)
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where VhR
(τ) is the correlation function of the deterministic impulse response hR(t) as defined in

Chapter ??. This demonstrates that the output correlation function from a linear filter with a white
noise input is only a function of the filter impulse response and the white noise spectral density.

The frequency domain description of the random process N(t) is equally simple. The power spectral
density is given as

SN (f) = F {RN (τ)} =
N0

2
F {VhR

(τ)} =
N0

2
GhR

(f) =
N0

2
|HR(f)|2 . (3.23)

The average output noise power is given using either (3.22) or (3.23) as

σ2
N = E

[
N2(t)

]
= RN (0) =

N0

2

∫ ∞

−∞
|HR(f)|2 df =

N0

2

∫ ∞

−∞
|hR(t)|2 dt. (3.24)

It should be noted that (3.24) is another example of a Parseval theorem result.

Example 3.4: Consider an ideal low pass filter of bandwidth W , i.e.,

HR(f) =
{

1 |f | ≤ W
0 elsewhere

(3.25)

The output spectral density is given as

SN (f) =


N0

2
|f | ≤ W

0 elsewhere
(3.26)

and the average output power is given as σ2
N = N0W .

Engineers noted the simple form for the average output noise power expression in Example 3.4 and de-
cided to parameterize the output noise power of all filters by a single number, the noise equivalent
bandwidth.

Definition 3.5 The noise equivalent bandwidth of a filter is

BN =
1

2|HR(0)|2
∫ ∞

−∞
|HR(f)|2 df.

For an arbitrary filter the average output noise power will be σ2
N = N0BN |HR(0)|2. Note for a constant

|HR(0)| the smaller the noise equivalent bandwidth the smaller the noise power. This implies that noise
power can be minimized by making BN as small as possible. In the homework problems we will show
that the output signal to noise ratio is not a strong function of |HR(0)| so that performance in the
presence of noise is well parameterized by BN . In general, HR(f) is chosen as a compromise between
complexity of implementation, signal distortion, and noise mitigation.

Example 3.5: The sampled wideband Gaussian noise shown in Fig. 3.3-b) is put into a lowpass filter of
bandwith 1600Hz. This lowpass filter will significantly smooth out the sampled noise and reduce the
variance. Two output sample functions; one for the wideband noise and one for the filtered noise, are
shown in Fig. 3.6-a). The lowering of the output power of the noise and the resulting smoother time
variations are readily apparent in this figure. The output measured PSD of the filtered noise is shown in
Fig. 3.6-b). This measured PSD validates (3.23), as this PSD is clearly the result of multiplying a white
noise spectrum with a lowpass filter transfer function. The histogram of the output samples, shown in
Fig. 3.7, again demonstrates that this noise is well modeled as a zero mean Gaussian random process.
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a) Sample paths of wideband and filtered noise. b) Measured PSD.

Figure 3.6: Measured characteristics of filtered noise.

Figure 3.7: A histogram of the samples of the filtered noise.

Point 7. A stationary, white, and Gaussian noise of two sided spectral density N0/2 when passed
through a filter will produce a stationary Gaussian noise whose power spectral density is given as

SN (f) =
N0

2
|HR(f)|2 .

3.6 The Solution of the Canonical Problem

Putting together the results of the previous five sections leads to a solution of the canonical problem
posed in this chapter.

First, the characterization of one sample, N(ts), of the random process N(t) is considered. This
case requires a four step process summarized as
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1. Identify N0 and HR(f).

2. Compute SN (f) = N0
2 |HR(f)|2 .

3. σ2
N = E

[
N2(t)

]
= RN (0) = N0

2

∫ ∞
−∞ |HR(f)|2 df = N0BN |HR(0)|2

4. fN(ts)(n1) = 1√
2πσ2

N

exp
(
− n2

1

2σ2
N

)

Example 3.6: Consider two ideal lowpass filters with

HR(i)(f) =
{

1 |f | ≤ Wi

0 elsewhere
(3.27)

with W1=400Hz and W2=6400Hz and a noise spectral density of

N0 =
1

1600
.

Step 2 gives

SNi(f) =

{ 1
3200

|f | ≤ Wi

0 elsewhere.
(3.28)

Step 3 gives σ2
N1

= 0.25 and σ2
N2

= 4. The average noise power between the two filter outputs is different
by a factor of 16. The PDFs in step 4 are plotted in Fig. 3.8.

Second, the characterization of two samples, N(t1) and N(t2), of the random process N(t) is con-
sidered. This case requires a five step process summarized as

1. Identify N0 and HR(f).

2. Compute SN (f) = N0
2 |HR(f)|2 .

3. RN (τ) = F−1 {SN (f)} .

4. σ2
N = RN (0) and ρN (τ) = RN (τ)/σ2

N .

5. fN(t1)N(t2)(n1, n2) = 1

2πσ2
N

√
(1−ρN (τ)2)

exp
[

−1
2σ2

N (1−ρN (τ)2)

(
n2

1 − 2ρN (τ)n1n2 + n2
2

)]
.
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Figure 3.8: The PDF of a filter output sample for W=400 and W=6400Hz.

Example 3.7: Consider two ideal lowpass filters with

HR(i)(f) =
{

1 |f | ≤ Wi

0 elsewhere
(3.29)

with W1=400Hz and W2=6400Hz and a noise spectral density of

N0 =
1

1600
.

Step 2 gives

SNi(f) =

{ 1
3200

|f | ≤ Wi

0 elsewhere.
(3.30)

Step 3 gives RN1(τ) = 0.25sinc (800τ) and RN2(τ) = 4sinc (12800τ). Step 4 has the average noise power
between the two filter outputs being different by a factor of 16 since σ2

N1
= 0.25 and σ2

N2
= 4. For

an offset of τ seconds the correlation coefficients are ρN1(τ) = sinc (800τ) and ρN2(τ) = sinc (12800τ).
The PDFs in step 5 are plotted in Fig. 3.9-a) and Fig. 3.9-b) for τ = 250µ s. With the filter having
a bandwidth of 400Hz the variance of the output samples is less and the correlation between samples
is greater. This higher correlation implies that the probability that the two random variables take
significantly different values is very small. This correlation is evident due to the knife edge like joint
PDF. These two joint PDFs show the characteristics in an analytical form that were evident in the
noise sample paths shown in Fig. 3.4.
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a) W=400Hz. b) W=6400Hz.

Figure 3.9: The PDF of two samples separated by τ = 250µs.

Similarly three or more samples of the filter output could be characterized in a very similar fashion.
The tools developed in this chapter give a student the ability to analyze many of the important properties
of noise that are of interest in communication system design.

3.7 Homework Problems

Problem 3.1. For this problem consider the canonical block diagram shown in Fig. 3.10 with si(t) =
cos (2π(200)t) and with W (t) being an additive white Gaussian noise with two-sided spectral density of
N0/2. Assume HR(f) is an ideal lowpass filter with bandwidth of 400Hz. Two samples are taken from
the filter output at time t = 0 and t = τ , i.e., Yo(0) and Yo(τ).

a) Choose N0 such that the output noise power, E
[
N2(t)

]
= 1.

b) Yo(0) is a random variable. Compute E [Yo(0)] and E
[
Y 2

o (0)
]
, and var (Yo(0)).

c) Yo(τ) is a random variable. Compute E [Yo(τ)] and E
[
Y 2

o (τ)
]
, and var (Yo(τ)).

d) Find the correlation coefficient between Yo(0) and Yo(τ)i.e.,

ρYo(τ) =
E [(Yo(0) − E [Yo(0)])(Yo(τ) − E [Yo(τ)])]√

var (Yo(0)) var (Yo(τ))
. (3.31)

e) Plot the joint density function, fYo(0)Yo(τ)(y1, y2), of these two samples for τ = 2.5ms.

f) Plot the joint density function, fYo(0)Yo(τ)(y1, y2), of these two samples for τ = 25µs.

g) Compute the time average signal to noise ratio where the instantaneous signal power is defined as
E [Yo(t)]

2.

Problem 3.2. Real valued additive white Gaussian noise (two sided spectral density N0/2) is input
into a linear time invariant filter with a real valued impulse response hR(t) where hR(t) is constrained
to have a unit energy (see Fig. 3.10 where si(t) = 0).

a) Calculate the output correlation function, RN (τ).
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Figure 3.10: Block diagram for signals, noise, and linear systems.

b) The output signal is sampled at a rate of fs. Give conditions on the impulse response, hR(t), that
will make these samples independent. Give one example of a filter where the output samples will
be independent.

c) Give the PDF of one sample, e.g., fN(t1)(n1).

d) Give the PDF of any two sample, e.g., fN(t1)N(t1+k/fs)(n1, n2) where k is a nonzero integer and
the filter satisfies the conditions in b).

e) Give an expression for P (N(t1) > 2).

Problem 3.3. Real valued additive white Gaussian noise, W (t) with a two sided spectral density
N0/2 = 0.1 is input into a linear time invariant filter with a transfer function of

H(f) =
{

2 |f | ≤ 10
0 elsewhere

(3.32)

The output is denoted N(t).

a) What is the correlation function, RW (τ), that is used to model W (t)?

b) What is E [N(t)]?

c) Calculate the output power spectral density, SN (f).

d) What is E
[
N2(t)

]
?

e) Give the PDF of one sample, e.g., fN(t1)(n1).

f) Give an expression for P (N(t1) > 3).

Problem 3.4. For this problem consider the canonical block diagram shown in Fig. 3.10 with si(t) = A
and with W (t) being an additive white Gaussian noise with two-sided spectral density of N0/2. Assume
a 1Ω system and break the filter response into the DC gain term, HR(0) and the normalized filter
response, HN (f), i.e., HR(f) = HR(0)HN (f).

a) What is the input signal power?

b) What is the output signal power, Ps?

c) What is the average output noise power, σ2
N?

d) Show that the output SNR=Ps/σ2
N is not a function of HR(0).

e) Give the output SNR as a function of A, N0, and BN .
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Problem 3.5. For the canonical problem given in Fig. 3.1, the output noise spectral density is given
as

SN (f) =
{

N0f
2 |f | ≤ W

0 elsewhere
(3.33)

a) What is the average ouput noise power?

b) Give a possible HR(f) that would result in this output noise?

c) Think of a way to implement this HR(f) using a lowpass filter cascaded with another linear system
that is used in the demodulation of an analog modulation.

Problem 3.6. Show that SN (f) = SW (f) |HR(f)|2 by taking the Fourier transform of (3.20).
Problem 3.7. Consider the following linear system with a signal, si(t), plus a white Gaussian noise,
W (t), as inputs.

Y (t) = so(t) + N(t) =
∫ t

t−Ti

x(λ)dλ =
∫ t

t−Ti

(si(λ) + W (λ)) dλ (3.34)

where Ti is defined as the integration time.

a) What is the impulse response of this linear system, hr(t).

b) Show that

σ2
N =

N0

2

∫ ∞

−∞
|hr(t)|2 dt (3.35)

c) If the input to the filter is a DC term plus the AWGN, i.e.,

Y (t) =
∫ t

t−Ti

(A + W (λ))dλ (3.36)

find the output SNR= Ps/σ2
N as a function of Ti.

d) For the case considered in c) show that SNR grows monotonically with Ti.

e) If the input to the filter is a sinusoid signal plus the AWGN, i.e.,

Y (t) =
∫ t

t−Ti

(
√

2A cos(2πfmt) + W (λ))dλ (3.37)

find the output SNR as a function of Ti.

f) For the case considered in e) show that SNR does not grows monotonically with Ti and find the
optimum Ti for each fm.

Problem 3.8. Real valued additive white Gaussian noise, W (t) with a two sided spectral density
N0/2 = 0.1 is input into a linear time invariant filter with a transfer function of

HR(f) =
{

2 |f | ≤ W
0 elsewhere

(3.38)

The output is denoted N(t).
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a) What is the correlation function, RW (τ), that is used to model W (t)?

b) What is E [N(t)]?

c) Calculate the output power spectral density, SN (f).

d) Select W to give E
[
N2(t)

]
=10.

e) Give the PDF of one sample, e.g., fN(t1)(n1) when E
[
N2(t)

]
=10.

f) Given an expression for P (N(t1) > 3) when E
[
N2(t)

]
=10.

Problem 3.9. As simple model of a radar receiver consider the following problem. A radar sends out
a pulse and listens for the return at the receiver whose filtering is represented with an impulse response
hR(t). The situation when no target is present is represented with the input being modeled as a real
valued additive white Gaussian noise, Y (t) = W (t), (W (t) has a two sided spectral density N0/2) being
input into a linear time invariant filter with a real valued impulse response hR(t). Denote the output
as V (t). The situation where a target is present can be represented as the same filter with a input
Y (t) = A + W (t). A target detection decision is given by a simple threshold test at time t

Y (t)
Target Present

>
<

Target Absent
γ (3.39)

a) For the case when no target is present, completely characterize a sample of the process V (t).

b) For a particular time t, find a value of the threshold, γ, where the probability that a target will
be declared present when one is not present is 10−5.

c) For the case when a target is present completely characterize a sample of the process V (t).

d) For the value of the threshold selected in b) find how large A should be to correctly detect a target
present with a probability of detection greater than 0.9 for any value of t.

Problem 3.10. A real valued additive white Gaussian noise, W (t), (two sided spectral density N0/2)
is input into a linear time invariant filter with a real valued impulse response hR(t). Assume hR(t)
represents an ideal lowpass filter with bandwidth BT and N(t) is the output of the filter.

a) Find RN (τ).

b) Choose BT such that E
[
N2(t)

]
= 1.

c) For the random process Z(t) = N(t) − N(t − t1) find RZ(τ).

d) Select a value of t1 such that E
[
Z2(t)

]
= 0.5 for the BT computed in b).

Problem 3.11. (Adapted from PD) Professor Fitz likes to gamble but he is so busy thinking up
problems to torment students that he can never find time to get to Las Vegas. So instead he decides
to gamble with the students in his communication classes. The game has real valued additive white
Gaussian noise (two sided spectral density N0/2 = 1), W (t), input into a linear time invariant filter
with a real valued impulse response

hR(t) =


2 0 ≤ t ≤ 0.5
−2 0.5 < t ≤ 1
0 elsewhere.

(3.40)
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Professor Fitz samples the noise, N(t), at a time of his choosing, t0, and notes the sign of the noise
sample. The student playing the game gets to choose a later time, t0 + τ, τ > 0 to sample the noise and
if the sign of the noise sample is the opposite of Professor Fitz’s sample then the student gets out of
the final exam.

a) Calculate the output correlation function, RN (τ).

b) Prof. Fitz samples at t0 = 1 find E
[
N2(1)

]
.

c) Give the probability density function of Prof. Fitz’s sample, e.g., fN(t0)(n1).

d) If you are playing the game and Professor Fitz samples the noise at t0 = 1, select a sample time
to optimize your odds of getting out of the test. Justify your answer. Could you do better if you
were allowed to sample the process at a time before Professor Fitz samples the process?

e) If Professor Fitz gets a realization N(1) = 2 in his sample, compute the probability of your getting
out of the test for the optimized sample time you gave in d).

Problem 3.12. Consider the model in Fig. 3.1 where the noise is zero mean white Gaussian with a
one sided noise spectral density of N0 Watts/Hz and filter has an impulse response of

hR(t) =
{

exp [−at] t ≥ 0
0 elsewhere

(3.41)

where a > 0.

a) Find E
[
N2(ts)

]
.

b) Find P (N(ts) ≤ 1).

c) Find the noise equivalent bandwidth of this filter, BN .

d) Find P (N(ts + τ) ≤ 0 |N(ts) = 1). Hint: (??) might be useful.

Problem 3.13. Consider the system in Fig. 3.11 where voltage noise source produce a voltage of N(t)
where N(t) is a stationary noise with E

[
N2(t)

]
= PN .

a) Find the average power delivered to the source as a function of Rs and R.

b) What is the value of R that would maximize this power and what would be the corresponding
maximum average power delivered.

Problem 3.14. Given Fig. 3.12 and W (t) being an additive white Gaussian noise (RW (τ) = N0/2δ(τ)).

a) Express the probability density function (PDF) of the random variable N1(t1) for a fixed t1 in
terms of h1(t) and N0.

b) Find the E [N1(t1)N2(t1)] for a fixed t1 in terms of h1(t), h2(t), and N0. Specify the joint PDF of
N1(t1) and N2(t1).

c) If h1(t) is given in Fig. 3.13 then find an impulse response for h2(t) such that N1(t1) and N2(t1)
for a fixed t1 are independent random variables with equal variances (Hint: the answer is not
unique).

Problem 3.15. For this problem consider the canonical block diagram shown in Fig. 3.10 with si(t) =
A cos (200πt) and with W (t) being an additive white Gaussian noise with two-sided spectral density of
N0/2 = 0.01. HR(f) is a filter with a transfer function given in Fig. 3.14.
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Figure 3.11: A noise source and sink.

Figure 3.12: White noise into a linear filter.

a) What is so(t) and what is Pso?

b) If two samples are taken from W (t), e.g., W (t1) and W (t2), what spacing in the time samples, t2−
t1, must be maintained to have two samples that are statistically independent random variables?

c) What is the spectral density of N(t), SN (f)?

d) What is the noise power, E[N2(t)]?

e) Choose A such that the output SNR=10.

Problem 3.16. Consider the model in Fig. 3.1 where the noise is zero mean white Gaussian with a
one sided noise spectral density of N0 Watts/Hz and filter is an ideal bandpass filter of bandwidth BT

that has a transfer function of

HR(f) =
{

3 fc − BT
2 ≤ |f | ≤ fc + BT

2
0 elsewhere.

(3.42)

Assume fc ≥ BT .

a) Find SN (f)

b) Find E
[
N2(ts)

]
.
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Figure 3.13: An example impulse response.

Figure 3.14: Transfer function of HR(f).

c) Find RN (τ)

d) Find P (N(ts) ≤ 1).

e) Find P (N(ts + τ) ≤ 0 |N(ts) = 1).

f) Find the value of τ that maximizes P (N(ts + τ) ≤ 0 |N(ts) = 1). Hint: (??) might be useful.

Problem 3.17. A zero mean, stationary, Gaussian noise, N(t), is characterized by the correlation
function given in Fig. 3.15.

a) Give the average power of this noise.

b) Give the joint probability density function of two samples of this noise, N(1) and N(1.02).

c) Find P (N(1) ≥ 4).

d) If this noise is the output of an ideal lowpass filter with HR(0) = 1 driven by white noise, estimate
the filter bandwidth and two-sided noise spectral density of the noise, N0/2.

Problem 3.18. Two noise processes, N1(t) and N2(t), are zero mean, stationary, Gaussian proceses,
and have the following correlation functions:

RN1(τ) = 100sinc
(τ

4

)
RN2(τ) = 50sinc (25τ) (3.43)

a) Which random process has a greater power? Why?
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Figure 3.15: A correlation function for a stationary noise.
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b) Two samples are taken from N2(t), N2(t1) and N2(t1 + τ). What is the smallest value of τ such
that the two samples are orthogonal random variables?

c) For N1(t), what is the correlation coefficient corresponding to τ = 1? Give the joint PDF of two
samples of N1(t) taken 1 second apart.

d) Find P (N1(t) < −10),

e) Using only linear devices (amplifiers and filters), generate a random process statistically identical
to N1(t) from N2(t).

Problem 3.19. Two random processes are defined as

N1(t) = X cos (2πfot) + Y (3.44)

and

N2(t) = X cos (2πfot) + Y sin (2πfot) (3.45)

where X and Y are independent zero mean jointly Gaussian random variables with unity variance and
fo is a deterministic constant.

a) Are these processes Gaussian processes?

b) For each of the processes that are Gaussian given a joint density function of the samples of the
random process taken at t = 0 and t = 1/(4fo).

c) Are these processes stationary? Hint: Trigonometry formulas will be useful here.

Problem 3.20. Consider the block diagram in Fig. 3.16 where Wi(t) are independent white Gaussian
noises with RWi(τ) = N0/2δ(τ), i = 1, 2.

a) Find fN(t0)(n).

b) Find P (N(t0) > −1).

c) Find fN(t0)N(t0−τ)(n1, n2).

d) Find fN(t0) (n |N(t0 − τ) = n1 ).

e) Find the simplest expression for SE(f).

Problem 3.21. Consider an additive white Gaussian noise input into a linear time invariant system
as given in Fig. 3.17. Suppose that

HR(f) =
{

A |f | ≤ W
0 elsewhere

(3.46)

and that SW (f) = N0)
2 .

a) Choose A such that σ2
N(t) = 1.

b) If W = 100Hz and N(t0) = 2 find the conditional mean E [N(t0 − τ) |N(t0) = 2].

c) If W = 100Hz, N(t0) = 2, and τ > 0.01 find the value of τ that will minimize

var (N(t0 − τ) |N(t0) = 2) . (3.47)
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Figure 3.16: A system block diagram.

Figure 3.17: The noise model.

3.8 Example Solutions

Problem 3.4.

a) Psi = A2

b) Since the input signal is a DC signal (f = 0) and has a Fourier transform Si(f) = Aδ(f) the
output is so(t) = AHR(0). Consequently Ps = A2|HR(0)|2

c)

σ2
N =

N0

2

∫ ∞

−∞
|HR(f)|2df =

N0

2
|HR(0)|2

∫ ∞

−∞
|HN (f)|2df (3.48)

d)

SNR =
Ps

σ2
N

=
2A2

N0

[∫ ∞

−∞
|HN (f)|2 df

]−1

(3.49)

e) Using the definition of BN gives

BN =
1

2|HR(0)|2
∫ ∞

−∞
|HR(f)|2df =

1
2|HR(0)|2

∫ ∞

−∞
|HR(0)|2|HN (f)|2df. (3.50)

Therefore, BN = 1
2

∫ ∞
−∞ |HN (f)|2 df and SNR = A2

N0BN

3.9 Mini-Projects

Goal: To give exposure

1. to a small scope engineering design problem in communications
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2. to the dynamics of working with a team

3. to the importance of engineering communication skills (in this case oral presentations).

Presentation: The forum will be similar to a design review at a company (only much shorter) The
presentation will be of 5 minutes in length with an overview of the given problem and solution. The
presentation will be followed by questions from the audience (your classmates and the professor). Each
team member should be prepared to give the presentation.
Project 3.1. You have a voice signal with average power of -10dBm and bandwidth of 4kHz that you
want to transmit over a cable from one building on campus to another building on campus. The system
block diagram is shown in Fig. 3.18. The noise in the receiver electronics is accurately modeled as an
AWGN with a one sided noise spectral density of N0=-174dBm/Hz. The cable is accurately modeled
as a filter with the following impulse response

hc(t) = Lpδ(t − τp). (3.51)

where Lp is the cable loss. You are using cable with a loss of 2dB/1000ft. How long of a cable can
be laid and still achieve at least 10dB SNR? If the signal was changed to a video signal with -10dBm
average power and bandwidth of 6MHz, how long of a cable can be laid and still achieve at least 10dB
SNR?

Figure 3.18: Block diagram of a baseband (cable) communication system.
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Chapter 4

Noise in Bandpass Communication
Systems

Noise in communication systems is produced from a filtering operation on the wideband noise that
appears at the receiver input. Most communication occurs in a fairly limited bandwidth around some
carrier frequency. Since Chapter 3 showed that the input noise in a communication system is well
modeled as an additive white Gaussian noise, it make sense to limit the effects of this noise by filtering
around this carrier frequency. Consequently, the canonical model for noise in a bandpass communication
system is given in Fig. 4.1. The white noise, W (t), models a wide band noise which is present at
the receiver input. This noise can come from a combination of the receiver electronics, man-made
noise sources, or galactic noise sources. This noise is often well modeled as a zero mean, stationary,
and Gaussian random process with a power spectral density of N0/2 Watts/Hz. The filter, HR(f),
represents the frequency response of the receiver system. This frequency response is often designed
to have a bandpass characteristic to match the transmission band and is bandpass around the carrier
frequency, fc. Chapter 3 showed that Nc(t) is a stationary Gaussian process with a power spectral
density (PSD) of

SNc(f) = |HR(f)|2 N0

2
. (4.1)

The noise, Nc(t), will consequently have all it’s power concentrated around the carrier frequency, fc.
Noise with this characteristic is denoted bandpass noise. The average power of the noise is given as

E
[
N2

c (t)
]

= σ2
N =

∫ ∞

−∞
SNc(f)df =

N0

2

∫ ∞

−∞
|HR(f)|2 df. (4.2)

This noise in a bandpass communication system will then be passed through an I/Q downconverter to
produce an in-phase noise, NI(t), and a quadrature noise, NQ(t). This chapter provides the necessary
tools to characterize the low pass noise processes, NI(t) and NQ(t), that result in this situation.
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Figure 4.1: The canonical model for communication system analysis.

Example 4.1: Consider a receiver system with an ideal bandpass filter response of bandwidth BT

centered at fc, i.e.,

HR(f) =
{

A ||f | − fc| ≤ BT
2

0 elsewhere
(4.3)

where A is a real, positive constant. The bandpass noise will have a spectral density of

SNc(f) =

 A2N0

2
||f | − fc| ≤ BT

2

0 elsewhere
(4.4)

Consequently

E
[
N2

c (t)
]

= σ2
N =

∫ ∞

−∞
SNc(f)df = A2N0BT (4.5)

These tools will enable an analysis of the performance of bandpass communication systems in the pres-
ence of noise. This ability to analyze the effects of noise is what distinguishes the competent communi-
cation system engineer from the hardware designers and the technicians they work with. The simplest
analysis problem is examining a particular point in time, ts, and characterizing the resulting noise sam-
ples, NI(ts) and NQ(ts), to extract a parameter of interest (e.g., average signal–to–noise ratio (SNR)).
Bandpass communication system performance can be characterized completely if probability density
functions (PDF) of the noise samples of interest can be identified, e.g.,

fNI
(n1), fNI(t)NI(t+τ)(n1, n2), and/or fNQ(t)NI(t+τ)(n1, n2). (4.6)

To accomplish this analysis task this chapter first introduces notation for discussing the bandpass noise
and the lowpass noise. The resulting lowpass noise processes are shown to be zero mean, jointly sta-
tionary, and jointly Gaussian. Consequently the PDFs like those detailed in (4.6) will entirely be a
function of the second order statistics of the lowpass noise processes. These second order statistics can
be produced from the PSD given in (4.1).
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a) The measured PSD b) The sample function

Figure 4.2: The measured characteristics of bandpass filtered white noise.

Figure 4.3: A histogram of the samples taken from the bandpass noise resulting from bandpass filtering
a white noise.

Example 4.2: If a sampled white Gaussian noise like that considered in Fig. 3.3-b) with a measured
spectrum like that given in Fig.3.5-a) is put through a bandpass filter a bandpass noise will result. For
the case of a bandpass filter with a center frequency of 6500Hz and a bandwidth of 2000Hz a measured
output PSD is shown in Fig. 4.2-a). The validity of (4.1) is clearly evident in this output PSD. A
resulting sample function of this output bandpass noise is given in Fig.4.2-b). A histogram of output
samples of this noise process is shown in Fig.4.3. This histogram again demonstrates that a bandpass
noise is well modeled as a zero mean Gaussian random process.

Point 1: In bandpass communications the input noise, Nc(t), is a stationary Gaussian random process
with power spectral density given in (4.1). The effect of noise on the performance of a bandpass
communication system can be analyzed if the PDFs of the noise samples of interest can be characterized
as in (4.6).
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78 Noise in Bandpass Communication Systems

4.1 Bandpass Random Processes

A bandpass random process will have the same form as a bandpass signal. Consequently it can be
written as

Nc(t) = NI(t)
√

2 cos(2πfct) − NQ(t)
√

2 sin(2πfct) (4.7)

= NA(t)
√

2 cos(2πfct + NP (t)). (4.8)

NI(t) in (4.7) is normally referred to as the in-phase (I) component of the noise and NQ(t) is nor-
mally referred to as the quadrature (Q) component of the bandpass noise. The amplitude of the
bandpass noise is NA(t) and the phase of the bandpass noise is NP (t). As in the deterministic case the
transformation between the two representations are given by

NA(t) =
√

NI(t)2 + NQ(t)2 NP (t) = tan−1

[
NQ(t)
NI(t)

]
and

NI(t) = NA(t) cos(NP (t)) NQ(t) = NA(t) sin(NP (t)).

A bandpass random process has sample functions which appear to be a sinewave of frequency fc with a
slowly varying amplitude and phase. An example of a bandpass random process is shown in Fig. 4.2-b).
As in the deterministic signal case, a method of characterizing a bandpass random process which is
independent of the carrier frequency is desired. The complex envelope representation provides such a
vehicle.

The complex envelope of a bandpass random process is defined as

Nz(t) = NI(t) + jNQ(t) = NA(t) exp [jNP (t)] . (4.9)

The original bandpass random process can be obtained from the complex envelope by

Nc(t) =
√

2� [Nz(t) exp [j2πfct]] .

Since the complex exponential is a deterministic function, the complex random process Nz(t) contains
all the randomness in Nc(t). In a similar fashion as a bandpass signal, a bandpass random process can
be generated from its I and Q components and a complex baseband random process can be generated
from the bandpass random process. Fig. 4.4 shows these transformations. Fig. 4.5 shows a bandpass
noise and the resulting in-phase and quadrature components that are output from a downconverter
structure shown in Fig. 4.4.

Correlation functions are important in characterizing random processes. Autocorrelation functions
were a focus of Chapter 3. For bandpass processes the crosscorrelation function will be important as
well.

Definition 4.1 Given two real random processes, NI(t) and NQ(t), the crosscorrelation function be-
tween these two random processes is given as

RNINQ
(t1, t2) = E [NI(t1)NQ(t2)] . (4.10)

The crosscorrelation function is a measure of how similar the two random processes behave. In an
analogous manner to the discussion in Chapter 3 a crosscorrelation coefficient can be defined.
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Figure 4.4: The transformations between bandpass noise and the baseband components.

Figure 4.5: A bandpass noise and the resulting in-phase and quadrature noises.
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80 Noise in Bandpass Communication Systems

The correlation function of a bandpass random process, which is derived using (4.7), is given by

RNc(t1, t2) = E [Nc(t1)Nc(t2)]
= 2RNI

(t1, t2) cos(2πfct1) cos(2πfct2) − 2RNINQ
(t1, t2) cos(2πfct1) sin(2πfct2)

−2RNQNI
(t1, t2) sin(2πfct1) cos(2πfct2)

+2RNQ
(t1, t2) sin(2πfct1) sin(2πfct2). (4.11)

Consequently the correlation function of the bandpass noise is a function of both the correlation function
of the two lowpass noise processes and the crosscorrelation between the two lowpass noise processes.

Definition 4.2 The correlation function of the complex envelope of a bandpass random process is

RNz(t1, t2) = E [Nz(t1)N∗
z (t2)] . (4.12)

Using the definition of the complex envelope given in (4.9) produces

RNz(t1, t2) = RNI
(t1, t2) + RNQ

(t1, t2) + j
[
−RNINQ

(t1, t2) + RNQNI
(t1, t2)

]
. (4.13)

The correlation function of the bandpass signal, RNc(t1, t2), is derived from the complex envelope, via

RNc(t1, t2) = 2E(� [Nz(t1) exp [j2πfct1]]� [N∗
z (t2) exp [−j2πfct2]]). (4.14)

This complicated function can be simplified in some practical cases. The case when the bandpass
random process, Nc(t), is a stationary random process is one of them.

4.2 Characteristics of the Complex Envelope

4.2.1 Three Important Results

This section shows that the lowpass noise, NI(t) and NQ(t) derived from a bandpass noise, Nc(t), are
zero mean, jointly Gaussian, and jointly stationary when Nc(t) is zero mean, Gaussian, and stationary.
This will be shown to simplify the description of NI(t) and NQ(t) considerably. Important quantities
in this analysis will be

N1(t) = Nc(t)
√

2 cos(2πfct)
N2(t) = −Nc(t)

√
2 sin(2πfct). (4.15)

Property 4.1 If the bandpass noise, Nc(t), has a zero mean, then NI(t) and NQ(t) both have a zero
mean.

Proof: This property’s validity can be proved by considering how NI(t) (or NQ(t)) is generated from
Nc(t) as shown in Fig. 4.4. The I component of the noise is expressed as

NI(t) = N1(t) ∗ hL(t) =
√

2
∫ ∞

−∞
hL(t − τ)Nc(τ) cos(2πfcτ)dτ

where hL(t) is the impulse response of the lowpass filter. Neither hL(t) nor the cosine term are random,
so the linearity property of the expectation operator can be used to obtain

E(NI(t)) =
√

2
∫ ∞

−∞
hL(t − τ)E(Nc(τ)) cos(2πfcτ)dτ = 0.

The same ideas holds for NQ(t). �

This property is important since the input thermal noise to a communication system is typically zero
mean consequently the I and Q components of the resulting bandpass noise will also be zero mean.

c©1996-2004 - Michael P. Fitz - The University of California Los Angeles



-1.5 -1 -0.5 0 0.5 1 1.5
0

50

100

150

200

250

300

350

400

450

4.2 Characteristics of the Complex Envelope 81

Figure 4.6: A histogram of the samples taken from NI(t) after downconverting a bandpass noise process.

Definition 4.3 Two random processes NI(t) and NQ(t) are jointly Gaussian random processes if any
set of samples taken from the two processes are a set of joint Gaussian random variables.

Property 4.2 If the bandpass noise, Nc(t), is a Gaussian random process then NI(t) and NQ(t) are
jointly Gaussian random processes.

Proof: The detailed proof techniques are beyond the scope of this course but are contained in most
advanced texts concerning random processes (e.g., [DR87]). A sketch of the ideas needed in the proof
is given here. A random process which is a product of a deterministic waveform and a Gaussian ran-
dom process is still a Gaussian random process. Hence N1(t) and N2(t) are jointly Gaussian random
processes. NI(t) and NQ(t) are also jointly Gaussian processes since they are linear functionals of N1(t)
and N2(t) (i.e., NI(t) = N1(t) ∗ hL(t)). �

Again this property implies that the I and Q components of the bandpass noise in most communication
systems will be well modeled as Gaussian random processes. Nc(t) can be sampled at t = k/(2fc) where
k is an integer. Since Nc(t) is a Gaussian random process examining these samples, which take the
form Nc(k/(2fc)) = (−1)kNI(k/(2fc)), show that many samples of the lowpass processes are Gaussian
random variables. Property 4.2 simply implies that all jointly considered samples of NI(t) and NQ(t)
are jointly Gaussian random variables.

Example 4.3: Consider the previous bandpass filtered noise example where fc=6500Hz and the band-
width is 2000Hz. Fig. 4.6 shows a histogram of the samples taken from NI(t) after downconverting a
bandpass noise process. Again is it apparent from this figure that the lowpass noise is well modeled as
a zero mean Gaussian random process.

Property 4.3 If a bandpass signal, Nc(t), is a stationary Gaussian random process, then NI(t) and
NQ(t) are also jointly stationary, jointly Gaussian random processes.

Proof: Define the random process Nz1(t) = N1(t) + jN2(t) = Nc(t)
√

2 exp [−j2πfct]. Since Nc(t)
is a stationary Gaussian random process then RNz1(t1, t2) = 2RNc(τ) exp [−j2πfcτ ] = RNz1(τ) where
τ = t1 − t2. Since Nz(t) = Nz1(t) ∗ hL(t), if Nz1(t) is stationary then the stationarity of the output
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82 Noise in Bandpass Communication Systems

complex envelope is due to Property 3.10. Using (4.13) gives

RNz(τ) = RNI
(t1, t2) + RNQ

(t1, t2) + j
[
−RNINQ

(t1, t2) + RNQNI
(t1, t2)

]
(4.16)

which implies that both the real and imaginary part of RNz(τ) must only be functions of τ so that

RNI
(t1, t2) + RNQ

(t1, t2) = g1(τ) − RNINQ
(t1, t2) + RNQNI

(t1, t2) = g2(τ). (4.17)

Alternately, since Nc(t) has the form given in (4.11) a rearrangement (by using trigonometric iden-
tities) with t2 = t1 − τ gives

RNc(τ) =
[
RNI

(t1, t2) + RNQ
(t1, t2)

]
cos(2πfcτ) +

[
RNI

(t1, t2) − RNQ
(t1, t2)

]
cos(2πfc(2t2 + τ))

+
[
RNINQ

(t1, t2) − RNQNI
(t1, t2)

]
sin(2πfcτ)

−
[
RNINQ

(t1, t2) + RNQNI
(t1, t2)

]
sin(2πfc(2t2 + τ)) (4.18)

Since Nc(t) is Gaussian and stationary this implies that the right hand side of (4.18) is a function only of
the time difference, τ and not the absolute time t2. Consequently the factors multiplying the sinusoidal
terms having arguments containing t2 must be zero. Consequently a second set of constraints is

RNI
(t1, t2) = RNQ

(t1, t2) RNINQ
(t1, t2) = −RNQNI

(t1, t2). (4.19)

The only way for (4.17) and (4.19) to be satisfied is if

RNI
(t1, t2) = RNQ

(t1, t2) = RNI
(τ) = RNQ

(τ) (4.20)
RNINQ

(t1, t2) = −RNQNI
(t1, t2) = RNINQ

(τ) = −RNQNI
(τ) (4.21)

Since all correlation functions and crosscorrelation functions are functions of τ then NI(t) and NQ(t)
are jointly stationary. �

Point 2: If the input noise, Nc(t), is a zero mean, stationary, Gaussian random process then NI(t) and
NQ(t) are zero mean, jointly Gaussian, and jointly stationary.

4.2.2 Important Corollaries

This section discusses several important corollaries to the important results derived in the last section.
The important result from the last section is summarized as follows: if Nc(t) is zero mean, Gaussian
and stationary then NI(t) and NQ(t) are zero mean, jointly Gaussian, and jointly stationary.

Property 4.4

RNI
(τ) = RNQ

(τ) (4.22)

Surprisingly, this property, given in (4.20), implies that both NI(t) and NQ(t) behave in a statistically
identical manner. Consequently the power of the noise in each component is identical, i.e., E

[
N2

I (t)
]

=

E
[
N2

Q(t)
]

= σ2
NI

Property 4.5

RNINQ
(τ) = −RNINQ

(−τ) (4.23)

This property, due to (4.21), implies RNINQ
(τ) is an odd function with respect to τ .

Property 4.6 RNz(τ) = 2RNI
(τ) − j2RNINQ

(τ)
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Proof: This is shown by using (4.22) and (4.23) in (4.13). �

This implies that the real part of RNz(τ) is an even function of τ and the imaginary part of RNz(τ) is
an odd function of τ .

Property 4.7

RNc(τ) = 2RNI
(τ) cos(2πfcτ) + 2RNINQ

(τ) sin(2πfcτ) = � [RNz(τ) exp(j2πfcτ)] (4.24)

Proof: This is shown by using (4.22) and (4.23) in (4.18). �

This property implies there is a simple relationship between the correlation function of the stationary
Gaussian bandpass noise and the correlation function of the complex envelope of the bandpass noise.
This relationship has significant parallels to the relationship between bandpass and the baseband signals
given in Chapter 2.

Property 4.8 var (Nc(t)) = σ2
N = var (NI(t)) + var (NQ(t)) = 2var (NI(t)) = var (Nz(t)) = 2σ2

NI

Proof: This is shown by using (4.22) in (4.24) for τ = 0. �

This property states that the power in the bandpass noise is the same as the power in the complex
envelope. This power in the bandpass noise is also the sum of the powers in the two lowpass noises
which comprise the complex envelope.

Property 4.9 For the canonical problem considered in this chapter, NI(t) and NQ(t) are completely
characterized by the functions RNI

(τ) and RNINQ
(τ).

Proof: Any joint PDF of samples taken from jointly stationary and jointly Gaussian processes are
completely characterized by the first and second order moments. Note first that NI(t) and NQ(t) are
zero mean processes. Consequently the characterization of the process only requires the identification
of the variance, σ2

N = RNI
(0), and the correlation coefficient between samples. The correlation coeffi-

cient between samples from the same process is given as ρNI
(τ) = RNI

(τ)/RNI
(0) while the correlation

coefficient between samples taken from NI(t) and NQ(t) is ρNINQ
(τ) = RNINQ

(τ)/RNI
(0). �

Example 4.4: If one sample from the in-phase noise is considered then

fNI
(ni) =

1√
2πσ2

NI

exp

(
− n2

i

2σ2
NI

)
(4.25)

where σ2
NI

= RNI
(0).

Example 4.5: If two samples from the in-phase noise are considered then

fNI(t)NI(t−τ)(n1, n2) =
1

2πσ2
NI

√
(1 − ρ2

NI
(τ))

exp

[
−

(
n2

1 − 2ρNI
(τ)n1n2 + n2

2

)
2σ2

NI
(1 − ρ2

NI
(τ))

]

where ρNI
(τ) = RNI

(τ)/RNI
(0).
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Example 4.6: If one sample each from the in-phase noise and the quadrature noise are considered then

fNI(t)NQ(t−τ)(n1, n2) =
1

2πσ2
NI

√
(1 − ρ2

NINQ
(τ))

exp

[
−

(
n2

1 − 2ρNINQ
(τ)n1n2 + n2

2

)
2σ2

NI
(1 − ρ2

NINQ
(τ))

]

where ρNINQ
(τ) = RNINQ

(τ)/
√

RNI
(0)RNQ

(0) = RNINQ
(τ)/RNI

(0).

Property 4.10 The random variables NI(ts) and NQ(ts) are independent random variables for any
value of ts.

Proof: From (4.23) we know RNINQ
(τ) is an odd function. Consequently RNINQ

(0) = 0. Since NI(t)
and NQ(t) are jointly Gaussian and orthogonal random variables then they are also independent. �

Any joint PDF of samples of NI(ts) and NQ(ts) taken at the same time have the simple PDF

fNI(t)NQ(t)(n1, n2) =
1

2πσ2
NI

exp

[
−

(
n2

1 + n2
2

)
2σ2

NI

]
. (4.26)

This simple PDF will prove useful in our performance analysis of bandpass communication systems.

Point 3: Since NI(t) and NQ(t) are zero mean, jointly Gaussian, and jointly stationary then a complete
statistical description of NI(t) and NQ(t) is available from RNI

(τ) and RNINQ
(τ).

4.3 Spectral Characteristics

At this point we need a methodology to translate the known PSD of the bandpass noise (4.1) into
the required correlation function, RNI

(τ), and the required crosscorrelation function, RNINQ
(τ). To

accomplish this goal we need a definition.

Definition 4.4 For two random processes NI(t) and NQ(t) whose cross correlation function is given
as RNINQ

(τ) the cross spectral density is

SNINQ
(f) = F

{
RNINQ

(τ)
}

. (4.27)

Property 4.11 The PSD of Nz(t) is given by

SNz(f) = F {RNz(τ)} = 2SNI
(f) − j2SNINQ

(f) (4.28)

where SNI
(f) and SNINQ

(f) are the power spectrum of NI(t) and the cross power spectrum of NI(t)
and NQ(t), respectively.

Proof: This is seen taking the Fourier transform of RNz(τ) as given in Property 4.6. �

Property 4.12 SNINQ
(f) is purely an imaginary function and an odd function of f .

Proof: This is true since RNINQ
(τ) is an odd real valued function (see Property ??). A power spectral

density must be real and positive so by examining (4.28) it is clear SNINQ
(f) must be imaginary for

SNz(f) to be a valid power spectral density. �

Property 4.13 The even part of SNz(f) is due to SNI
(f) and the odd part is due to SNINQ

(f).
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Proof: A spectral density of a real random process is always even. SNI
(f) is a spectral density of a

real random process. By Property 4.12, SNINQ
(f) is a purely imaginary and odd function of frequency.

�

Property 4.14

SNI
(f) =

SNz(f) + SNz(−f)
4

SNINQ
(f) =

SNz(−f) − SNz(f)
j4

.

Proof: This is a trivial result of Property 4.13 �

Consequently Property 4.14 provides a simple method to compute SNI
(f) and SNINQ

(f) once SNz(f)
is known. SNz(f) can be computed from SNc(f) given in (4.1) in a simple way as well.

Property 4.15

SNc(f) =
1
2
SNz(f − fc) +

1
2
SNz(−f − fc).

Proof: Examining (4.24) and the Frequency Translation theorem of the Fourier transform, the spectral
density of the bandpass noise, Nz(t), is expressed as

SNc(f) = 2SNI
(f) ∗

[
1
2
δ(f − fc) +

1
2
δ(f + fc)

]
+ 2SNINQ

(f) ∗
[

1
2j

δ(f − fc) −
1
2j

δ(f + fc)
]

where ∗ again denotes convolution. This equation can be rearranged to give

SNc(f) =
[
SNI

(f − fc) − jSNINQ
(f − fc)

]
+

[
SNI

(f + fc) + jSNINQ
(f + fc)

]
. (4.29)

Noting that due to Property 4.12

SNz(−f) = 2SNI
(f) + j2SNINQ

(f), (4.30)

(4.29) reduces to the result in Property 4.15. �

This is a very fundamental result. Property 4.15 states that the power spectrum of a bandpass random
process is simply derived from the power spectrum of the complex envelope and vice versa. For positive
values of f , SNc(f) is obtained by translating SNz(f) to fc and scaling the amplitude by 0.5 and for
negative values of f , SNc(f) is obtained by flipping SNz(f) around the origin, translating the result to
−fc, and scaling the amplitude by 0.5. Likewise SNz(f) is obtained from SNc(f) by taking the positive
frequency PSD which is centered at fc and translating it to baseband (f = 0) and multiplying it by
2. Property 4.15 also demonstrates in another manner that the average power of the bandpass and
baseband noises are identical since the area under the PSD is the same (this was previously shown in
Property 4.8).
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Figure 4.7: The measured PSD of the complex envelope of a bandpass process resulting from bandpass
filtering a white noise.

Example 4.7: Example 4.1 showed a receiver system with an ideal bandpass filter that had a bandpass
noise PSD of

SNc(f) =
{

A2N0
2 ||f | − fc| ≤ BT

2
0 elsewhere

(4.31)

For this case

SNz(f) =
{

A2N0 |f | ≤ BT
2

0 elsewhere
(4.32)

and

SNI
(f) =

{
A2N0

2 |f | ≤ BT
2

0 elsewhere
SNINQ

(f) = 0 (4.33)

Again considering the previous example of bandpass filtered white noise with fc=6500Hz and a band-
width of 2000Hz a resulting measured power spectral density of the complex envelope is given in Fig. 4.7.
This measured PSD demonstrates the validity of the analytical results given in (4.33).

Point 4: SNI
(f) and SNINQ

(f) can be computed in a straightforward fashion from SNc(f) given in
(4.1). An inverse Fourier transform will produce the functions RNI

(τ) and RNINQ
(τ). From RNI

(τ)
and RNINQ

(τ) a complete statistical description of the complex envelope noise process can be obtained.

4.4 The Solution of the Canonical Bandpass Problem

The tools and results are now in place to completely characterize the complex envelope of the bandpass
noise typically encountered in a bandpass communication system. First, the characterization of one
sample, NI(ts), of the random process NI(t) is considered (or equivalently NQ(ts)). This case requires
a six step process summarized as

1. Identify N0 and HR(f).
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2. Compute SNc(f) = N0
2 |HR(f)|2 .

3. Compute SNz(f).

4. Compute

SNI
(f) =

SNz(f) + SNz(−f)
4

.

5. σ2
NI

= RNI
(0) =

∫ ∞
−∞ SNI

(f)df.

6. fNI(ts)(n1) = 1√
2πσ2

NI

exp
(
− n2

1

2σ2
NI

)
= fNQ(ts)(n1).

The only difference between this process and the process used for lowpass processes as highlighted in
Section 3.6 is step 3–4. These two steps simply are the transformation of the bandpass PSD into the
PSD for one channel of the lowpass complex envelope noise.
Example 4.8: The previous examples showed a receiver system with an ideal bandpass filter had after
the completion of steps 1–4

SNI
(f) =

{
A2N0

2 |f | ≤ BT
2

0 elsewhere.
(4.34)

Consequently σ2
NI

= RNI
(0) = A2N0BT

2 .

Second, the characterization of two samples from one of the channels of the complex envelope, NI(t1)
and NI(t2), is considered. This case requires a seven step process summarized as

1. Identify N0 and HR(f).

2. Compute SNc(f) = N0
2 |HR(f)|2 .

3. Compute SNz(f).

4. Compute

SNI
(f) =

SNz(f) + SNz(−f)
4

.

5. RNI
(τ) = F−1 {SNI

(f)} .

6. σ2
NI

= RNI
(0) and ρNI

(τ) = RNI
(τ)/σ2

NI
.

7. fNI(t1)NI(t2)(n1, n2) = 1

2πσ2
NI

√
(1−ρ2

NI
(τ))

exp
[

−1
2σ2

N (1−ρ2
NI

(τ))

(
n2

1 − 2ρNI
(τ)n1n2 + n2

2

)]
.

The only difference between this process and the process used for lowpass processes as highlighted in
Section 3.6 is step 3–4. These two steps again are the transformation of the bandpass PSD into the
PSD for one channel of the lowpass complex envelope noise.

Example 4.9: The previous examples showed a receiver system with an ideal bandpass filter had after
the completion of steps 1–4

SNI
(f) =

{
A2N0

2 |f | ≤ BT
2

0 elsewhere.
(4.35)

Consequently Step 5 gives σ2
NI

= RNI
(0) = A2N0BT

2 and RNI
(τ) = A2N0BT

2 sinc (BT τ). This implies that
ρNI

(τ) = sinc (BT τ).
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Finally, the characterization of two samples one from each of the channels of the complex envelope,
NI(t1) and NQ(t2), is considered. This case requires a seven step process summarized as

1. Identify N0 and HR(f).

2. Compute SNc(f) = N0
2 |HR(f)|2 .

3. Compute SNz(f).

4. Compute

SNI
(f) =

SNz(f) + SNz(−f)
4

SNINQ
(f) =

SNz(−f) − SNz(f)
j4

.

5. RNINQ
(τ) = F−1

{
SNINQ

(f)
}

.

6. σ2
NI

= RNI
(0) and ρNINQ

(τ) = RNINQ
(τ)/σ2

NI
.

7. fNI(t1)NQ(t2)(n1, n2) = 1

2πσ2
NI

√
(1−ρ2

NINQ
(τ))

exp
[

−1
2σ2

NI
(1−ρ2

NINQ
(τ))

(
n2

1 − 2ρNINQ
(τ)n1n2 + n2

2

)]
.

The only difference between this process and the process for two samples from the same channel is the
computation of the cross correlation function, RNINQ

(τ).

Example 4.10: The previous examples showed a receiver system with an ideal bandpass filter had after
the completion of steps 1–4

SNI
(f) =

{
A2N0

2 |f | ≤ BT
2

0 elsewhere
SNINQ

(f) = 0. (4.36)

Consequently Step 5 gives σ2
NI

= RNI
(0) = A2N0BT

2 and RNINQ
(τ) = 0. This implies that NI(t1) and

NQ(t2) are independent random variables irregardless of t1 and t2.

Similarly, three or more samples from either channel of the complex envelope could be characterized in
a very similar fashion. The tools developed in this chapter give a student the ability to analyze many
of the important properties of noise that are of interest in a bandpass communication system design.

4.5 Homework Problems

Problem 4.1. What conditions on the bandpass filter characteristic of the receiver, HR(f), must be
satisfied such that NI(t1) and NQ(t2) are independent random variables for all t1 and t2 when the input
is AWGN?
Problem 4.2. This problem considers noise that might be seen in a vestigial sideband demodulator.
Consider a bandpass Gaussian noise at the input to a demodulator with a spectrum given as

SNc(f) =
{

2 fc − 1000 ≤ |f | ≤ fc + 3000
0 elsewhere.

(4.37)

Assume operation is in a 1Ω system.

a) What bandpass filter, HR(f), would produce this spectrum from a white noise input with a two
sided noise spectral density of N0/2=0.5?

b) What is the spectral density of NI(t)?
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c) What is E
[
N2

I (t)
]
?

d) Give the joint PDF of NI(t0) and NQ(t0) in a 1Ω system for a fixed t0.

e) Compute SNINQ
(f).

Problem 4.3. This problem considers noise which might be seen in a single sideband demodulator.
Consider a bandpass Gaussian noise at the input to a demodulator with a spectrum given as

SNc(f) =
{

3.92 × 10−3 fc ≤ |f | ≤ fc + 3000
0 elsewhere.

(4.38)

Assume operation is in a 1Ω system.

a) What is the spectral density of NI(t)?

b) What is E
[
N2

I (t)
]
?

c) Give the joint PDF of NI(t0) and NQ(t0).

d) Give the joint PDF of NI(t1) and NQ(t1 − τ).

e) Plot the PDF in d) for τ = 0.0001 and τ = 0.001.

Problem 4.4. Consider a bandpass Gaussian noise at the input to a demodulator with a spectrum
given as

SNc(f) =
{

0.001 fc − 2000 ≤ |f | ≤ fc + 2000
0 elsewhere.

(4.39)

Assume operation is in a 1Ω system.

a) Find the joint density function of NI(t0) and NQ(t0), fNI(t0)NQ(t0)(ni, nq).

b) Plot fNI(t0)NQ(t0)(ni, nq).

c) Consider the complex random variable Ñz(t) = ÑI(t) + jÑQ(t) = Nz(t) exp (−jφp) and find an
inverse mapping such that

ÑI(t) = g1 (NI(t0), NQ(t0)) ÑQ(t) = g2 (NI(t0), NQ(t0)) . (4.40)

d) Using the results of Section ?? show that fÑI(t)ÑQ(t)(ni, nq) = fNI(t)NQ(t)(ni, nq). In other words
the noise distribution is unchanged by a phase rotation. This result is very important for the
study of coherent receiver performance in the presence of noise detailed in the sequel.

Problem 4.5. Show that |SNINQ
(f)| ≤ SNI

(f). If |SNINQ
(f0)| = SNI

(f0) for some f0 then this places
a constraint on either HR(fc + f0) or HR(fc − f0). What is this constraint?
Problem 4.6. For a bandpass noise with complex envelope Nz(t) = NI(t)+jNQ(t) that has a baseband
autocorrelation function of RNI

(τ) and a baseband crosscorrelation function of RNINQ
(τ)

a) Find E
[
|Nz(t)|2

]
.

b) Find E
[
N2

z (t)
]
.

c) Find E [Nz(t)N∗
z (t − τ)].
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Figure 4.8: Noise and the receiver frontend processor.

d) Find E [Nz(t)Nz(t − τ)].

Problem 4.7. Given the block diagram in Fig. 4.8 where W (t) is an AWGN with two-sided spectral
density N0/2 and HR(f) is a bandpass filter with a passband including fc, find the conditions on the
filter HR(f) such that

a) NI(t) and NQ(t) have the same correlation function.

b) RNI
(τ) = RNQ

(τ) = sin(πBτ)
πBτ and RNINQ

(τ) = 0.

Problem 4.8. Real valued additive white Gaussian noise, W (t) with a one sided spectral density
N0 = 0.01 is input into a bandpass receiver which has a block diagram shown in Fig. 4.8. The noise
power spectrum output from the down converter is measured as

SNz(f) =
{

0.25 |f | ≤ 100
0 elsewhere.

(4.41)

a) Find E
[
|Nz(t)|2

]
.

b) Find SNI
(f) and SNINQ

(f).

c) What is |HR(f)|?

d) Give the probability density function of one sample of NI(t), i.e., fNI(t)(n).

e) Compute P (NI(t) > 4).

Problem 4.9. Real valued additive white Gaussian noise, W (t) with a two sided spectral density N0/2
is input into a demodulator for signal sideband amplitude modulation which has a block diagram shown
in Fig. 4.10. The time invariant filter has a transfer function of

HR(f) =
{

2 fc ≤ |f | ≤ fc + W
0 elsewhere

(4.42)

a) Find the power spectral density of Nc(t), SNc(f)?

b) Find SNI
(f)?

c) Calculate RNI
(τ).

d) Detail out the form for the probability density function (PDF) of one sample from NI(t), fNI(ts)(n).
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Figure 4.9: A bandpass noise model.

e) Find SNINQ
(f).

f) Find the joint PDF of samples taken from NI(t) and NQ(t) taken at the same time, fNI(ts)NQ(ts)(ni, nq).

Problem 4.10. Consider the model given in Fig. 4.9. H1(f) and H2(f) are two potentially different
filters. This problem investigates how the characteristics of the bandpass noise change if the filter in
the I channel is different from the filter in the Q channel.

a) Find the power spectral density of ÑI(t), SÑI
(f), in terms of SNI

(f).

b) Find the cross spectrum SÑIÑQ
(f) in terms of SNINQ

(f).

c) Will ÑI(t) always be independent of ÑQ(t) as when the filters are the same? If not then give an
example?

d) Give conditions on H1(f) and H2(f) such that SÑIÑQ
(f) would be imaginary and odd as is the

case for SNINQ
(f). If these conditions were satisfied would ÑI(t) always be independent of ÑQ(t)?

Problem 4.11. Show that if Ñz(t) = Nz(t) exp [jφp] then

a) RÑI
(τ) = RÑQ

(τ) = RNI
(τ).

b) RÑIÑQ
(τ) = RNINQ

(τ)

Problem 4.12. Real valued additive white Gaussian noise, W (t) with a two sided spectral density
N0/2 is input into a demodulator which has a block diagram shown in Fig. 4.10. The time invariant
filter has a transfer function of

HR(f) =
{

2 fc − 100 ≤ |f | ≤ fc + 100
0 elsewhere

(4.43)

a) Find the power spectral density of Nc(t), SNc(f).

b) E
[
N2

c (t)
]

= 2, what is N0?

c) Find the power spectral density of NI(t), SNI
(f).

d) Find E
[
N2

I (t)
]

for the value of N0 obtained in b).
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Figure 4.10: Demodulator block diagram.

e) Assume that HL(f) is an ideal lowpass filter with HL(0) = 1. Choose the bandwidth of the filter
such that E

[
N2

L(t)
]

= 1
2E

[
N2

I (t)
]
.

Problem 4.13. An interesting relationship exists between the power spectral density of a phase noise
and the distribution of the instanteous frequency deviation. This problem explores this relationship,
which has proven useful in practice, using the techniques introduced in this chapter and in the devel-
opment of angle modulation. Assume a random process is characterized as

Nz(t) = Ac exp [jNp(t)] (4.44)

where Np(t) is a phase noise generated in, for example, a frequency synthesizer.

a) Show that

RNz(t, τ) = E [Nz(t)N∗
z (t − τ)] ≈ A2

cE [exp (j2πfd(t)τ)] (4.45)

where fd(t) = 1
2π

d
dtNp(t).

b) If fd(t) is a stationary random process, show that

RNz(t, τ) ≈ RNz(τ) ≈ A2
cΦfd

(τ) (4.46)

where Φfd
(t) is the characteristic function1 of one sample of the random process fd(t).

c) Finally show that

SNz(f) ≈ A2
cffd

(f) (4.47)

where ffd
(f) is the PDF of the random variable fd(t).

d) Make an engineering assessment of the validity and the shortcomings of the approximations in
this problem.

1The characteristic function of a random variable was introduced in Problem ??.24 in this text but is a common tool
in the analysis of noise [LG89, Hel91].
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4.6 Example Solutions

Problem 4.2.

a) We know N0 = 1 and

SNc(f) =
N0

2
|Hc(f)|2, (4.48)

therefore,

|HR(f)|2 =
{

4 fc − 1000 ≤ |f | ≤ fc + 3000
0 elsewhere

(4.49)

Consequently

HR(f) =
{

2ejθ(f) fc − 1000 ≤ |f | ≤ fc + 3000
0 elsewhere

(4.50)

where θ(f) is an arbitrary phase for the filter transfer function.

b) We know

SNc(f) =
1
2
SNz(f − fc) +

1
2
SNz(−f − fc) (4.51)

Therefore

SNz(f) =
{

4 −1000 ≤ f ≤ 3000
0 elsewhere

(4.52)

Solving for SNI
(f) gives

SNI
(f) =

SNz(f) + SNz(−f)
4

(4.53)

Therefore

SNI
(f) =


1 −3000 ≤ f ≤ −1000
2 −1000 ≤ f ≤ 1000
1 1000 ≤ f ≤ 3000
0 elsewhere

(4.54)

c) E[N2
I (t)] =

∫ ∞
−∞ SNI

(f)df = 8000

d) Using Prop 4.10 and 4.24

fNI(t)NQ(t)(n1, n2) =
1

16000 π
· exp

[
−n2

1 + n2
2

16000

]
(4.55)

e) Solving for SNINQ
(f) gives

SNINQ
(f) =

SNz(−f) − SNz(f)
j4

(4.56)

Therefore,

SNINQ
(f) =


−j −3000 ≤ f ≤ −1000
j 1000 ≤ f ≤ 3000
0 elsewhere

(4.57)
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4.7 Mini-Projects

Goal: To give exposure

1. to a small scope engineering design problem in communications

2. to the dynamics of working with a team

3. to the importance of engineering communication skills (in this case oral presentations).

Presentation: The forum will be similar to a design review at a company (only much shorter) The
presentation will be of 5 minutes in length with an overview of the given problem and solution. The
presentation will be followed by questions from the audience (your classmates and the professor). All
team members should be prepared to give the presentation.
Project 4.1. A colleague at your company, Wireless.com, is working on characterizing the noise in the
frontend of an intermediate frequency (IF) receiver that the company is trying to make it’s first billion
on. The design carrier frequency, fc, was not documented well by the designer (he left for another
startup!). The frequency is known to lie somewhere between fc=2.5kHz and fc=8kHz. Your colleague
is getting some very anomalous results in his testing and has come to you since he knows you were
taught communications theory by a world renowned professor (;-)). The bandpass noise output from
the receiver is processed during testing in a programmable I/Q down converter with a carrier frequency
f̃c as shown in Fig. 4.11. The lowpass filters in the I/Q downconverter is programmed to have a cutoff
frequency of f̃c. The anomalous results your colleague sees are

1. if he chooses f̃c=5000Hz then the output noise, NI(t) and NQ(t), has a bandwidth of 5000Hz,

2. if f̃c=4000Hz then the output noise, NI(t) and NQ(t), has a bandwidth of 4000Hz.

Your colleague captured and stored a sample function of the noise and it is available for downloading
at
http://fitzmac.ee.ucla.edu/~fitz/EE132A.htm
as noizin.mat. Examining this file will be useful to complete this project.

a) Explain why the output noise bandwidth changes as a function f̃c.

b) Assuming that DSB-AM is the design modulation for the receiver, try and identify the probable
design carrier frequency.
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Figure 4.11: Block diagram of an I/Q downconverter with noise.
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Chapter 5

Bandpass Gaussian Random Processes

In studying digital communications several additional results for Gaussian random process will be useful.
This short chapter quickly reviews this material.

5.1 Preliminaries

The most common situation encountered in communication system design and analysis is for the cor-
rupting noise to be a Gaussian random process. Analytically this is very fortunate since a simple closed
form expression for the PDF of L samples from a Gaussian random process is

f �N (�n) =
1√

(2π)L det(CN )
exp

[
−1

2
(�n − �mN )TC−1

N (�n − �mN )
]

(5.1)

where �N is an L × 1 vector defined as

�N = [N(t1), ......, N(tn)]T ,

�mN is the mean vector of �N , and CN is the L × L covariance matrix of the vector �N . The Gaussian
assumption is rather powerful. It accurately models most communication systems and the joint PDF,
which is a complete probabilistic description of the random process, is given in terms of only the first
and second moments.

Definition 5.1 A cross-covariance matrix between two real random vectors is

CXY = E[( �X − �mx)(�Y − �my)T ] (5.2)

Property 5.1 If �X and �Y are both Gaussian random vectors then �X conditioned on �Y = �y is a
Gaussian random vector with

E( �X|�Y = �y) = �mx + CXY C−1
Y (�y − �my)

and

CX|Y = E[( �X − E( �X|�Y = �y))( �X − E( �X|�Y = �y))T ] = CX − CXY C−1
Y CT

XY .

Proof: Setting �X to be a vector of size L and

�Z =

[
�X
�Y

]
�mZ =

[
�mX

�mY

]
CZ =

[
CX CXY

CT
XY CY

]
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and using the definition of a conditional density function gives

f �X|�Y (�x|�y) =
f �X�Y (�x, �y)

f�Y (�y)
=

f�Z(�z)
f�Y (�y)

=
1

(2π)L/2

det[CY ]
det[CZ ]

exp
[
−1

2 (�z − �mZ)T C−1
Z (�z − �mZ)

]
exp

[
−1

2 (�y − �mY )T C−1
Y (�y − �mY )

] . (5.3)

Eqn. (5.3) can be simplified using the following two well known linear algebra identities

1.

det
[

A B
C D

]
= det[A − BD−1C]det[D] (5.4)

2. [
A B
C D

]−1

=
[

A−1 0
0 0

]
+

[
−A−1B

I

]
[D − CA−1B]−1

[
−CA−1 I

]
=

[
0 0
0 D−1

]
+

[
I

−D−1C

]
[A − BD−1C]−1

[
I −BD−1

]
(5.5)

where A,B,C, and D are arbitrary matrices. Using (5.4) the ratio of the determinants in (5.3) is given
as

det[CZ ]
det[CY ]

= det[CX − CXY C−1
Y CY X ] = det[CX|Y ]. (5.6)

Using (5.5) to reformulate CZ in (5.3) gives

exp
[
−1

2
[�z − �mZ ]TC−1

Z [�z − �mZ ]
]

= exp
[
−1

2
[�y − �mY ]TC−1

Y [�y − �mY ]
]

exp
[
−1

2
FTG−1F

]
(5.7)

where

F = �x − �mX − CXY C−1
Y [�y − �mY ] = �x − E[ �X|�Y = �y]

and

G = CX − CXY CY CT
XY = CX|Y

Using (5.6) and (5.7) in (5.3) and cancelling the common terms gives the desired result. �

Property 5.2 The characteristic function (CHF) of a Gaussian vector has the form of

Φ �N (�t) = E
[
exp

(
j
(
�t
)T �N

)]
= exp

(
j
(
�t
)T

�mN − 1
2

(
�t
)T

CN�t

)
. (5.8)

The Gaussian assumption is rather powerful. It accurately models the input to most communication
systems and the joint PDF (which is a complete probabilistic description of the random process) is given
in terms of only the first and second moments. The CHF of a Gaussian random vector is also a simple
function of only the the first two moments. Consequently the random variables resulting from many
types of signal processing of Gaussian processes can be characterized.
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5.2 Amplitude and Phase of Noise

The most common form of noise in a communication system is zero mean, stationary, bandpass Gaussian
noise. Recall from Chapter 4 that the joint density of NI(t) and NQ(t) at any time instant is given by

fNI(t)NQ(t)(nI , nQ) =
1

2πσ2
N

exp

(
−

n2
I + n2

Q

2σ2
N

)
. (5.9)

This is a very simple closed form for the PDF of the real and imaginary components of the complex
envelope (NI(t) and NQ(t)) and it will allow us to generate many interesting results.

Often in the course of analyzing communication systems, representing a narrowband noise in terms
of the envelope and phase of the complex envelope is more convenient. The PDF of the amplitude and
phase can be derived by a simple transformation of random variables

NI(t) = NA(t) cos(NP (t)) NQ(t) = NA(t) sin(NP (t)) (5.10)

NA(t) =
√

NI(t)2 + NQ(t)2 NP (t) = tan− 1 (NQ(t), NI(t)) (5.11)

with |J | = NA(t) to produce

fNA(t),NP (t)(na, np) =


na

2πσ2
N

exp
(
− n2

a

2σ2
N

)
na ≥ 0,−π ≤ np ≤ π

0 elsewhere.
(5.12)

The marginal densities of the amplitude and phase can be obtained by integrating over this joint density.
The amplitude PDF is given by

fNA(t)(na) =


na

σ2
N

exp
(
− n2

a

2σ2
N

)
na ≥ 0

0 elsewhere.
(5.13)

This is known as the Rayleigh PDF. The PDF of the phase is also easily obtained and, as one would
expect, it is uniform, i.e.,

fNP (t)(np) =
1
2π

− π ≤ θ(t) ≤ π.

Since fNA(t),NP (t)(na, np) = fNP (t)(np)fNA(t)(na) the envelope and phase of bandpass Gaussian noise are
independent random variables at any time instant.

5.3 The Amplitude of Signal Plus Noise

If a complex baseband signal has the form Yz(t) = xz(t) + Nz(t) with Nz(t) as above, then the PDF of
Yz(t) is given by

fYI(t),YQ(t)(yi, yq) =
1

2πσ2
N

exp
(
−(yi − xI(t))2 + (yq − xQ(t))2

2σ2
N

)
using the same transformation as above, the joint PDF of the envelope and phase can be derived

fYA(t),YP (t)(ya, yp) =


ya

2πσ2
N

exp
(
−y2

a + xA(t)2 − 2yaxA(t) cos(yp − xP (t))
2σ2

N

)
ya ≥ 0, −π ≤ yp ≤ π

0 elsewhere.
(5.14)
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Note that the PDF of a baseband signal plus baseband noise cannot be expressed in the form

fYA(t),YP (t)(ya, yp) = fYA(t)(ya)fYP (t)(yp). (5.15)

This fact implies that the envelope and phase of a signal plus Gaussian noise at any time instant are
dependent random variables. Again the individual marginal densities can be obtained by integrating
over this joint density.

In communications an important PDF is that of the envelope or the amplitude of the complex
envelope. The marginal density of the envelope or the amplitude of the complex envelope of a signal in
bandpass Gaussian noise is given by

fYA(t)(ya) =
∫ π

−π
fYA(t),YP (t)(ya, yp)dyp (5.16)

which is simplified to

fYA(t)(ya) =


ya

σ2
N

exp
(
−y2

a + xA(t)2

2σ2
N

) [
1
2π

∫ π

−π
exp

[
yaxA(t) cos(yp − xP (t))

σ2
N

]
dyp

]
ya ≥ 0

0 elsewhere

=


ya

σ2
N

exp
(
−y2

a + xA(t)2

2σ2
N

)
I0

(
yaxA(t)

σ2
N

)
ya ≥ 0

0 elsewhere.
(5.17)

where I0(x) is the modified Bessel function of order zero [Ae72]. The modified Bessel function of order
zero is a common transcendental function appearing in the analysis of communication systems. It is
defined as

I0(x) =
1
2π

∫ π

−π
exp(x cos θ)dθ.

The modified Bessel function of order zero is evaluated by a table look-up [Ae72], or, more commonly,
numerical techniques on a computer ([PFTV86] or Matlab). The PDF given in (5.17) is known as the
Ricean distribution (or Nakagami-Rice distribution) [Ric45, Ric48, Nak60]. Fig. 5.1 is a plot of the
Rayleigh and Ricean PDF for various values of SNR1 with the variance of the noise normalized to unity.

The complimentary distribution function of a Ricean PDF arises in many communications and radar
problems. Marcum’s Q-function is a transcendental function used to characterize this tail probability
and is defined as

Q(a, b) =
∫ ∞

b
x exp

[
−a2 + x2

2

]
I0(ax)dx (5.18)

Marcum’s Q-function has been included in some toolboxes of Matlab and well studied numerical tech-
niques are available in the literature [Shn89].

Examining Fig. 5.1 one can see that the Ricean PDF has the following characteristics:

1. When xA(t) = 0 the Ricean PDF becomes the Rayleigh PDF. Hence the Rayleigh PDF is a special
case of the Ricean PDF.

2. When the SNR becomes very large the Ricean PDF becomes approximately Gaussian. The
intuitive reason is seen by examining the transformation

YA(t) =
√

Y 2
I (t) + Y 2

Q(t)

1SNR = xA(t)2

2σ2
N
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Figure 5.1: The normalized Ricean PDF for various SNRs.

and noting that

Yz(t) = exp [jxP (t)] (xA(t) + Nz(t) exp [−jxP (t)])

= exp [jxP (t)]
(
xA(t) + Ñz(t)

)
. (5.19)

The form for YA(t) can be simplified to

YA(t) =
√

(xA(t) + ÑI(t))2 + Ñ2
Q(t).

At high SNR the quadrature noise, ÑQ(t), will be negligible compared to xA(t) and hence

YA(t) ≈ xA(t) + ÑI(t). (5.20)

Equation (5.20) implies at high SNR that only one component of the bandpass noise affects the
envelope of a signal plus bandpass noise.

5.4 The Phase of Signal Plus Noise

Again if a complex baseband signal has the form Yz(t) = xz(t) + Nz(t) with Nz(t) as above, then the
PDF of Yz(t) is given by

fYI(t),YQ(t)(yi, yq) =
1

2πσ2
N

exp
(
−(yi − xI(t))2 + (yq − xQ(t))2

2σ2
N

)
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using the same transformation as above, the joint PDF of the envelope and phase can be derived

fYA(t),YP (t)(ya, yp) =


ya

2πσ2
N

exp
(
−y2

a + xA(t)2 − 2yaxA(t) cos(yp − xP (t))
2σ2

N

)
ya ≥ 0, −π ≤ yp ≤ π

0 elsewhere.
(5.21)

The marginal density of the phase of a signal in bandpass noise is given by

fYP (t)(yp) =
∫ ∞

0
fYA(t),YP (t)(ya, yp)dya. (5.22)

This can be evaluated by completion of the square, i.e.,

fYP (t)(yp) =


1

2πσ2
N

exp
(
−xA(t)2 sin2(yp − xP (t))

2σ2
N

) ∫ ∞

0
ya exp

[
−(ya − xA(t) cos(yp − xP (t)))2

2σ2
N

]
dya

−π < yp ≤ π
0 elsewhere

(5.23)

Making the change of variables

u =
ya − xA(t) cos(yp − xP (t))

σN
a = −xA(t) cos(yp − xP (t))

σN

in the integral in (5.23) produces

fYP (t)(yp) =
1
2π

exp
(
−x2

A(t) sin2(yp − xP (t))
2σ2

N

) ∫ ∞

a
u exp

(
−u2

2

)
du (5.24)

+
xA(t) cos(yp − xP (t))

2πσN
exp

(
−x2

A(t) sin2(yp − xP (t))
2σ2

N

) ∫ ∞

a
exp

(
−u2

2

)
du.

Both integrals are well known so gain making a final change of variables

P =
x2

A(t)
2σ2

N

= SNR

gives the final form of

fYP (t)(yp) =


exp[−P ]

2π
+

√
P

4π
cos(yp − xP (t)) exp(−P sin2(yp − xP (t)))

[
1 + erf

(√
P cos(yp − xP (t))

)]
−π ≤ yp ≤ π

0 elsewhere
(5.25)

Fig. 5.2 is a plot of the PDF of a sample of the phase error, EP (t), (EP (t) = YP (t)− xP (t)) for various
values of SNR. Examining Fig. 5.2 one can see that this PDF has the following characteristics:

1. When xA(t) = 0 the PDF becomes the uniform PDF.

2. When the SNR becomes very large the PDF becomes approximately Gaussian. Recall again that

Yz(t) = exp [jxP (t)] (xA(t) + Nz(t) exp [−jxP (t)])

= exp [jxP (t)]
(
xA(t) + Ñz(t)

)
. (5.26)
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Figure 5.2: The phase error PDF of a signal in bandpass Gaussian noise.

The intuitive reason for the convergence to a Gaussian is seen by examining the transformation

EP (t) = tan−1

(
ÑQ(t)

xA(t) + ÑI(t)

)

At high SNR the in-phase noise, ÑI(t), will be negligible compared to xA(t) and hence

EP (t) ∼= tan−1

(
ÑQ(t)
Z(t)

)
∼= ÑQ(t)

Z(t)
(5.27)

Equation (5.27) implies that at high SNR the phase error approximately becomes the quadrature
noise scaled by the signal amplitude. Consequently at high SNR the phase of a signal in bandpass
noise is approximately Gaussian with a variance of

E
[
E2

P (t)
]2 =

1
2P

Fig. 5.3 is a plot of the rms phase error obtained from (5.25) versus SNR that demonstrates this
point.

It is interesting to note that at high SNR the bandpass noise and the resulting effects become separated
into in-phase with the signal (amplitude) and in-quadrature with the signal (phase). [DR87] is a good
source for a development of similar topics as presented in the last three sections. [Mid60] provides many
generalizations to the simple results the last three sections.
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104 Bandpass Gaussian Random Processes

Figure 5.3: The RMS phase error of a signal in bandpass noise.
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5.5 Complex Gaussian Random Processes

Complex Gaussian processes in communication system analysis result from examining the complex
baseband representation of a bandpass random process. Good references for complex Gaussian random
processes are [Mil64, Mil74].

Definition 5.2 A complex process, Nz(t) = NI(t) + jNQ(t), is a complex random process if

1. cov (Nz(t), Nz ∗ (s)) = RNz(t, s)

2. cov (Nz(t), Nz(s)) = 0.

This definition requires that NI(t) and NQ(t) have the same statistical description and that the cross
correlation function is an “odd” function. This holds for the complex envelope of a process produced
by bandpass filtering an AWGN.

Definition 5.3 A complex process is a complex Gaussian process if NI(t) and NQ(t) are jointly Gaus-
sian.

5.5.1 Complex Gaussian Distribution

The density function of a complex Gaussian random vector (samples of a complex Gaussian process)
has the form

f �Nz
(n1, . . . , nN ) =

1
πN detCNz

exp
(
− (�n − �mNz)

H C−1
Nz

(�n − �mNz)
)

(5.28)

where

�Nz = [Nz(t1) . . . Nz(tN )]T

�mNz = E
[

�Nz

]
= [mNz(t1) . . . mNz(tN )]T

CNz = E[( �Nz − �mNz)( �Nz − �mNz)
H ]

The PDF given in (5.28) for an N dimensional complex Gaussian vector is just a compact way of
expressing the 2N dimensional real Gaussian vector PDF. The compact form for the PDF of samples of
a complex Gaussian random process makes complex Gaussian random processes amenable to analysis
and algorithm development.

5.5.2 Complex Additive White Gaussian Noise

A complex additive white Gaussian noise can be used to accurately model bandpass noise in communi-
cation systems. Consider a bandpass noise generated by an ideal bandpass filter, e.g.,

HR(f) =
{

1 fc − Bi ≤ |f | ≤ fc + Bi

0 elsewhere.
(5.29)

The baseband (complex envelope) power spectrum of the bandpass noise, SNz(f), and signal will look
like that in Fig. 5.4-a). Since it is, in general, difficult to build a filter at a carrier frequency that is
spectrally compact, the noise spectrum will typically be wider than the signal spectrum. The baseband
processing will normally cut the noise bandwidth down to something close to W . A “white” noise that
has the PSD as given in Fig. 5.4-b) will have the exact same output noise characteristics after baseband
processing because
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a) Signal and bandpass noise spectra b) Signal and complex white noise spectra

Figure 5.4: Exact and model power spectral densities.

1. the baseband processing will only pass the noise in the message bandwidth, W , and

2. the bandpass noise has a complex envelope that has a PSD that is constant, like the white noise,
over this band.

Consequently, and accurate model for noise in a bandpass communication system is given as

Yz(t) = rz(t) + Wz(t) (5.30)

where rz(t) is the received signal and Wz(t) is the model for the corrupting noise where

SWz(f) = N0 RWz(τ) = N0δ(τ). (5.31)

This model will be denoted the complex additive white Gaussian noise in the sequel.
A complex AWGN is intended to model a bandpass noise whose bandwidth is larger than the

received signal bandwidth. The advantage of the complex AWGN model is that the analysis and
algorithm development can proceed in a much cleaner fashion than with a more realistic noise model
while not introdcing significant modeling errors. This model will be used exclusively in the sequel and
the accuracy of the approximation will be explored in the homework.

5.6 Quadratic Forms of Complex Gaussians

Will be needed to analyze noncoherent and transmitted reference demodulation structures. Not com-
pleted in this edition.

5.7 Homework Problems

Problem 5.1. As simple model of a radar receiver consider the following problem. A radar sends out a
bandpass pulse and listens for the return at the receiver whose filtering is represented with an impulse
response hR(t). The situation when no target is present is represented with the input being modeled
as a real valued additive Gaussian noise, W (t), being input into a linear time invariant bandpass filter
with a real valued impulse response hR(t). W (t), has a two sided spectral density N0/2) Denote the
baseband output as Yz(t) = Nz(t). The situation where a target is present can be represented as a tone
plus white noise. The baseband output is then given as Yz(t) = A exp [jφp] + Nz(t). A target detection
decision is given by a simple threshold test at time t

YA(t) = |Yz(t)|
Target Present

>
<

Target Absent
γ (5.32)
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Figure 5.5: A demodulator block diagram.

a) For the case when no target is present, completely characterize a sample of the process YA(t).

b) For a particular time t, find a value of the threshold, γ, where the probability that a target will
be declared present when one is not present is 10−5.

c) For the case when a target is present completely characterize a sample of the process YA(t).

d) For the value of the threshold selected in b) find how large A should be to correctly detect a target
present with a probability of detection greater than 0.9 for any value of t.

Problem 5.2. Prove that ∫ π/2

−π/2
fYp(t)(y)dy =

1
2
erfc

(√
P

)
. (5.33)

Problem 5.3. In a DSB-AM receiver modeled with Fig 5.5, the following complex envelope is received

Yz(t) = cos (200πt) exp [jφp] + Nz(t) (5.34)

Assume m̂(t) = me(t) + ÑI(t) and for simplicity that the bandpass noise, Nz(t) is characterized as a
white noise

SNz(f) = N0. (5.35)

The lowpass filter has a transfer function of

HL(f) =
1

1 + j f
fl

(5.36)

a) Prove ÑI(t) is a stationary random process.

b) Compute me(t) (the signal at the filter output).

c) Compute E
[
Ñ2

I (t)
]

as a function of fl. Hint: power can be computed in the time and frequency
domain.

d) Compute the output SNR as a function of fl.
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e) What value of fl optimizes the output SNR?

Problem 5.4. A computer can do a lot of tedious computations that you do not want to do by hand.
To this end repeat the Problem 5.3 except with the bandpass noise characterized with

SNz(f) =
{

N0 |f | ≤ 4000
0 elsewhere.

(5.37)

Hint: the simplest approach may not be the same as in Problem 5.3.
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Chapter 6

Digital Communication Basics

The problem that is of interest in the text is point–to–point binary data communications. The system
model for such a communication system is given in Fig. 6.1. A source of binary encoded data with a total
of Kb bit is present and it is desired to transmit this data to a binary data sink across a physical channel.
The data output by the source is represented by a Kb×1 dimensional vector, �I, whose components take
values 0,1. This vector is then mapped into one of 2Kb analog waveforms represented by the baseband
waveform xi(t). The transmitted waveform is put through a channel of some sort and corrupted by a
noise or interference. The composite received signal, Yc(t), is then used to estimate which one of the

possible vectors led to the transmitted waveform. This estimate is denoted �̂I and this estimate is passed
to the data sink.

It should be noted that point-to-point data communications is but the simplest abstraction of the
data communications reality. This point to point communication is often referred to as physical layer
communications. There are many higher layers of abstraction in data communication. These higher
layers deal with concepts like how do multiple users access a shared communication media, how is a
communication path established in a multiple hop network, how do applications communication across
the network. These issues are typically covered in the curriculum in a course on communication networks.
Typical textbooks for communications networks are [KR04, LGW00, Tan02]. The student interested in
the details of networked communication should take these courses or read these textbooks.

6.1 Digital Transmission

In exactly the same way as in analog communication, digital communication has a modulator and
demodulator. The modulator produces an analog signal that depends on the digital data to be com-
municated. This analog signal is transmitted over a channel (a cable or radio propagation). The
demodulator takes the received signal and constructs an estimate of the transmitted digital data. There

Figure 6.1: A model for point to point data communication.
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are two types of digital communications that are implemented in practice: Baseband data communi-
cations as exemplified by compact disc recordings or magnetic recording and carrier modulated data
communications as exemplified by telephone modems or radio modems. In this text we want to have
a unifying framework that enables the material that is learned to apply to either baseband or band-
pass data communications. As with analog communications, the complex envelope notation is used to
achieve this goal. The only caveat that needs to be stated is that baseband data communication will
always have a zero imaginary component, while for bandpass communications the imaginary component
of the complex envelope might be nonzero.

6.1.1 Digital Modulation

Definition 6.1 Digital modulation is a transformation of �I into a complex envelope, Xz(t).

This transformation is equivalent to transforming m(t) into a bandpass signal, Xc(t). The digital
modulation process, Xz(t) = Γm

(
�I
)

is represented in Fig. 6.2. It should be emphasized that digital
communication is achieved by producing and transmitting analog waveforms. There is no situation
where communication takes place that this transformation from digital to analog does not occur. Sim-
ilarly it should be emphasized that the modulator must be capapble of generating 2Kb continuous time
waveforms to represent each of the possible binary data vectors produced by the binary data source.
When necessary, the possible data vector will be enumerated as �I = i. i ∈

{
0, . . . , 2Kb − 1

}
and the

possible transmitted waveforms will be enumerated with Xz(t) = xi(t).

Figure 6.2: The digital modulation process. Note the IQ upconverter is given in Fig. 2.4

6.1.2 Digital Demodulation

Definition 6.2 Digital demodulation is a transformation of Yc(t) into estimates of the transmitted bits,
�̂I. Xz(t).

Demodulation takes the received signal, Yc(t), and downconverts to the baseband signal, Yz(t). The
baseband signal is then processed to produce an estimate of the transmitted data vector, �I. This
estimate will be denoted �̂I. Again, for this part of the text the channel output is always assumed to be

rc(t) = Lpxc (t − τp)

where Lp is the propagation loss and τp is the propagation time delay. Define φp = −2πfcτp so that the
channel output is given as

rc(t) =
√

2LpxA(t − τp) cos (2πfc(t − τp) + xP (t − τp))

= �
[√

2Lpxz(t − τp) exp[jφp] exp[j2πfct]
]
. (6.1)
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Figure 6.3: The digital demodulation process. Note the IQ downconverter is given in Fig. 2.4.

It is obvious from (6.1) that the received complex envelope is rz(t) = Lpxz(t − τp) exp[jφp]. It is
important to note that a time delay in a carrier modulated signal will produce a phase offset. The
demodulation process conceptually is a down conversion to baseband and a reconstruction of the trans-
mitted signal from Yz(t). The block diagram for the demodulation process is seen in Fig. 6.3.

Demodulation is the process of producing an �̂I from Yz(t) via a function Γd (Yz(t)). The remainder
of the discussion on digital communications in this text will focus on identifying Γm

(
�I
)

(modulators)
and Γd (Yz(t)) (demodulators) and assessing the performance of these modulators and demodulators in
the presence of noise. It is worth noting at the point that the word modem is actually an engineering
acronym for a device that was both a modulator and a demodulator that has become part of the English
language. The word modem is now synonymous with any device that is used to transmit digital data
(computer modem, cable modem, wireless modem, etc.)

6.2 Performance Metrics for Digital Communication

In evaluating the efficacy of various designs in this course the performance metrics commonly applied
in engineering design must be examined. The most commonly used metrics for digital communications
are

• Performance – This metric typically measures how often data transmission errors are made given
the amount of transmitted power.

• Complexity – This metric almost always translates directly into cost.

• Spectral Efficiency – This metric measures how much bandwidth a modulation uses to implement
the communication.

6.2.1 Performance

Performance in digital communication is reflected how often transmission errors occur as a function of
the SNR. Transmission errors can be either bit errors (one bit in error) or frame errors (any error in a
message or packet). The application often determines what the appropriate error metric is. With data
transmission at a fixed transmit power, Pxc , the reliability of any data communication can be increased
by lowering the speed of the data communication. A lower speed transmission implies that the receiver
bandwidth will be smaller and consequently the SNR can be made higher. In data communication, a
transmission rate fair measure of SNR is the ratio of the average received energy per bit over the noise
spectral density, Eb/N0.

Definition 6.3 The average energy per bit for a received signal, Rz(t), where Kb bits are transmitted
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is

Eb =
E [ERz ]

Kb
=

L2
p

Kb
E

[∫ ∞

−∞
|Xz(t)|2 dt

]
(6.2)

Hence throughout this text we shall parameterize performance by Eb/N0 as that is the industry standard.
It should be noted that the expectation or average in (6.2) is over the random transmitted data bits.
Since the random transmitted bit are discrete random variables the expectation will be a summation
versus the probability of each of the possible transmitted words. Consequently the general form for the
average received energy per bit is

Eb =
L2

p

Kb

2Kb−1∑
i=0

πi

[∫ ∞

−∞
|xi(t)|2 dt

]
=

L2
p

Kb

2Kb−1∑
i=0

πiEi (6.3)

where Ei is the energy of waveform xi(t).

6.2.2 Complexity

Complexity is a quantity that requires engineering judgment to estimate. Often the cost of a certain
level of complexity changes over time. A good example of this tradeoff changing over a short period
of time was seen in the land mobile telephony market in the 1990’s when early in the decade many
people resisted a move to a standard based on code division multiple access technologies based on the
cost and complexity of the handheld phones. By the end of the decade the proposed telecommunication
standards had become much more complex but the advances in circuit technology allowed low cost
implementations.

6.2.3 Bandwidth Efficiency

The spectral efficiency of a communication system is typically a measure of how well the system is using
the bandwidth resource. In this text the bit rate of communication is denoted Wb bits/second and
the transmission bandwidth is denoted BT . Bandwidth costs money to acquire and the owners of this
bandwidth want to communicate at as high a data rate as possible. Examples are licenses to broadcast
radio signals or the installation of copper wires to connect two points. Hence spectral efficiency is very
important for people who try to make money selling communication resources. For instance if one
communication system has a spectral efficiency that is twice the spectral efficiency of a second system
then the first system can support twice the users on the same bandwidth. Twice the number of users
implies twice the revenue. The measure of bandwidth efficiency that we will use in this class will be
denoted spectral efficiency and is defined as

ηB =
Wb

BT
bits/second/Hz.

The goal of this section is to associate a spectral characteristic or a signal bandwidth with a digital
modulation. This spectral characteristic determines the bandwidth that a radio needs to have to support
the transmission, as well as the spectral efficiency of a digital transmission scheme. The way this will
be done in this text is to note that if the data being transmitted is known then the transmitted signal,
xz(t), is a deterministic energy signal. The spectral characterization of deterministic energy signals is
given by the energy spectrum

Gxz(f) = |Xz(f)|2 = F {Rxz(τ)} = F
{∫ ∞

−∞
xz(t)x∗

z(t − τ)dt

}
. (6.4)
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Building upon this spectral characterization in the same way as was done for Gaussian random processes,
the function that will be used throughout these notes to describe the spectral characteristics of a
transmitted signal is the average energy spectrum per bit.

Definition 6.4 The average energy spectrum per bit for a transmitted signal, Xz(t), where Kb bits are
transmitted is

DXz(f) =
E [GXz(f)]

Kb
. (6.5)

This definition of average energy spectrum per bit (measured in Joules per bit per Hertz) is consistent
with the definition of power spectral density for random processes as given in 3.4 (measured in Joules
per second per Hertz). It should be noted that the expectation or average in (6.5) is over the random
transmitted data bits. Since the random transmitted bit are discrete random variables the expectation
will be a summation versus the probability of each of the possible transmitted words. Consequently the
general form for the average energy spectrum per bit is

DXz(f) =
1

Kb

2Kb−1∑
i=0

πiGxi(f). (6.6)

The transmission bandwidth, BT , of a digital communications signal can be obtained from the average
energy spectrum per bit, DXz(f).

6.2.4 Other Important Characteristics

Many times in communication applications other issues besides bandwidth efficiency, complexity, and
performance are important. For example for a handheld mobile device the size, weight, and battery
usage are important for the user. Often in wireless communications energy efficiency of the algorithms
are of paramount importance. Often to increase the talk time for a mobile phone an algorithm will
give up performance for using less energy. One important issue in mobile devices is the linearity of
final amplifier before the antenna. A high power linear amplifier is both expensive and consumes larger
amounts of current, so this is not a desirable characteristic for a mobile device. On the other hand,
high power is often needed to communicate with a remote basestation or a satellite. Likewise nonlinear
amplifiers, which are more energy efficient, often produce unacceptable distortion or spectral regrowth.
In many handheld devices modulations are chosen to minimize the requirement on the linearity of the
power amplifier. This will be discussed in some detail in Chapter ??. These issues will not be a major
focus of this text like the bandwidth efficiency, complexity, and performance, but are mentioned as they
are often involved in performance tradeoffs for system design.

6.3 Some Limits on Performance of Digital Communication Systems

Digital communications is a relatively unique field in engineering in that there is a theory that gives some
performance limits for data transmission. The body of work that provides us with these fundamental
limits is information theory and the founder of information theory was Claude Shannon [Sha48]. While
this text cannot derive all the important results from information theory it will attempt to highlight the
important results in information theory that relate to the material in this text. A course in information
theory is highly recommended [CT92].

An important contribution of Claude Shannon was to identify that every channel had an associated
capacity, C and reliable (in fact error free) transmission is possible on the channel when Wb < C. A
channel of significant interest for a majority of this text is the channel which experiences an additive
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white Gaussian noise (AWGN) distortion. For this AWGN channel when the signal uses a transmission
bandwidth BT , Shannon identified the capacity as [Sha48]

C = BT log2 (1 + SNR) . (6.7)

This immediately leads to a constraint on the spectral efficiency that can be reliably achieved

ηB < log2 (1 + SNR) . (6.8)

Equation (6.8) unfortunately states that to achieve a linear increase in spectral efficiency a communica-
tion engineer must provide exponentially greater received SNR. Hence in most communication system
applications the spectral efficiencies achieved are usually less than 15bits/s/Hz (often much less).

Further insight into the problem is gained by reformulating (6.8). First off the received noise power
is directly a function of the transmission bandwidth. If we assume an ideal bandpass filter of bandwidth
BT the results of Chapter 3 give the noise power and SNR as

PN = N0BT SNR =
PS

N0BT
(6.9)

Recall that most communication system engineers like to quantify performance with Eb/N0 and that
Ps = EbWb so that (6.8) becomes

ηB < log2

(
1 +

Eb

N0

Wb

BT

)
= log2

(
1 +

Eb

N0
ηB

)
. (6.10)

The achievable spectral efficiency versus Eb/N0 is represented in Fig. 6.4. The line in Fig. 6.4 represents
the solutions to the equation

ηB = log2

(
1 +

Eb

N0
ηB

)
. (6.11)

For a given Eb/N0, information theory indicates that reliable communication at spectral efficiencies
below the line in Fig. 6.4 are achievable while spectral efficiencies above the line are not achievable.
Throughout the remainder of the text the goal will be to give an exposition on how to design com-
munication systems that have operating points which can approach this ultimate performance given in
Fig. 6.4.

The results in Fig. 6.4 provide some interesting insights for how communication systems should
be designed. In situations where bandwidth is the most restricted resource the goal then is to drive
the received Eb/N0 to as large a value as possible. For example many telecommunication systems
have designed operating points where Eb/N0 > 10dB. In situations where Eb is the most restricted
resource it is possible to still achieve reliable communication by reducing the spectral efficiency. For
example communications with deep space probes is limited by the amount of power that can be received.
Communication systems for deep space communication are designed most often to have relatively low
bit rates and by setting ηB < 1. Also you can see from Fig. 6.4 that there is a limit on how small Eb/N0

can be made and still maintain reliable communications. This minimum is Eb/N0 = ln 2 = −1.59dB.
These results from information theory provide benchmarks by which we can calibrate performance as
we progress in our understanding of digital communication theory.

6.4 Homework Problems

Problem 6.1. If the telephone network was well modeled by an AWGN channel with BT = 3.2kHz
and an Eb/N0 = 30dB what bandwidth of information transmission could reliably be supported?
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Figure 6.4: Maximum achievable spectral efficiency.
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Chapter 7

Optimal Single Bit Demodulation
Structures

7.1 Introduction

In this chapter we consider the transmission and demodulation of one bit of information transmitted on
an all-pass channel. This chapter will demonstrate how statistical decision theory is useful in the design
of digital communications. The treatment here is less rigorous than one might see in an engineering
book on detection (e.g., [Poo88]). The treatment given here is my synthesis of ideas already presented
by many authors before. A particular favorite of mine is [Web87].

Here a set of notation is formulated. The bit of information will be denoted I with I = 0, 1.
The discussion will assume that the bit to be sent is a random variable with P (I = 0) = π0 and
P (I = 1) = π1. The transmitted waveform is Xz(t). If I = 0 then Xz(t) = x0(t) and if I = 1 then
Xz(t) = x1(t). The support1 of x0(t) and x1(t) is in the interval [0, Tp]. In other words the signals x0(t)
and x1(t) are both energy waveforms no longer than Tp in length. Consequently the bit rate is defined
to be Wb = 1/Tp. Fig. 7.1 shows an example of two waveforms for one bit transmission. These two
waveforms are explicitely given as

x0(t) =

 sin
(

4πt

Tp

)
0 ≤ t ≤ Tp

0 elsewhere
x1(t) =

{
1 0 ≤ t ≤ Tp

0 elsewhere
(7.1)

For the channel that was considered in the analog portion of the text the output received signal can
be accurately modeled with

Yz(t) = LpXz(t − τp) exp [jφp] + Wz(t) (7.2)

where Wz(t) is a complex additive white Gaussian noise (AWGN) with SWz(f) = N0 that models a
thermal noise at the receiver frontend2, Lp is the propagation loss, τp is the propagation delay, and φp

is a propagation induced phase shift. The majority of this book will be focused on coherent digital
communications. Coherent communications implies that the receiver knows entirely the distortion that
can occur in transmission (with the model in (7.2) the exact value of Lp, τp, and φp). For coherent
communication, the model in (7.2) can complicate the ideas of digital modulation and demodulation
design so we will adopt a simpler one, i.e.,

Yz(t) = Xz(t) + Wz(t). (7.3)

1The support of a function is the domain of the function where the range is nonzero valued.
2See Section 5.5 for a motivation of this noise model.
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Figure 7.1: An example of two possible waveforms used to transmit one bit of information.

Figure 7.2: The problem formulation for hypothesis testing.

The model in (7.3) assumes the transmitted signal is received undistorted. There is little loss in
generality in considering this model for coherent communications since each of the parameters Lp,
τp, and φp in (7.2) has a simple separable change for the optimal demodulator. A homework problem
explores this difference. The energy per bit in this simple binary transmission example is

Eb = π0Ex0 + π1Ex1 . (7.4)

7.1.1 Statistical Hypothesis Testing

Digital communications borrows a vast majority of it’s theory from the well developed theory of sta-
tistical hypothesis testing. A hypothesis test come about when a person is faced with the problem of
making a definite decision with respect to an uncertain hypothesis which is known only through its
observable consequences. A statistical hypothesis test is an algorithm based on a set of observations to
decide on the alternative (for or against the hypothesis) which minimizes certain risks [Leh86].

The general statistical hypothesis testing problem formulation is given in Fig. 7.2. In general there
is some system that disrupts the ability to make decisions. The output of that system is the raw
observations. These raw observations are processes in some way to make the decision. The decision
making process is usually formulated by getting either an analytical or an empirical understanding of
how likely each hypothesis is and how the observations relate to the hypothesis.

c©1996-2004 - Michael P. Fitz - The University of California Los Angeles



60 65 70 75
0

2

4

6

8

10

12

14

16

18

20
Normal Population

Height in inches
70 75 80 85 90

0

5

10

15

20

25
Division I Basketball Players

Height in inches

7.1 Introduction 121

Figure 7.3: Histograms of the height of nonbasketball players and basketball players.

Example 7.1: Imagine you have just been hired at Westwood University as the men’s basketball coach.
Half the team, upset about the firing of the previous coach, quit the team and you have a big game
against your archrival in three days. You are desperate to find Division I basketball players and have
started searching around campus (hypothesis: Basketball player or no basketball player). Your assistant
coach had the brilliant insight that basketball players tend to be taller than average and you decided
to base your entire decision on the height of individuals (decision statistic: height). The assistant went
out and measured 100 basketball players and 100 non-basketball players and gave you the histograms
in Fig. 7.3. Given the problem formulation three questions can be asked

1. If a person is 5’4” tall (64 inches) could he be a basketball player? The answer is yes but it is
highly unlikely so you would probably decide against asking a 5’4” tall person to join the team.

2. If a person is 7’0” tall (84 inches) could he not be a basketball player? Again the answer is yes
and but it is highly unlikely so you would probably invite all 7’0” people to join the team.

3. If a person is 6’0” tall (72 inches) would you invite him to be on the team? There seems to be
about an equal probability, judging from Fig. 7.3, that a nonbasketball playing person would be
6’0” tall as there is that a basketball player would be 6’0” tall. The best decision would likely be
that 6’0” tall person not be invited since there are many more nonbasketball playing people than
basketball players and hence it is more probable that a 6’0” tall person is not a basketball player.

This example shows intuitively how decisions are made, how statistics are formed and how the probabil-
ity of each hypothesis should impact the decision. These elements are all in the digital communications
problem.

It is clear from the previous example of trying to decide on basketball players that both what is
observed in a statistical test and what are the prior distributions on the possible outcomes can both
significantly impact the decision that is made. To capture these characteristics statisticians have defined
two important quantities.

Definition 7.1 The a priori probability is the probability associated with a possible hypothesis before
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any experiments are completed.

Example 7.2: A rough estimate that the probability a randomly chosen person on the Westwood Uni-
versity campus is a Division I basketball player is roughly 0.001.

Definition 7.2 The a posteriori probability (APP) is the probability associated with a possible hypoth-
esis which takes into account any observed experimental outcomes and the a priori probability.

A priori probabilities and a posteriori probabilities have a prominent role in the theory of digital
communications and in fact form the basis of most modern data modem technology.

7.1.2 Statistical Hypothesis Testing in Digital Communications

The optimum structure for demodulation of known transmitted signals in the presence of the white
noise (i.e., (7.3)) is shown in Fig. 7.4. The structure consists of a linear filter where the real output of
this linear filter is sampled and subject to a threshold test. The justification for why this structure is
optimum will be left to a course on detection theory (e.g., [Poo88]). A more general and mathematically
rigorous derivation is provided in Appendix A to complement the discussion in this chapter. Linear
filters, samplers, and threshold tests are some of the most common electrical components available. The
fact that the combination of a linear time-invariant filter, a sampler, and a threshold test forms the
best single bit digital communications demodulator is quite striking. The sample time can be arbitrary
but here is chosen to be at Tp, the end of the transmitted pulse. Hopefully after the entire optimum
demodulation structure is examined in detail the reasons for this selection will become clear. For clarity,
a threshold test is a component that provides the following logical operation: if

VI(Tp) > γ then Î = 1 (7.5)

else

VI(Tp) ≤ γ then Î = 0. (7.6)

Threshold tests or comparators are easily implemented in electronic circuits.

Definition 7.3 A statistic is any processing of data to produce a number that represents the data but
is of lower dimensionality than the original data.

This definition matches with how we use statistics in a wide variety of applications (e.g., mean and vari-
ance of grades). In the case considered here VI(Tp) is one number that represents the entire continuous
time received waveform, Yz(t) and is a statistic for deciding about I.

Definition 7.4 A sufficient statistic is statistic where making a decision or estimate based only on the
statistic results in no loss in information/performance in estimation or detection compared to using the
full data record.

In the binary detection problem an optimal decision about I can be made by only considering VI(Tp),
consequently VI(Tp) is a sufficient statistic for the entire observed waveform, Yz(t).

7.1.3 Digital Communications Design Problem

The digital communications design problem consists of identifying the components of the optimal de-
modulator such that a good tradeoff can be achieved between performance, complexity, and spectral
efficiency. The approach taken in this set of notes to understanding this tradeoff for single bit demod-
ulation is to work through five simple design tasks
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Figure 7.4: The optimum demodulator for a single bit transmission in AWGN.

1. Given x0(t), x1(t) and H(f), design the optimum threshold test (find γ).

2. Given x0(t) and x1(t) and H (f) with the optimum threshold test, compute the performance of the
demodulator. The performance metric of interest will be the probability of making a bit decision
error.

3. Given x0(t) and x1(t), design the filter, H (f) that minimizes the bit error probability (BEP).

4. Given the optimum demodulator, design x0(t) and x1(t) to optimize performance.

5. Design x0(t) and x1(t) to have desired spectral characteristics.

7.2 Minimum Probability of Error Bit Demodulation

The goal in this section is to address Design Task 1. We are looking to fix x0(t), x1(t), and H(f) and
find a threshold, γ, that gives the optimum performance. Our criterion for optimal demodulation will
be based on which bit is more probable given an observed output from the receiver, VI(Tp) = vI . Recall
this text maintains the convention that capital letters denote random variables and lower case letters
will denote observed realizations of those random variables. This situation of trying to map a random
variable into one of two possible decisions on a bit is a situation where this convention is necessary
to clarify the actual underlying mathematics. VI(Tp) and Î are random variables but the optimum
mapping from the observations VI(Tp) = vI to the decision Î(vI) is a deterministic function.

Example 7.3: Consider the signals shown in Fig. 7.1 with a truncated ideal lowpass filter with design
bandwidth of BT = 4/Tp, i.e.,

h(t) =
{

2BT sinc (2BT (t − τh)) 0 ≤ t ≤ 2τh

0 elsewhere
(7.7)

where τh = 3/Tp. Note for simplicity of displaying the signals at various points of the demodulator we
have chosen both the transmitted signals and the filter to be real valued. The signals and the noiseless
output of the filter are plotted in the Fig. 7.5. The vertical line represents a sampling time when the
waveforms are relatively easy to distinguish and this sample time will be used in this example as we
examine Design Task 1.

The decision will be made based on which value of the transmitted bit is more probable (likely) given
the observed value vI . This type of demodulation is known as maximum a posteriori bit demodulation
(MAPBD). A MAPBD computes the a posteriori probability (APP) for each possible hypothesis and
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Figure 7.5: The transmitted signals and the noiseless output of H(f) for Example 7.3.

then chooses the hypothesis whose APP is largest. The MAPBD chooses the most likely hypothesis
after both the a priori information and the observations are analyzed. MAPBD can be shown to be the
minimum probability of error demodulation scheme by using the theory of Bayes detection [Leh86]3.
Mathematically this can be stated as

P (I = 1 |vI )
Î=1
>
<

Î=0

P (I = 0 |vI ) . (7.8)

This decoding rule first computes the a posteriori probability (APP) of each possible value of the
transmitted bit, P (I = i |vI ) i = 0, 1, and then makes a decision based on which APP is largest. This
procedure of computing an APP based on the observed channel outputs is a common theme in modern
digital communications.

These probabilities can be computed with Bayes rule (mixed form)

P (I = 1|vI) =
fvI |1(vI |I = 1)P (I = 1)

fvI (vI)

P (I = 0|vI) =
fvI |0(vI |I = 0)P (I = 0)

fvI (vI)
(7.9)

When discussing detection problems the notation π0 = P (I = 0) and π1 = P (I = 1) is often used
[Poo88] and this text will adopt this notation as well. When the common term present in (7.9) is
cancelled from both sides of (7.8) the decoding rule becomes

fVI |1(vI |I = 1)π1

Î=1
>
<

Î=0

fVI |0(vI |I = 0)π0. (7.10)

Fig. 7.6 shows the block diagram for this MAPBD threshold test. The forming of the threshold test is
essentially the finding of which of two decision statistics are larger. This is a common theme that will

3Bayes detection theory is briefly overviewed in Appendix A
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Figure 7.6: The maximum a posteriori bit demodulator.

weave itself through the remainder of the text. To prepare the reader for this thread, the decision test
in (7.106) can be restated as

Î = arg max
i=0,1

fVI |i(vI |I = i)πi. (7.11)

The optimum test can often be simplified from the form given in (7.106) but the discussion through-
out the course will often return to a demodulator format based on the form in (7.106). Another form
of the test that is often used is known as the likelihood ratio test [Poo88] given as

fVI |1(vI |I = 1)
fVI |0(vI |I = 0)

Î=1
>
<

Î=0

π0

π1
. (7.12)

From a practical point of view this maximum a posteriori bit demodulator is not interesting if the
computation of fVI |i(vI |I = i), i = 0, 1 is not simple. Fortunately the form of the receiver for the single
bit demodulator can be significantly simplified.

7.2.1 Characterizing the Filter Output

The filter output is straightforward to characterize since conditioned on the transmitted signal, the
input is a known signal plus white Gaussian noise. If I = 0 and denoting h(t) as the filter impulse
response, then

Vz,0(t) =
∫ ∞

−∞
(x0(τ) + Wz(τ))h(t − τ)dτ

=
∫ ∞

−∞
x0(τ)h(t − τ)dτ +

∫ ∞

−∞
Wz(τ)h(t − τ)dτ

= m0(t) + Nz(t). (7.13)

The term m0(t) represents the output of the filter when x0(t) is input. Recall Nz(t) is a Gaussian
random process that is characterized with

RNz(τ) = N0Vh(τ) = N0

∫ ∞

−∞
h(t)h∗(t − τ)dt and SNz(f) = N0 |H(f)|2 (7.14)
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Likewise if I = 1 then

Vz,1(t) =
∫ ∞

−∞
(x1(τ) + Wz(τ))h(t − τ)dτ

=
∫ ∞

−∞
x1(τ)h(t − τ)dτ +

∫ ∞

−∞
Wz(τ)h(t − τ)dτ

= m1(t) + Nz(t) (7.15)

where m1(t) represents the output of the filter when x1(t) is input.
Output time samples of this filter are easily characterized. If I = 0, the sample taken at time Tp is

given as
V0,z(Tp) = m0(Tp) + Nz(Tp)

and the real part of this sample is given as

V0,I(Tp) = mo,I(Tp) + NI(Tp).

VI(Tp) is a Gaussian random variable (RV) with

fVI |0 (vI |I = 0) =
1√

2πσ2
NI

exp

[
−(vI − m0,I(Tp))

2

2σ2
NI

]
(7.16)

where σ2
NI

= var (NI(Tp)). Since NI(Tp) is the output of a linear filter it is easy to show using the
results from Chapters 3 and 4 that 2σ2

NI
=

∫ ∞
−∞ N0 |H(f)|2 df . In a similiar fashion

fVI |1 (vI |I = 1) =
1√

2πσ2
NI

exp

[
−(vI − m1,I(Tp))

2

2σ2
NI

]
(7.17)

Consequently the MAPBD given in (7.106) requires the computation of two Gaussian probability den-
sity functions (PDF) have the same variance but different means. The means of these two PDFs are
a function of the demodulation filter and the two possible transmitted signals representing the two
possible values of the bit.

Example 7.4: Continuing with Example 7.3, Fig. 7.7 shows a sample path of V0(t) (top left) and a
sample path of V1(t) (bottom left) with Eb/N0 = 10dB. These sample paths clearly behave like a signal,
mi(t), plus a noise. The same sample point as considered in Example 7.3 is again shown with the vertical
line. Histograms of the sampled filter output for 4000 random trials of this experiment when each of the
two hypotheses are true (I = 0 at the top right and I = 1 at the bottom right) are also shown Fig. 7.7.
This histogram shows empirically that the Gaussian PDF is correct model for fVI |i (vI |I = i).

7.2.2 Uniform A Priori Probability

There are many ways to simplify the receiver structure from this point but the one that provides the
most intuition and is most practical is to assume uniform a priori probability (i.e., π0 = π1 = 0.5).
Uniform a priori probabilities often arise in practice since this is the goal of source coding [CT92].
Uniform a priori probabilities also produce a threshold test which is not a function of the a priori
probabilities. The form of the optimal test when the a priori probability is not uniform is explored
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Figure 7.7: Sample paths of the filter outputs for each of the possible transmitted signals and histograms
of the filter output samples.

in the homework. When π0 = 0.5, the optimum decoder, often denoted the maximum likelihood bit
demodulator (MLBD), is

1√
2πσ2

NI

exp

[
−(vI − m1,I(Tp))

2

2σ2
NI

] Î=1
>
<

Î=0

1√
2πσ2

NI

exp

[
−(vI − m0,I(Tp))

2

2σ2
NI

]
. (7.18)

Consequently this MLBD computes two Gaussian PDFs (having the same variance and different means)
and makes a decision based on which of the two PDFs takes a higher value. This is the maximum
likelihood principle [Poo88]. The monotonic nature of the Gaussian PDF implies that this results in a
simple threshold test on vI(Tp). Fig. 7.8 shows pictorially how this decoder operates.

The MLBD has a very interesting geometric interpretation. Cancelling common terms and taking
log4 gives

(vI − m1,I(Tp))
2

Î=0
>
<

Î=1

(vI − m0,I(Tp))
2 (7.19)

Recall the definition of Euclidean distance in an N dimensional vector space.

Definition 7.5 Euclidean distance in an N dimensional vector space between two points �x and �y is

δE(�x, �y) =

√√√√ N∑
i=1

(xi − yi)2 (7.20)

For simplicity of notation the squared Euclidean distance is also defined.

4Taking the log does not change the decision rule as log(x) is a monotonic function.
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Î = 0 Î = 1
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Figure 7.8: An example of the resulting test given by (7.18). m0,I(Tp) = 1, m1,I(Tp) = 6, and σ2
NI

= 2.

Definition 7.6 The squared Euclidean distance in an N dimensional vector space between two points
�x and �y is

∆E(�x, �y) =
N∑

i=1

(xi − yi)2 (7.21)

Consequently the MLBD can be rewritten as

∆E(vI , m1,I(Tp))
Î=0
>
<

Î=1

∆E(vI , m0,I(Tp)) (7.22)

This implies that the maximum likelihood bit decision is based on whether vI is geometrically closer
to m1,I(Tp) or m0,I(Tp). This geometric interpretation of decision rules will arise several more times
during in the context of demodulation for digital communications.

The decoder can further be simplified to a very simple threshold test. Assuming m1,I(Tp) > m0,I(Tp),
completing square, and doing some algebra reduces the optimum decision rule to

vI

Î=1
>
<

Î=0

γ =
m1,I(Tp) + m0,I(Tp)

2
(7.23)

The MLBD compares the observed filter output, vI with a threshold which is the arithmetic average of
the two filter outputs corresponding to the possible transmitted signals in the absence of noise. For the
example considered in Fig 7.8 where m0,I(Tp) = 1, m1,I(Tp) = 6, and σ2

NI
= 2 the optimum threshold

is γ = 3.5. It is interesting to note that the noise variance does not enter into the MLBD structure. It

c©1996-2004 - Michael P. Fitz - The University of California Los Angeles



Re •[ ] +

-

Tp

V tI ( )V tz( )
Y tz( ) H f( )

Î
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Figure 7.9: The simple form of the MLBD.

will be left as a student exercise to compute the threshold test for the case m1,I(Tp) < m0,I(Tp). It is
equally simple. The block diagram for the simplest form for the MLBD is shown in Fig. 7.9.

Design Task 1 is complete; we have found the optimum threshold test given x0(t), x1(t) and H(f)
for the uniform prior distribution case. Results for a nonuniform prior distribution are similiar.

7.3 Performance Analysis

Recall Design Task 2 is given x0(t) and x1(t) and H (f) with the MLBD threshold test, γ, compute
the performance of the demodulator. The performance metric of interest will be the probability of
making a bit decision error. In digital communications the simplest performance metric is the bit error
probability (BEP).

Definition 7.7 Bit error probability (BEP) is

PB(E) = P
(
Î �= I

)
.

The BEP can be computed using total probability as

PB(E) = P
(
Î = 1 |I = 0

)
π0 + P

(
Î = 0 |I = 1

)
π1 (7.24)

Recall that when m1,I(Tp) > m0,I(Tp), the MAPBD has the form

vI

Î=1
>
<

Î=0

γ (7.25)

so that

P
(
Î = 1 |I = 0

)
= P (VI(Tp) > γ |I = 0) (7.26)

and

P
(
Î = 0 |I = 1

)
= P (VI(Tp) < γ |I = 1) . (7.27)

Since conditioned on I, VI(Tp) is a Gaussian random variable with known mean and variance, the
probabilities in (7.26) and (7.27) are simple to compute. These probabilities in (7.26) and (7.27) are
simply the area under the tails of two Gaussian PDFs. Examples of the tails are illustrated in Figure 7.10.
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Figure 7.10: The tails of the Gaussian distribution that are the conditional bit error probability. This
is for a test given by (7.18) with m0,I(Tp) = 1, m1,I(Tp) = 6, and σ2

NI
= 2.
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7.3.1 Erf Function

This text will compute the probability that a Gaussian RV lies in an interval using the erf() and erfc()
functions [Ae72]. While this probability is expressed using different functions by various authors, this
text uses the erf() and erfc() because it is commonly available in math software packages (e.g., Matlab).

Definition 7.8 The erf function is

erf (z) =
2√
π

∫ z

0
e−t2dt.

The cumulative distribution function of a Gaussian RV, X, with mean mX and variance σ2
X is then

given as

FX(x) =
1
2

+
1
2
erf

(
x − mX√

2σX

)
.

While the CDF of the Gaussian random variables is defined using different functions by various authors,
this function is used in these notes because it is commonly used in math software packages (e.g., Matlab).
Three properties of the erf function important for finding probabilities associated with Gaussian random
variables are given as

erf (∞) = 1
erfc (z) = 1 − erf (z)

erf (−z) = −erf (z) .

Some approximations to the erfc (x) are available and they provide insight into the probability of
error in digital communications. Two upperbounds are

erfc (x) ≤ exp
[
−x2

]
= a1(x) (7.28)

erfc (x) ≤ 1√
πx

exp
[
−x2

]
= a2(x). (7.29)

These approximations and erfc (x) are plotted in Fig. 7.11.

7.3.2 Uniform A Priori Probability

Considering the case of the uniform probabilities with the MLBD demonstrates the simplicity of this
calculation. Examining (7.26) and using (7.16) gives

P
(
Î = 1 |I = 0

)
=

∫ ∞

γ
fVI |0 (vI |I = 0) dvI

=
∫ ∞

γ

1√
2πσ2

NI

exp

[
−(vI − m0,I(Tp))

2

2σ2
NI

]
dvI (7.30)

This probability can be simplified using the following change of variables

t =
vI − m0,I(Tp)√

2σNI

dt =
dvI√
2σNI

(7.31)

to give

P
(
Î = 1 |I = 0

)
=

1
2
erfc

(
γ − m0,I(Tp)√

2σNI

)
=

1
2
erfc

(
m1,I(Tp) − m0,I(Tp)

2
√

2σNI

)
(7.32)
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Figure 7.11: The erfc() and two approximations.

where the value for γ given in (7.23) is used to get the last expression. Similiar manipulations give

P
(
Î = 0 |I = 1

)
=

1
2
erfc

(
m1,I(Tp) − m0,I(Tp)

2
√

2σNI

)
(7.33)

and consequently the BEP is also

PB(E) =
1
2
erfc

(
m1,I(Tp) − m0,I(Tp)

2
√

2σNI

)
(7.34)

Design Task 2 is complete; we have found the performance of the MLBD given x0(t), x1(t) and H(f)
for the uniform prior distribution case. Results for a nonuniform prior distribution are similiar.

Some observations about the MLBD performance are in order here.

Definition 7.9 The effective signal–to–noise (SNR) ratio for MLBD is

η =
(

m1,I(Tp) − m0,I(Tp)
2
√

2σNI

)2

Note the following

1. PB(E) = 1
2erfc

(√
η
)
,

2. PB(E) is monotone decreasing in η, in fact (7.28) indicates PB(E) behaves like 1
2 exp [−η] for

moderately large η

3. Maximizing η will minimize PB(E),

4. For a fixed x0(t) and x1(t) the only quantity that effects the value of η which is under control of
the communication system designer is the filter response (h(t) or H(f)).
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7.4 Filter Design

Considering the performance characteristic highlighted in the previous section leads to Design Task 3.
This task is stated; given x0(t) and x1(t) design the filter, H (f), that minimizes the BEP or equivalently
maximizes η.

7.4.1 Maximizing Effective SNR

To solve this problem η must be expressed in terms of H(f). To this end note

2σ2
NI

= N0

∫ ∞

−∞
|H(f)|2 df (7.35)

and

m1(Tp) − m0(Tp) =
∫ ∞

−∞
(x1(λ) − x0(λ))h(Tp − λ)dλ

= F−1 {(X1(f) − X0(f))H(f)}
∣∣
t=Tp

=
∫ ∞

−∞
(X1(f) − X0(f))H(f) exp [j2πfTp] df. (7.36)

To get a more compact notation we define

b10(t) = x1(t) − x0(t) B10(f) = X1(f) − X0(f).

Consequently

η =
(

m1,I(Tp) − m0,I(Tp)
2
√

2σNI

)2

=

(
�

{∫ ∞
−∞ B10(f)H(f) exp [j2πfTp] df

})2

4N0

∫ ∞
−∞ |H(f)|2 df

. (7.37)

The form of H(f) which maximizes the effective SNR is not readily apparent in examining (7.37)
but interesting results can be obtain by using Schwarz’s Inequality.

Theorem 7.1 (Schwarz’s Inequality) For two functions X(f) and Y (f) where
∫ ∞
−∞ |X(f)|2 df < ∞

and
∫ ∞
−∞ |Y (f)|2 df < ∞.∣∣∣∣∫ ∞

−∞
X(f)Y ∗(f)df

∣∣∣∣2 ≤
∫ ∞

−∞
|X(f)|2 df

∫ ∞

−∞
|Y (f)|2 df

where equality holds only if X(f) = AY (f) where A is a complex constant.

Making the assignment

X(f) = H(f) Y (f) = B∗
10(f) exp[−j2πfTp] (7.38)

and noting

(�(X))2 ≤ |X|2 = (�(X))2 + (�(X))2 (7.39)

Schwarz’s inequality results in the following inequality for the effective SNR

η =

(
�

{∫ ∞
−∞ B10(f)H(f) exp [j2πfTp] df

})2

4N0

∫ ∞
−∞ |H(f)|2 df

≤ 1
4N0

∫ ∞

−∞
|B10(f)|2 df. (7.40)
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a) The effective signal, b10(t) b) The matched filter impulse response,
h(t) = b∗10(Tp − t)

Figure 7.12: The effective signal, b10(t) and the matched filter impulse response, b∗10(Tp − t) for the two
example waveforms considered in Fig. 7.1.

η can be maximized by selecting

H(f) = CB∗
10(f) exp[−j2πfTp] (7.41)

where C is a real constant. It should be noted that the constant now needs to be real so that

�
{∫ ∞

−∞
B10(f)H(f) exp [j2πfTp] df

}
= 0 (7.42)

such that(
�

{∫ ∞

−∞
B10(f)H(f) exp [j2πfTp] df

})2

=
∣∣∣∣{∫ ∞

−∞
B10(f)H(f) exp [j2πfTp] df

}∣∣∣∣2 . (7.43)

Schwarz’s inequality has provided two powerful results: the optimum filter (7.41) and the maximum
effective signal to noise ratio (7.40). From the perspective of performance the constant C makes no
difference so without loss of generality the remainder of the discussion will assume C = 1.

7.4.2 The Matched Filter

Since the optimum filter has the form in the frequency domain given in (7.41) the impulse response is
given as

h(t) = F−1 {B∗
10(f) exp[−j2πfTp]} = b∗10(Tp − t) = x∗

1(Tp − t) − x∗
0(Tp − t). (7.44)

For MLBD the effective signal is b10(t) = x1(t) − x0(t) and the optimum filter impulse response is
effectively a time reversed, time shifted, conjugate of this effective signal. This filter is known as the
matched filter since it is matched to the effective signal and the form for this SNR maximizing filter
was first identified by North [Nor43]. An example with the waveforms considered in Fig. 7.1 is shown
in Fig. 7.12. It should be noted that having the sample time at Tp makes the matched filter a causal
filter. Design Task 3 is complete; given x0(t) and x1(t), the filter, H (f) that minimizes the bit error
probability (BEP) has been found.

Example 7.5: Consider the signals shown in Fig. 7.1 with a matched filter. The signals and the noiseless
output of the matched filter are plotted in the Fig. 7.13. The vertical line represents t = Tp.
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Figure 7.13: The transmitted signals and the noiseless output of matched filter for Example 7.5.

7.4.3 MLBD with the Matched Filter

More insight into digital communication receiver design can be achieved by looking in detail at the
resulting demodulation structure when using a matched filter demodulator. First examine the matched
filter output,

Vz(Tp) =
∫ ∞

−∞
Yz(τ)h(Tp − τ)dτ =

∫ ∞

−∞
Yz(τ) (x∗

1(τ) − x∗
0(τ)) dτ. (7.45)

Examining (7.45) shows that the optimum filter correlates the input signal plus noise, Yz(t), with the
conjugate of the difference between the possible transmitted signals. Consequently the optimum filter
is often denoted and implemented as a correlation operation.

The output noise, Nz(t), is the same regardless of which bit is transmitted so it will be characterized
first. Recall the output noise is given as

Nz(Tp) =
∫ ∞

−∞
Wz(τ)h(Tp − τ)dτ =

∫ ∞

−∞
Wz(τ) (x∗

1(τ) − x∗
0(τ)) dτ. (7.46)

Since Wz(t) is a complex AWGN, the output noise, Nz(Tp) will be a complex Gaussian RV. Using
standard theory the ouput variance of this RV is given as

2σ2
NI

= N0

∫ ∞

−∞
|h(τ)|2 dτ = N0

∫ ∞

−∞
|x∗

1(Tp − τ) − x∗
0(Tp − τ)|2 dτ

= N0

(∫ ∞

−∞
|x1(τ)|2 dτ +

∫ ∞

−∞
|x0(τ)|2 dτ − 2�

{∫ ∞

−∞
x1(τ)x∗

0(τ)dτ

})
= N0

(
E1 + E0 − 2�

{∫ ∞

−∞
x1(τ)x∗

0(τ)dτ

})
. (7.47)

In a similiar fashion the conditional means of the matched filter outputs for the two possible trans-
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mitted signals, m1(Tp) and m0(Tp), are easily derived. If I = 1 then

m1(Tp) =
∫ ∞

−∞
x1(τ)h(Tp − τ)dτ =

∫ ∞

−∞
x1(τ) (x∗

1(τ) − x∗
0(τ)) dτ

= E1 −
∫ ∞

−∞
x1(τ)x∗

0(τ)dτ. (7.48)

The conditional mean of the decision statistic when I = 1 is

m1,I(Tp) = E1 −�
{∫ ∞

−∞
x1(τ)x∗

0(τ)dτ

}
. (7.49)

Likewise If I = 0 then

m0(Tp) =
∫ ∞

−∞
x0(τ)h(Tp − τ)dτ =

∫ ∞

−∞
x0(τ) [x∗

1(τ) − x∗
0(τ)] dτ

=
∫ ∞

−∞
x0(τ)x∗

1(τ)dτ − E0 =
(∫ ∞

−∞
x1(τ)x∗

0(τ)dτ

)∗
− E0. (7.50)

The conditional mean of the decision statistic when I = 0 is

m0,I(Tp) = �
{∫ ∞

−∞
x1(τ)x∗

0(τ)dτ

}
− E0. (7.51)

The optimum decision threshold with matched filter processing is

γ =
m1,I(Tp) + m0,I(Tp)

2
=

E1 − E0

2
. (7.52)

Consequently when matched filter processing is utilized all important quantities in the receiver are a
function of the energy of the two signals used to represent the bit values, E1 and E0, and

∫ ∞
−∞ x1(τ)x∗

0(τ)dτ .
Since the quantity

∫ ∞
−∞ x1(τ)x∗

0(τ)dτ appears many times throughout discussions of digital commu-
nications systems a definition will be introduced to simplify the notation.

Definition 7.10 The signal correlation coefficient between two deterministic signals, xi(t) and xj(t) is

ρij =

∫ ∞
−∞ xi(τ)x∗

j (τ)dτ√
EiEj

.

Using this definition gives

2σ2
NI

= N0

(
E1 + E0 − 2

√
E1E0�{ρ10}

)
(7.53)

m1,I(Tp) = E1 −
√

E1E0�{ρ10} (7.54)

m0,I(Tp) =
√

E1E0�{ρ10} − E0. (7.55)

Using these simplified forms for the important parameters in the MLBD with matched filter processing
allows us to gain some insight into the signal design problem.

Example 7.6: Continuing with Example 7.5, Fig. 7.14 shows a sample path of V0(t) (top left) and
a sample path of V1(t) (bottom left) for the matched filter with Eb/N0 = 10dB. These sample paths
clearly behave like a signal, mi(t), plus a noise. A histogram of 4000 samples of the filter output are
also shown Fig. 7.14. This histogram shows imperically that the Gaussian PDF is correct model for
fVI |i (vI |I = i). Since the decision threshold is halfway between the two means of the Gaussian PDF this
figure also shows that the matched filter produces a better bit error performance than the non-optimal
filter considered in Example 7.4. It should also be noted that E0 = 0.5Tp, E0 = Tp, and ρ10 = 0 and
consequently m1,I(Tp) = E1 and m0,I(Tp) = −E0 and these results are reflected in the matched filter
output signals shown in Fig. 7.14.
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Figure 7.14: Sample paths of the matched filter outputs for each of the possible transmitted signals and
histograms of the matched filter output samples.

7.4.4 More Insights on the Matched Filter

Two questions often arise with students after they read the previous sections. The two questions are

1. Why is the �[•] operator needed in the demodulator?

2. Could you do better by looking at more than one sample?

Understanding the answer to these questions and the optimal demodulator is obtained by looking at the
characteristics of the signals at the matched filter outputs. First let’s break the matched filter into two
filters as shown in Fig. 7.15 and ignore the noise to gain some insight. The two filters are now matched
to each of the two possible transmitted waveforms and the output signals when xj(t) is transmitted are

v0,j(t) =
∫ Tp

0
xj(λ)x∗

0(Tp − t + λ)dλ (7.56)

v1,j(t) =
∫ Tp

0
xj(λ)x∗

1(Tp − t + λ)dλ. (7.57)

Note that at t = Tp

vj,j(Tp) =
∫ Tp

0
|xj(λ)|2dλ (7.58)

so that the signal received at each time is derotated into a positive real signal before the integration is
performed. So in the filter matched to the signal sent it is clear the output sample will be vjj(Tp) =
Ej +j0, while in the filter not matched to the signal sent the output sample will be vj̄j(Tp) = ρjj̄

√
EjEj̄ .

Recall that |ρjj̄ | ≤ 1 so vjj(Tp) can be viewed as the signal of interest out of the matched filter and
vj̄j(Tp) can be viewed as an interference. The signal of interest is a real valued signal since the matched
filter perfectly derotates the signal to which it is matched. This perfect derotation characteristic of the
matched filter is why only the real part of the output of the matched filter is sufficient for optimum
demodulation.
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Figure 7.15: The two filter representation of the matched filter to the effective signal.

It is also clear in looking at (7.56) that the matched filter uses the entire transmitted signal to
produce the decision statistic. Since the received signal is correlated with a version of the transmitted
signal, the matched filter output is essentially a combination of the received signal over the entire
support of the transmitted signal. This optimal filtering produces out a signal proportional to the
energy of the transmitted signal and obviates the need to take more than one sample. Consequently
using the matched filter demodulator makes the real part of the matched filter output sampled at t = Tp

a sufficient statistic for demodulation. The simplicity and optimality of the demodulator are striking.

7.5 Signal Design

Design Task 4, the signal design task, can now be addressed. This signal design task is stated as: given
the optimum demodulator, design x0(t) and x1(t) to optimize performance. The results of the previous
section indicate that performance of the binary detector is a function of E1, E0, and ρ10. Performance
of digital communication systems is most often quantified by the average energy per transmitted bit
given as

Eb =
E1 + E0

2
.

Throughout the remainder of the course Eb will be used in characterizing performance.
To bring further insight to the discussion it is useful to introduce a definition

Definition 7.11 The Euclidean square distance between two continuous time signals, xi(t) and xj(t)
is

∆E(i, j) =
∫ ∞

−∞
|xi(t) − xj(t)|2 dt

It should be noted that

∆E(i, j) =
∫ ∞

−∞
|xi(t)|2 dt +

∫ ∞

−∞
|xj(t)|2 dt −

∫ ∞

−∞
xi(t)x∗

j (t)dt −
∫ ∞

−∞
xj(t)x∗

i (t)dt (7.59)

= Ei + Ej − 2
√

EiEj�{ρij} . (7.60)

The performance and signal design task can now be formulated using the Euclidean square distance.
The effective SNR with matched filter processing can be expressed with the Rayleigh energy theorem
as

η =
1

4N0

∫ ∞

−∞
|B10(f)|2 df =

1
4N0

∫ ∞

−∞
|b10(t)|2 dt (7.61)
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Using the concept of the Euclidean square distance this effective SNR reduces to

η =
1

4N0

∫ ∞

−∞
|x∗

1(Tp − t) − x∗
0(Tp − t)|2 dt =

∆E(1, 0)
4N0

. (7.62)

Consequently the BEP for matched filtering processing is given as

PB(E) =
1
2
erfc

√
∆E(1, 0)

4N0

 (7.63)

The preceeding results demonstrate that the only parameter necessary to consider to optimize a binary
signal set is the square Euclidean distance between the two possible transmitted signals. Equivalently,
the square Euclidean distance is determined by the signal energies and the signal correlation coefficient.

Some examples will help illustrate the ideas of signal design. The “uneducated” masses typically
think that digital communications occurs with the following waveforms

x1A(t) =


√

2Eb

Tp
0 ≤ t ≤ Tp

0 elsewhere
(7.64)

x0A(t) = 0 (7.65)

This particular signal set has E1 = 2Eb, E0 = 0 and ρ10 = 0. The resulting squared Euclidean distance
is ∆E(1, 0) = 2Eb and the performance is given as

PB(E) =
1
2
erfc

(√
Eb

2N0

)
. (7.66)

Performance can be improved by increasing the energy in x0(t) and simultaneously decreasing the ρ10.
For example the binary set of waveforms

x0B(t) =


√

Eb

Tp
0 ≤ t ≤ Tp

0 elsewhere
(7.67)

x1B(t) =

 −
√

Eb

Tp
0 ≤ t ≤ Tp

0 elsewhere
(7.68)

has E1 = Eb, E0 = Eb and ρ10 = −1 and ∆E(1, 0) = 4Eb. For the same average, energy signal set
B provides the same performance as signal set A in an environment where the noise spectral density
is twice as high. As communication engineers we are interested in the performance of the systems we
design for varying noise levels hence signal set B is denoted as having a 3dB performance gain over
signal set A. Fig. 7.16 shows the resulting square Euclidean distance versus signal energy for a fixed ρ10

and with Eb = 1. It is clear the signal set considered in (7.67) and (7.68), E1 = E0 = Eb and ρ10 = −1
and ∆E(1, 0) = 4Eb, provides the best performance. The situation where x0(t) = −x1(t) is common in
digital communication and it often referred to as antipodal signaling. Also, in general, higher energy
and lower signal correlation will produce better performance.

Design Task 4 is complete; we have found the best signal designs for matched filter MLBD. The
interesting characteristics of the signal design problem is that performance is only a function of the
squared Euclidean distance and that the resulting optimum signal design is not unique. There are a
infinite number of signal sets that achieve the same performance. Further optimization will have to be
accomplished considering other parameters besides performance.
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Figure 7.16: Square Euclidean distance versus E1. Eb=1.

7.6 Spectral Characteristics

For single bit transmission the average energy spectral density is straightforward to compute. Given
the framework used here and the definition of the average energy spectrum density given in (6.5) it is
apparent that

DXz(f) = π0Gx0(f) + π1Gx1(f) (7.69)

For example, for the signal set considered in the last section given as

x0(t) =


√

Eb

Tp
0 ≤ t ≤ Tp

0 elsewhere
(7.70)

x1(t) =

 −
√

Eb

Tp
0 ≤ t ≤ Tp

0 elsewhere
(7.71)

has

Gx1(f) = EbTp

(
sin (πfTp)

πfTp

)2

Gx0(f) = EbTp

(
sin (πfTp)

πfTp

)2

(7.72)

The resulting energy spectrum for this case is plotted in Fig. 7.17 for EbTp = 1. It should be noted
that the bandwidth in any definition is inversely proportional to the length of the pulse. Engineering
intuition says that faster transmission rates (smaller Tp) requires more bandwidth. The average energy
spectrum gives a way to quantify engineering intuition.
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Figure 7.17: The average energy spectrum. π0 = π1 = 0.5.

7.7 Examples

The chapter is concluded by considering two obvious and classical examples of carrier modulated digital
communication: binary frequency shift keying (BFSK) and binary phase shift keying (BPSK).

7.7.1 Frequency Shift Keying

BFSK modulation sends the bit of information by transmitting a carrier pulse of one of two frequencies.
This is an obvious simple signalling scheme and one used in many early modems. The signal set is given
as

x0(t) =


√

Eb

Tp
exp [j2πfdt] 0 ≤ t ≤ Tp

0 elsewhere
(7.73)

x1(t) =


√

Eb

Tp
exp [−j2πfdt] 0 ≤ t ≤ Tp

0 elsewhere
(7.74)

where fd is known as the frequency deviation. The frequency difference between the two carrier pulses
is 2fd. It is apparent that each waveform in a BFSK signal set has equal energy that has here been set
to E1 = E0 = Eb. The vector diagram for the two waveforms for BFSK with fd = 0.25/Tp and Eb = Tp

is shown in Fig. 7.18. The plots of the bandpass waveforms for fd = 1/Tp and fc = 3/Tp and Eb = Tp is
shown in Fig. 7.19. This subsection will consider the optimum demodulator and the design of optimum
signal sets for BFSK.

BFSK is interesting to investigate as the resulting characteristics are counter to many engineer’s
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Figure 7.18: The vector diagram for the two BFSK waveforms. fdTp = 0.25 and Eb = Tp.

Figure 7.19: The bandpass BFSK waveforms. fdTp = 1, fcTp = 3, and Eb = Tp.

c©1996-2004 - Michael P. Fitz - The University of California Los Angeles



7.7 Examples 143

intuition. The matched filter impulse response is given as

h(t) = x∗
1(Tp − t) − x∗

0(Tp − t)

= j2

√
Eb

Tp
sin (2πfd(Tp − t)) 0 ≤ t ≤ Tp

= 0 elsewhere (7.75)

Note since �{x1(t)} = �{x0(t)} the optimum demodulator only uses the imaginary part of the received
signal to differentiate between the two bits, i.e.,

vI(Tp) = −2

√
Eb

Tp

∫ Tp

0
YQ(t) sin (2πfdt) dt. (7.76)

For π0 = π1 = 0.5 (MLBD), the optimum threshold is given as

γ =
E1 − E0

2
= 0. (7.77)

Consequently the threshold test is very simple for the MLBD of a BFSK modulation, i.e.,

∫ Tp

0
YQ(t) sin (2πfdt) dt

Î=0
>
<

Î=1

0. (7.78)

The important parameter for determining the performance of the optimum demodulator is the
square Euclidean distance. The only parameter that is not specfied in the BFSK model is the frequency
difference between the two tones in the modulation. The parameter fd determines this difference and
also will determine the Euclidean distance. In general,

∆E(1, 0) = E1 + E0 − 2�
{√

E1E0ρ10

}
.

For BFSK E0 = E1 = Eb and

ρ10 =

∫ ∞
−∞ x1(t)x∗

0(t)dt

Eb
=

1
Tp

∫ Tp

0
exp [−j4πfdt] dt.

=
sin (4πfdTp)

4πfdTp
− j

cos (4πfdTp) − 1
4πfdTp

. (7.79)

Consequently the Euclidean distance is given as

∆E(1, 0) = 2Eb

(
1 − sin (4πfdTp)

4πfdTp

)
(7.80)

and the BEP performance is

PB(E) =
1
2
erfc

√
∆E(1, 0)

4N0

 =
1
2
erfc

(√
Eb

2N0

(
1 − sin (4πfdTp)

4πfdTp

))
. (7.81)

Fig. 7.20 has a plot of the resulting correlation and the Euclidean distance as a function of fd.
The frequency offset significantly affects the performance. The best performance is obtained for

fd ≈ 3
8Tp

which produces �{ρ10} ≈ −0.21. In other words the performance of coherent BFSK is
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Figure 7.20: Correlation coefficient and Euclidean squared distance for BFSK.

optimized when the two frequencies used in the modulation are different by approximately 0.75/Tp

Hz. This performance is 2.2dB from the optimal modulation ∆E(1, 0) = 4Eb. Hence BFSK is not a
modulation of choice when high performance is the driving constraint. Often engineering intuition leads
one to believe that performance is optimized when the frequency difference is large. At large frequency
offsets the signal set converges to being orthogonal (�{ρ10} = 0) and this produces 0.8dB degradation
in the performance compared to the optimal BFSK. Orthogonal BFSK is often used for a variety of
practical reasons. Coherent demodulation for ρ10 = 0 produces a BEP of

PB(E) =
1
2
erfc

(√
Eb

2N0

)
. (7.82)

The bit error probability is plotted versus Eb/N0 in Fig. 7.21 for the case of optimal signaling (denoted
BPSK5), optimal BFSK and orthogonal BFSK. The minimum fd that still achieves an orthogonal signal
set is fd = 0.25/Tp. This form of BFSK modulation has some practical advantages when transmitting
more than one bit of information and hence has been dubbed minimum shift keying (MSK) modulation.
This modulation will be examined in more detail in the sequel.

The spectral efficiency of BFSK can be evaluated by looking at the average energy spectral density
per bit. Recall the average energy spectral density per bit is given for binary modulations as

DXz(f) = π0Gx0(f) + π1Gx1(f) (7.83)

The energy spectrum of the two individual waveforms is given as

Gx0(f) = EbTp

(
sin (π(f − fd)Tp)

π(f − fd)Tp

)2

Gx1(f) = EbTp

(
sin (π(f + fd)Tp)

π(f + fd)Tp

)2

(7.84)

The resulting energy spectrum for BFSK is plotted in Fig. 7.22 for various fd for EbTp = 1. The
bandwidth of the BFSK signal is a function of both fd and Tp. A smaller Tp produces a wider bandwidth
while a larger fd produces a wider bandwidth. It should be noted that with this form of BFSK the

5Why, will be apparent next section.
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Figure 7.21: Probablity of error for some example binary modulations.

transmission rate is Wb = 1/Tp. In examining Fig. 7.22 the bandwidth of BFSK for the optimal
performance is about BT = 1.5/Tp (i.e., 3dB bandwidth) so that the spectral efficiency of BPSK is
about ηB = 0.67 bits/s/Hz.

The advantages of BFSK are summarized as

• Very simple to generate. Simply gate one of two oscillators on depending on the bit to be sent.

• Simple demodulation structure.

The disadvantages of BFSK are summarized as

• Performance is not optimum.

• Occupies a relatively wide bandwidth.

7.7.2 Phase Shift Keying

BPSK modulation sends the bit of information by transmitting a carrier pulse of one of two phases.
The signal set is given as

x0(t) =

√
Eb

Tp
0 ≤ t ≤ Tp

= 0 otherwise (7.85)

x1(t) =

√
Eb

Tp
exp [jθ] 0 ≤ t ≤ Tp

= 0 otherwise (7.86)
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Figure 7.22: The average energy spectral density of BFSK for various fd. π0 = π1 = 0.5.

where θ is known as the phase deviation. It is apparent that each waveform in a BPSK signal set has
equal energy that has here been set to E1 = E0 = Eb. The vector diagram for the two waveforms for
BPSK with θ = π and Eb = Tp is shown in Fig. 7.23. The plots of the bandpass waveforms for θ = π,
Eb = Tp and fc = 3/Tp is shown in Fig. 7.24.

This subsection will consider the optimum demodulator and the design of optimum signal sets for
BPSK. The matched filter impulse response is given as

h(t) = x∗
1(Tp − t) − x∗

0(Tp − t)

=

√
Eb

Tp
(exp(−jθ) − 1) 0 ≤ t ≤ Tp

= 0 otherwise (7.87)

The voltage for the threshold test is

vI(Tp) = �
{

(exp(−jθ) − 1)

√
Eb

Tp

∫ Tp

0
Yz(t)dt

}

= (cos(θ) − 1)

√
Eb

Tp

∫ Tp

0
YI(t)dt + sin(θ)

√
Eb

Tp

∫ Tp

0
YQ(t)dt (7.88)

For π0 = π1 = 0.5 (MLBD), the optimum threshold is given as

γ =
E1 − E0

2
= 0. (7.89)

Conseqeuntly the threshold test is very simple (compare to zero) for the MLBD of a BPSK modulation.
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Figure 7.23: The vector diagram for the two BPSK waveforms. θ = π and Eb = Tp.

Figure 7.24: The bandpass BPSK waveforms. θ = π, fcTp = 3, and Eb = Tp.
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The important parameter for determining the performance of the optimum demodulator is the square
Euclidean distance. The only parameter that is not specfied in the BPSK model is the phase difference
between the two signals. The parameter θ determines the Euclidean distance. Recall again,

∆E(1, 0) = E1 + E0 − 2�
{√

E1E0ρ10

}
.

For BPSK E0 = E1 = Eb and

ρ10 = exp(jθ). (7.90)

Consequently the Euclidean distance is given as

∆E(1, 0) = 2Eb (1 − cos(θ))

and the BEP performance is

PB(E) =
1
2
erfc

√
∆E(1, 0)

4N0

 =
1
2
erfc

(√
Eb

2N0
(1 − cos(θ))

)
. (7.91)

It is obvious that optimum performance is obtained for θ = π. The optimum signal set has x1(t) =
−x0(t). Frankly, in BPSK modulation there is no reason to choose anything other than θ = π so in
the sequel this particular modulation will be denoted as BPSK. This signal set gives optimum BEP
performance. The optimum threshold test simplifies to

∫ Tp

0
YI(t)dt

Î=0
>
<

Î=1

0. (7.92)

The BEP is

PB(E) =
1
2
erfc

(√
Eb

N0

)
. (7.93)

The bit error probability is plotted versus Eb/N0 in Fig. 7.21. The spectral efficiency of BPSK can be
evaluated by looking at the average energy spectral density and this is plotted in Fig. 7.17. It should
be noted that with this form of BPSK the transmission rate is Wb = 1/Tp. In examining Fig. 7.17 the
bandwidth of BPSK is about BT = 1/Tp (i.e., 3dB bandwidth) so that the spectral efficiency of BPSK
is about ηB = 1 bits/s/Hz..

The advantages of BPSK are summarized as

• Very simple to generate.

• Simple demodulation structure.

• Optimum BEP performance

The one disadvantage of the BPSK signal set discussed in this section is that the spectral character-
istics might not be all that is desired. Method to improve the spectral characteristics will be discussed
in the homework.
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Figure 7.25: A comparison of the spectral efficiency of BPSK and BFSK with the upper bound.

7.7.3 Discussion

This section introduced two example modulations to transmit one bit of information: BFSK and BPSK.
These two modulations are the most common used binary modulations in engineering practice. BPSK
has the advantages in performance and spectral efficiency. BFSK has some advantages in complexity
that become more striking when synchronization issues are considered (which we will do in the sequel).
As a final point it is worth comparing the spectral efficiency performance of these two modulations
with the upperbounds provided by information theory (see Section 6.3). For the discussion in this text
we will denote reliable communication as being an error rate of 10−5. BPSK requires approximately
Eb/N0=9.5dB to achieve reliable communication while BFSK requires approximately Eb/N0=11.5dB.
These two operating points and the upper bound on the possible performance are plotted in Fig. 7.25.
It is clear from this figure that BPSK and BFSK result in performance far from the upper bound but
that should not concern the reader as there is still a lot of communication theory to explore.

7.8 Homework Problems

Problem 7.1. Consider a binary digital communication system with equally likely bits which is cor-
rupted by an additive white Gaussian noise of two-sided spectral density of N0/2. The two possible
transmitted signals are of the form

x0(t) =

√
Eb

Tp
exp [j(2πf0t + θ0)] 0 ≤ t ≤ Tp

= 0 elsewhere

x1(t) =

√
Eb

Tp
exp [j(2πf1t + θ1)] 0 ≤ t ≤ Tp

= 0 elsewhere (7.94)
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a) For f0 = 10Hz, θ0 = 0 and fc = 50Hz plot xc(t) when I = 0.

b) Give the average energy spectrum per bit Dxz(f) (as a function of f0 and f1).

c) Detail out the optimum demodulator. Give impulse responses for any filters and specify any
threshold tests.

d) Compute ρ01.

e) If f0 = f1 = 0, choose values for θ0 and θ1 to optimize the performance.

f) If θ0 = 0 and θ1 = 90◦ choose values for f0 and f1 to optimize the performance.

Problem 7.2. For MAPBD with m0,I(Tp) = 1, m1,I(Tp) = 6, and σ2
NI

= 2 (see Fig. 7.8)

a) Find the simplest form for MAPBD as a function of π0. (Hint: it is also a threshold test).

b) Compute and plot the PB(E) as a function of π0.

c) Note that π0 = 0.5 corresponds to MLBD. Plot the BEP performance if the MLBD was used for
π0 �= 0.5 and compare to the results in b).

d) Let σ2
NI

be arbitrary and interpret the resulting MAPBD derived in a) when σ2
NI

gets large (large
noise in observation) and when σ2

NI
gets small (little noise in observation). Does the detector

characteristics follow intuition? Why?

Problem 7.3. Consider BFSK considered in Section 7.7.1, and find the exact frequency separation
which optimizes performance. Note it is not exactly fd = 3

8Tp
.

Problem 7.4. Consider BFSK considered in Section 7.7.1 on an AWGN channel, and specify for
π0 �= 0.5

a) The optimum demodulator.

b) The optimum demodulator performance.

c) The spectral characteristics of the transmitted signal.

Consider the special case of π0 = 0.25 in detail and produced plots for parts b) and c).
Problem 7.5. In Problem 2.12 three pulse shapes were presented. Assume one bit is to be transmitted
on an AWGN channel and π0=0.5.

a) Pick two out of the three pulse shapes to represent the possible value of the bit being transmitted
in a single shot binary system such that the probability of bit error is minimized. Give the resulting
correlation coefficient and probability of error when the one sided noise spectral density is N0.

b) Antipodal signalling is the optimal binary communications design. Choose one of the three pulse
shapes to use in an antipodal binary communication system which would make the most efficient
use of bandwidth? Justify your answer.

Problem 7.6. Ethernet uses a biphase modulation to transmit data bits. Bi-phase modulation is a
baseband linear modulation where each bit, I, is transmitted with x0(t) = u(t) or x1(t) = −u(t) where
the pulse shape, u(t) given in Fig.7.26. Assume an AWGN channel and equally likely data bits.

a) Compute the resulting BEP.
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Figure 7.26: The pulse used in Ethernet.

b) If 1/Tp=10MHz and the Ethernet signal at the transmitter has a peak value of 1 volt (assume
a 1 Ω system) and the value of N0=-160dBm/Hz, find the amount of cable loss, Lc, that can
be tolerated and still achieve a 10−9 error rate. Note these conditions imply that in Figure 7.26√

Eu/Tp = Lc.

c) Compute the average energy spectrum per bit for the Ethernet modulation.

d) Postulate why this pulse shape was chosen for transmission over cables.

Problem 7.7. Recall that VSB modulation has the form xz(t) = xI(t)+j (hv(t) ⊗ xI(t)). Assume that
xI(t) is chosen from a BPSK signal set where the duration of the carrier pulse is given as T and that
the support for the quadrature modulation xQ(t) = hv(t)⊗ xI(t) is given as Tp > T . Find the simplest
form of the optimum demodulator and compute the resulting BEP.
Problem 7.8. A bandpass binary digital communication system with equally likely bits was designed
to have xz(t) = diu(t) where d0 = 1 and d1 = −1. The hardware implementation resulted in the actual
transmitted modulation symbols being d0 = 1 and d1 = exp

[
j 7π

8

]
.

a) If the demodulator was built to be optimum for the design waveforms, what would be the resulting
probability of error.

b) Give the optimum demodulation structure for the actual transmitted waveforms.

c) Give the performance for the optimum demodulator for the actual transmitted waveforms.

Problem 7.9. It is possible to construct a binary signaling set with ρ01 �= −1 which has better
performance than a signal set with ρ01 = −1. Construct two signal sets (one with ρ01 �= −1 and one
with ρ01 = −1) with the same Eb such that the ρ01 �= −1 signal set has a better performance when the
corrupting noise in an AWGN than the ρ01 = −1 signal set.
Problem 7.10. In this problem we consider a form of binary combined phase and frequency modulation.
Assume equally likely data bits and an AWGN at the receiver that corrupts the transmission. The two
possible baseband transmitted signals are

x0(t) =

√
Eb

Tp
exp

[
jπt

4Tp

]
0 ≤ t ≤ Tp

= 0 elsewhere (7.95)
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x1(t) =

√
Eb

Tp
exp

[
− jπt

4Tp
+ jθ

]
0 ≤ t ≤ Tp

= 0 elsewhere (7.96)

a) For fc = 4/Tp plot the bandpass signal corresponding to x0(t).

b Find the demodulator that minimizes the probability of bit error for a single bit transmission
given

Yz(t) = Xz(t) + Wz(t)

where Wz(t) is a complex additive white Gaussian noise of one-sided spectral density N0.

c) Give an exact expression for the bit error probability in terms of Eb, θ, and N0 for this signal set
and optimum demodulator. What is the value of θ that minimizes the probability of error?

d) Compute the average energy spectrum per bit. What is the spectral efficiency using the 3dB
bandwidth?

Problem 7.11. You are called in by Nokey to be a consultant to the design of a binary digital
communications system for use in an AWGN channel. With the assumpion of equally likely bits, one
waveform chosen was

x0(t) =
√

2 sin
(

2πt

Tp

)
0 ≤ t ≤ Tp

= 0 elsewhere

The engineers at Nokey are hotly debating between the following two waveforms as the second waveform.

x1a(t) =
√

2 cos
(

2πt

Tp

)
0 ≤ t ≤ Tp

= 0 elsewhere

and

x1b(t) = −1 0 ≤ t ≤ Tp

2
= 0 elsewhere

a) Select the better of the two waveforms for bit error performance and give the reasons for your
selection.

b) Give the optimum demodulation structure for both pairs of waveforms. Detail out the matched
filter response(s) and threshold tests for each possible pair of waveforms.

c) Which set of waveforms would have better spectral characteristics? Explain why.

Problem 7.12. Show that optimum demodulation for the signal model given in (7.2) is given by the
system shown in Fig. 7.27. Compute the value of γ(Lp).

c©1996-2004 - Michael P. Fitz - The University of California Los Angeles



Re •[ ] ˆ I 
H( f )

Filter Sampler
Threshold 

Test

Vz (t) VI(t)
Yz t( )

Tp +τ p

exp −[ ]j pφ
γ Lp( )

7.8 Homework Problems 153

Figure 7.27: The optimal demodulator for the signal model in (7.2).

Problem 7.13. In certain situations it is useful to hop to many different frequencies during transmission
of a bit (e.g., to avoid intentional or unintentional jamming). Consider such a communication system
where two hops are made during one bit transmission so that the transmitted signal has the form

Xz(t) =


Dz

√
Eb

Tp
exp [j2πf1t] 0 ≤ t ≤ Tp

2

Dz

√
Eb

Tp
exp [j2πf2t]

Tp

2 < t ≤ Tp

0 elsewhere

(7.97)

where Dz = di for I = i. Assume each bit value is equally likely and that the received signal is of the
form

Yz(t) = Xz(t) + Wz(t) (7.98)

where Wz(t) is a complex additive white Gaussian noise of one-sided spectral density N0.

a) Detail out the optimum demodulator and simplify as much as possible.

b) Give the bit error probability as a function of d0, d1, f1, and f2.

c) Optimize the performance with a selection of d0, d1, f1, and f2 under the constraint that Eb =
(E0 + E1)/2.

d) Is it possible to select frequencies f1 and f2, f1 �= f2 such that XP (t) is continuous. If yes give an
example.

e) Find and plot Dxz(f) for f1 = −2/Tp and f2 = 1.5/Tp.

Problem 7.14. In this problem we consider a form of baseband binary modulation where the signals
are restricted to be real and positive valued. Assume equally likely data bits and an additive white
Gaussian noise at the receiver that corrupts the transmission. Two possible sets of baseband transmitted
signals are signal set A

x0A(t) = CA 0 ≤ t ≤ Tp

= 0 elsewhere (7.99)

x1A(t) = 0 (7.100)
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and signal set B

x0B(t) = CB cos
(

πt

2Tp

)
0 ≤ t ≤ Tp

= 0 elsewhere (7.101)

x1B(t) = CB sin
(

πt

2Tp

)
0 ≤ t ≤ Tp

= 0 elsewhere (7.102)

a) What is the average energy per bit for these two signal sets (e.g., Eb(A) and Eb(B)) as a function
of CA and CB?

b) Find the demodulator that minimizes the probability of bit error for each signal set for Eb = 1 in
a single bit transmission given

Yz(t) = Xz(t) + Wz(t)

where Wz(t) is an additive white Gaussian noise of one-sided spectral density N0.

c) Which signaling scheme produces better performance for Eb(A) = Eb(B)=1. Quantify the increase
in SNR which would be necessary in the worse performing scheme to give the two schemes equal
performance.

d) How much loss in performance is incurred for the best of these two schemes compared to the
case of optimum signaling with Eb=1 where the signals are allowed to take positive and negative
values. Give an example set of two waveforms that achieves this optimum performance.

e) Find the average energy spectrum per bit for signal set A. Give a signal set defined over the same
interval [0, Tp] with the same performance as signal set A but with better spectral characteristics.
Be specific about exactly which spectral characteristics are better.

Problem 7.15. This problem is concerned with the transmission of one bit of information, I, by the
waveforms x0(t) and x1(t) that have energy Ex0 and Ex1 respectively during the time interval [0, Tp].
Assume demodulation is to be done in the presence of an additive white Gaussian noise, Wz(t), with
one-sided spectral density of N0. A common impairment in radio circuits is a DC offset added to the
signal (most often in either analog up or down conversion). Consequently the received signal has the
form

Yz(t) = C + xi(t) + Wz(t) (7.103)

where C is a known complex constant.

a) If C = 0 what are the optimum waveforms when the received average energy per bit is constrained
to be Eb? Sketch the maximum likelihood bit demodulator. Give the probability of bit error as a
function of Eb and N0.

b) For C �= 0 find E1 and E0 and Eb as a function of C.

c) Consider a maximum likelihood bit demodulator. For C �= 0 what are the optimum waveforms
when the received energy per bit is constrained to be Eb? Sketch the simplest maximum likelihood
bit demodulator. Detail out the filters and the threshold test.

d) Show a judicious choice of transmitted waveforms leads to a demodulator that is not a function
of C.
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Figure 7.28: A binary signal set.

e) For C �= 0 and the optimum waveforms from c) give the probability of bit error as a function of
Eb, C, and N0.

f) For C �= 0 formulate the maximum a posteriori bit demodulator.

g) For C �= 0 specify a set of waveforms x0(t) and x1(t) such that the spectral efficiency can be
argued to be near optimum.

Problem 7.16. A binary digital communication system uses the two waveforms in Fig. 7.28 to com-
municate a bit of information. Assume these signals are corrupted by an additive white Gaussian noise
with a two sided spectral density of N0/2 and that the bits are equally likely.

a) Sketch the simplest form for optimum bit demodulator.

b) Calculate E0, E1, and ρ10.

c) Calculate the Euclidean square distance between x0(t) and x1(t), ∆E(1, 0).

d) What is the resulting bit error probability

e) Keep one of either x0(t) or x1(t) and select a third signal x2(t) such that |x2(t)| ≤ 1 and x2(t)
is of length Tp to be used to transmit one bit of information such that the resulting bit error
probability for the optimum demodulation is as low as possible

Problem 7.17. Digital communication waveforms can often be viewed as analog communication wave-
forms with specific message waveforms.

a) To this end show that BFSK is equivalent to FM modulating one of two waveforms, i.e.,

xi(t) = Ac exp
[
j2πfk

∫ t

−∞
mi(λ)dλ

]
(7.104)

where

m0(t) =
{

1 0 ≤ t ≤ Tp

0 elsewhere
m1(t) =

{
−1 0 ≤ t ≤ Tp

0 elsewhere.
(7.105)

Identify fk and Ac.
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Figure 7.29: The two signals used in a binary modulation for IEEE 802.11b.

b) To this end show that BPSK is equivalent to DSB-AM modulating one of the two waveforms given
in (7.105). Identify Ac.

Problem 7.18. In the wireless local network protocol denoted IEEE 802.11b the lowest rate modulation
is a binary modulation using the two waveforms given in Fig. 7.29. Assume π0 = 0.5 and that τ1 =
1/11µs, τ2 = 2/11µs, and τ3 = 3/11µs .

a) Choose A such that the energy per bit is Eb.

b) What is the bit rate?

c) Keeping x0(t), can you choose a new waveform different than x1(t) that will have the same energy
and will improve the performance? If you can then show an example.

d) Assume equally likely bits and a complex additive white Gaussian noise with a one-sided power
spectral density N0 corrupts the received signal. Find the simplest form of the optimum demod-
ulator.

e) Find Dxz(f). Using the 3dB bandwidth what is the spectral efficiency of this modulation?

Problem 7.19. You have decided to try to predict the outcome of the next presidential race by using
your electrical engineering knowledge learned your communication theory class. You decide to use one
outcome of an approval rating poll for the current president in the summer before the election as the
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Figure 7.30: Two waveforms to send one bit.

observation. This observation is a random variable V . The minimum error rate decision rule was given
as

fV |1(v|I = 1)π1

Î=1
>
<

Î=0

fV |0(v|I = 0)π0. (7.106)

where π0 is the a priori probability that the challenging party wins and π1 is the a priori probability
the incumbent party wins. After careful analysis of the polling data you realize that

V = 53 + N I = 1 (when the incumbent party wins)
V = 49 + N I = 0 (when the challenging party wins) (7.107)

where N is a zero mean Gaussian random variable with E
[
N2

]
= 4.

a) If π0 = 0.4 find π1.

b) If π0 = 0.4 and v = 51 is observed, make the minimum probability of error decision.

c) If π0 = 0.5 and v = 50 is observed, make the minimum probability of error decision.

d) If π0 = 0.5 find the probability of error in the optimum test when the incumbent wins.

e) If v = 50 find the region for the values of π0 where the decision will be opposite of that found in
c).

Problem 7.20. The two waveforms in Fig. 7.30 are to be used to send one bit. Assume that π0 = 0.5.

a) Compute E0 and E1.

b) Specify the optimum demodulator structure. Clearly specify any threshold test, filter impulse
responses, and/or sample times.

c) Compute the Euclidean distance between x0(t) and x1(t).

Problem 7.13. This signalling scheme is known as frequency hopping.
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a) This modulation has the form Xi(t) = diu(t).

Q =
∫

Yz(t)u∗(t)dt

=
∫ Tp

2

0
Yz(t)

√
Eb

Tp
exp [−j2πf1t] dt +

∫ Tp

Tp
2

Yz(t)

√
Eb

Tp
exp [−j2πf2t] dt

Ei = |di|2Eu = |di|2Eb

T0 = �[d∗0Q] − |d0|2Eb

2

T1 = �[d∗1Q] − |d1|2Eb

2

b)

PB(E) =
1
2
erfc

√
∆E(1, 0)

4N0


where ∆E(1, 0) = |d0 − d1|2Eb

c)

d0 = 1
d1 = −1

=⇒ ∆E(1, 0) = 4Eb

d) Only point of possible discontinuity is at t = Tp/2.

2πf1
Tp

2
= 2πf2

Tp

2

2πf1
Tp

2
= 2πf2

Tp

2
+ 2πn where n is an integer

f2 = f1 +
2n

Tp
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e)

GX0(f) = |X0(f)|2 = |d0|2|U(f)|2

u(t) = u1(t) + u2(t)

u1(t) =

{√
Eb
Tp

exp[j2πf1t] 0 ≤ t ≤ Tp

2

0 elsewhere

u2(t) =

{√
Eb
Tp

exp[j2πf2t]
Tp

2 ≤ t ≤ Tp

0 elsewhere

U1(f) =
√

EbTp exp
[
−j

πfTp

2

]
sinc

(
(f − f1)Tp

2

)
U2(f) =

√
EbTp exp

[
−j

3πfTp

2

]
sinc

(
(f − f2)Tp

2

)
GX0(f) = |d0|2|U1(f) + U2(f)|2

GX1(f) = |d1|2|U1(f) + U2(f)|2

DXz(f) =
|d0|2 + |d1|2

2
|U1(f) + U2(f)|2

See Matlab code and plot in Fig. 7.31.

%
% Generating the spectrum of FH
% Author: M. Fitz
% Last modified: 1/28/04
%
close all
clear all
numpts=2048;
f_1=2;
f_2=-2;
freq=linspace(-4,4, numpts+1);
g_pr=zeros(1,numpts+1);
dum1=exp(-j*pi*freq/2).*sinc(freq-f_1*ones(1,numpts+1));
dum2=exp(-j*3*pi*freq/2).*sinc(freq-f_2*ones(1,numpts+1));
g_pr=(dum1+dum2).*conj(dum1+dum2);
g_prdb=10*log10(g_pr);
figure(1)
plot(freq,g_prdb)
axis([-4 4 -50 5])
xlabel(’Normalized frequency, fT_p’)
ylabel(’Normalized energy spectrum per bit’)
hold off
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Figure 7.31: Spectrum of a frequency hopped signal.
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7.9 Projects

7.9.1 Project 1

Project Goals

1. Design a pulse shape to meet a typical spectral emissions mask.

2. Compute the probability of error for both bandpass and baseband matched filtering in the presence
of sample time error to show the advantages of processing signals at baseband.

Design a pulse shape that can be used with binary pulse amplitude modulation having the form

xc(t) = ±u(t)
√

2 cos (2πfct)

that will meet the spectral emissions mask given in Fig. 7.32 but the pulse must not extend for longer
than 80µ s in time. The carrier frequency is 1MHz. This spectral emissions mask is the one used for
GSM handsets. GSM is a second generation cellular telephony standard. So this problem is one of great
practical interest.

Figure 7.32: Spectral emissions mask.

We have discussed one type of demodulator structures for bandpass signals; baseband matchd filters.
This structure match filters to the bandpass signal after creating the complex envelope of the received
signal (see Fig. 7.33). It is also possible to build a matched filter to the bandpass signal itself (h(t) =
x1c(Tp − t) − x0c(Tp − t))

a) Derive the form for and plot the output of the bandpass matched filter for all time when xc(t) =
u(t)

√
2 cos (2πfct).

b) Derive the form for and plot the output of the baseband matched filter when xc(t) = u(t)
√

2 cos (2πfct).

c) Compute the Eb/N0 required to produce a 10−5 error probability for the optimum demodulator.

d) If the bandpass matched filter is sampled at Tp + 2 × 10−7 instead of Tp compute the Eb/N0

required to produce a 10−5 error probability.
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Figure 7.33: The baseband demodulator for binary pulse amplitude modulation.

e) If the baseband matched filter is sampled at Tp + 2 × 10−7 instead of Tp compute the Eb/N0

required to produce a 10−5 error probability.

f) How big would the timing error have to be for the baseband matched filter to achieve the same
answer as in d)?
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Chapter 8

Transmitting More Than One Bit

People who buy communication systems rarely want to only transmit one bit. Consequently there is a
practical need to generalize the results from the previous chapter to the transmission of multiple bits.
The problem considered here is that we transmit Kb bits by selecting one of M = 2Kb waveforms. In
the literature this is often denoted M -ary digital communications. The demodulator has the task of
deciding which of these waveforms was sent in the presence of an additive noise. This chapter will
consider a variety of problems associated with transmitting more than one bit.

8.1 A Reformulation For One Bit Transmission

The optimum demodulator can be reformulated in several ways. Many of these reformulations give
insight for receiver structures we will consider in the sequel. Recall from Chapter 7 that the MLBD,
when Yz(t) = yz(t) is observed, has the form

vI(Tp) = �
[∫ ∞

−∞
yz(τ) (x∗

1(τ) − x∗
0(τ)) dτ

] Î=1
>
<

Î=0

E1 − E0

2
. (8.1)

Rearranging (8.1) gives

�
[∫ ∞

−∞
yz(τ)x∗

1(τ)dτ

]
− E1

2

Î=1
>
<

Î=0

�
[∫ ∞

−∞
yz(τ)x∗

0(τ)dτ

]
− E0

2
. (8.2)

The form of the MLBD in (8.2) which forms a decision statistic for each signal by computing the output
of a matched filter to the transmitted signal and adding an energy correction term will frequently appear
in the sequel. In fact to simplify the discussion the following definition is useful.

Definition 8.1 The maximum likelihood metric for I = i is

Ti = �
[∫ ∞

−∞
yz(τ)x∗

i (τ)dτ

]
− Ei

2
. (8.3)

Using this definition allows a reformulation of the MLBD as

T1

Î=1
>
<

Î=0

T0. (8.4)
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Equation (8.4) gives a particularly insightful form of the decision process: form the maximum likelihood
metric for each bit value and choose to decode the bit value corresponding to the largest metric.

The MAPBD can similarly take other useful forms. Multiplying both sides of (8.2) by 2/N0 and
taking the exponential gives another form for the MLBD, i.e.,

exp
[

2
N0

�
[∫ ∞

−∞
yz(τ)x∗

1(τ)dτ

]
− E1

N0

] Î=1
>
<

Î=0

exp
[

2
N0

�
[∫ ∞

−∞
yz(τ)x∗

0(τ)dτ

]
− E0

N0

]
. (8.5)

The justification of why the constant term is 2/N0 is provided in a book on detection theory [Poo88]
and briefly highlighted in Appendix A. The generalization to unequal priors has the MAPBD taking
the form

exp
[

2
N0

�
[∫ ∞

−∞
yz(τ)x∗

1(τ)dτ

]
− E1

N0

]
π1

Î=1
>
<

Î=0

exp
[

2
N0

�
[∫ ∞

−∞
yz(τ)x∗

0(τ)dτ

]
− E0

N0

]
π0. (8.6)

Using the maximum likelihood metric gives the MAPBD as

exp
[
2T1

N0

]
π1

Î=1
>
<

Î=0

exp
[
2T0

N0

]
π0. (8.7)

In fact this demodulator structure can be viewed as being equivalent to computing the APP for each of
the two possible bits given the receiver input and then selecting the bit value that corresponds to this
maximum, i.e.,

P (I = 1 |yz(t))
Î=1
>
<

Î=0

P (I = 0 |yz(t)) . (8.8)

where yz(t) is the observed receiver input. Forms for the optimal detector given in (8.5) and (8.6) will
be used often in the sequel to form optimum detectors in some special cases.

8.2 Optimum Demodulation

Now we want to consider the digital communication system design problem of transmitting more than
one bit of information. In the sequel Kb shall denote the number of bits to be transmitted and the bit
sequence is denoted

�I = [I(1) I(2) . . . I(Kb)]
T (8.9)

where I(k) take values 0,1. For simplicity of notation a particular sequence of bits can be designated by
the numeric value the bits represent, i.e., �I = i, i ∈ {0, . . . , M − 1} where M = 2Kb . To represent the
M values the bit sequence can take, M different analog waveforms should be available for transmission.
Denote by xi(t), i ∈ {0, . . . , M − 1} the waveform transmitted when �I = i is to be transmitted. Here
again we will assume the analog waveforms have support on t ∈ [0, Tp]. Given this problem formulation
we want to extend the results obtained in the previous chapter. It is worth noting that this problem
formulation gives a bit rate of Wb = Kb/Tp bits per second. The average energy per bit is given as

Eb =
1

Kb

M−1∑
i=0

πiEi (8.10)
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where again Ei is the energy of waveform xi(t).

Example 8.1: Consider the case of Kb = 3, the bits and the words are enumerated as

I(1) I(2) I(3) i
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

Example 8.2: Here we consider a modulation known as pulse width modulation with Kb = 2. This
modulation embeds information in the width of the pulse that is transmitted. This is a popular baseband
modulation in certain applications where positive logic level signals are desired in the transmitter. The
transmitted signals are given as

x0(t) =

{ √
32Eb
10Tp

0 ≤ t ≤ Tp/4

0 elsewhere
x1(t) =

{ √
32Eb
10Tp

0 ≤ t ≤ Tp/2

0 elsewhere
(8.11)

x2(t) =

{ √
32Eb
10Tp

0 ≤ t ≤ 3Tp/4

0 elsewhere
x3(t) =

{ √
32Eb
10Tp

0 ≤ t ≤ Tp

0 elsewhere.
(8.12)

8.2.1 Optimum Word Demodulation Receivers

A first receiver to be considered is the maximum a posteriori word demodulator (MAPWD). This
MAPWD can again be shown to be the minimum word error probability receiver using Bayes detection
theory. A straightforward generalization of (8.8) leads to

�̂I = arg max
i∈{0,... ,M−1}

P
(
�I = i |yz(t)

)
(8.13)

where the arg max notation refers to the particular binary word that has the maximum APP. This is
the obvious generalization of binary MAP detection to the M-ary decision problem. Using the results
of the previous section this MAP decoding rule becomes

�̂I = arg max
i∈{0,... ,M−1}

exp
[

2
N0

�
[∫ ∞

−∞
yz(τ)x∗

i (τ)dτ

]
− Ei

N0

]
πi

= arg max
i∈{0,... ,M−1}

exp
[

2
N0

� [vi(Tp)] −
Ei

N0

]
πi (8.14)

= arg max
i∈{0,... ,M−1}

exp
[
2Ti

N0

]
πi (8.15)

where

Vi(t) =
∫ ∞

−∞
Yz(τ)x∗

i (Tp − t + τ)dτ (8.16)
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Figure 8.1: The block diagram for the M -ary MAP demodulator.

is denoted the ith matched filter output and

Ei =
∫ ∞

−∞
|xi(t)|2 dt (8.17)

is the energy of the ith analog waveform. The ith matched filter output when sampled at t = Tp again
will give a correlation of the received signal with the ith possible transmitted signal. Here Ti represents
the maximum likelihood metric for the word �I = i. For future use it is important to realize that

exp
[
2Ti

N0

]
πi = exp

[
2

N0
� [vi(Tp)] −

Ei

N0

]
πi = CP

(
�I = i |yz(t)

)
(8.18)

where C is a constant that is not a function of �I. The block diagram for the optimum MAPWD is
shown in Fig. 8.1.

The demodulator in the case of equal priors, i.e., πi = 1/M, ∀i, can be greatly simplified. We will
denote this demodulator as the maximum likelihood word demodulator (MLWD). Since all terms have
an equal πi this common term can be canceled from each term in the decision rule and since the ln(•)
function is monotonic the MLWD is given as

�̂I = arg max
i∈{0,... ,M−1}

� [vi(Tp)] −
Ei

2
= arg max

i∈{0,... ,M−1}
Ti. (8.19)

The maximum likelihood metric is computed for each of the possible transmitted signals. Decoding
is accomplished by selecting the binary word associated with the largest decision metric. The block
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diagram for the optimum MLWD is shown in Fig. 8.2.

Example 8.3: Returning to the pulse width modulation example the four matched filter outputs are
given as

v0(Tp) =

√
32Eb

10Tp

∫ Tp/4

0
yz(τ)dτ v1(Tp) =

√
32Eb

10Tp

∫ Tp/2

0
yz(τ)dτ

v2(Tp) =

√
32Eb

10Tp

∫ 3Tp/4

0
yz(τ)dτ v3(Tp) =

√
32Eb

10Tp

∫ Tp

0
yz(τ)dτ. (8.20)

The energy of each of the transmitted signals is given as

E0 =
8Eb

10
E1 =

16Eb

10
E2 =

24Eb

10
E3 =

32Eb

10
. (8.21)

The maximum likelihood metrics for this modulation are given as

T0 =

√
32Eb

10Tp

∫ Tp/4

0
yI(τ)dτ − 4Eb

10
T1 =

√
32Eb

10Tp

∫ Tp/2

0
yI(τ)dτ − 8Eb

10

T2 =

√
32Eb

10Tp

∫ 3Tp/4

0
yI(τ)dτ − 12Eb

10
T3 =

√
32Eb

10Tp

∫ Tp

0
yI(τ)dτ − 16Eb

10
. (8.22)

The important thing to notice for both MAPWD and MLWD is that the optimal demodulator
complexity increases exponentially with the number of bits transmitted. The number of matched filters
required in each demodulator is M = 2Kb consequently the complexity of these demodulation schemes is
O(2Kb). The notation O(x) implies the complexity of the algorithm is proportional to x, i.e., a constant
times x. This complexity is obviously unacceptable if large files of data are to be transmitted. To make
data communications practical, ways will have to be developed that make the complexity linear in the
number of bits sent, i.e., O(Kb). This chapter will continue to look at M-ary signalling schemes as they
often are used in practice (in conjunction with other complexity reduction techniques) to achieve either
higher performance or higher bandwidth efficiency.

8.2.2 Performance Analysis

The performance analysis of an M-ary demodulator is much more complicated than that of the binary
detector but many of the ideas are similar. Two important quantities should be related at this point:
the average symbol energy is denoted Es and this is given as

Es =
M−1∑
i=0

Eiπi. (8.23)

The case of equal priors reduces to

Es =
1
M

M−1∑
i=0

Ei. (8.24)

The average energy per bit is then given as

Eb =
Es

Kb
. (8.25)
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Figure 8.2: The block diagram for the MLWD demodulator.
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Example 8.4: Returning again to the pulse width modulation example we have

Eb =
E0 + E1 + E2 + E3

8
=

(
8Eb

80
+

16Eb

80
+

24Eb

80
+

32Eb

80

)
. (8.26)

We again start the process of understanding the performance by characterizing the likelihood metrics.

Likelihood Metrics

The likelihood metrics, Ti, i ∈ {0, . . . , M − 1} are matched filter outputs with an energy correction
term. Conditioned on the transmitted signal the likelihood metrics are Gaussian random variables. For
instance, if xj(t) is assumed transmitted then denote the ith conditional likelihood metric as

Ti|j = �
[∫ ∞

−∞
Yz(t)x∗

i (t)dt

]
− Ei

2

= �
[∫ ∞

−∞
xj(t)x∗

i (t)dt

]
+ N

(i)
I − Ei

2
(8.27)

where N
(i)
I is a real zero mean Gaussian random variable given as

N
(i)
I = �

[∫ ∞

−∞
Wz(t)x∗

i (t)dt

]
(8.28)

with

var
(
N

(i)
I

)
=

EiN0

2
. (8.29)

It should be noted that

Ti|j = �
[
ρji

√
EiEj

]
− Ei

2
+ N

(i)
I

Tj|j =
Ej

2
+ N

(j)
I . (8.30)

Finally if two conditional likelihood metrics, Ti|j and Tk|j are considered jointly, they will be jointly
Gaussian random variables with a correlation coefficient of (see Problem 8.14)

ρ =
E

[
N

(i)
I N

(k)
I

]
N0
2

√
EiEk

= � [ρik] . (8.31)

This correlation between the matched filer outputs will be explored in more depth in the homework

Probability of Word Error

The probability of making a demodulation error is denoted the word error probability, PW (E). This
can be written via total probability as

PW (E) =
M−1∑
j=0

P
(
�̂I �= j

∣∣∣�I = j
)

πj (8.32)
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When the priors are unequal the nonlinear nature of MAPWD in (8.14) makes the computation of

P
(
�̂I �= j

∣∣∣�I = j
)

very difficult. Not many results exist in the literature discussing PW (E) calculations
for MAPWD.

The case of equal priors has a demodulator with a more exploitable structure. For MLWD the word
error probability is

PW (E) =
1
M

M−1∑
j=0

P
(
�̂I �= j

∣∣∣�I = j
)

. (8.33)

The conditional probability of word error is given as

P
(
�̂I �= j

∣∣∣�I = j
)

= P

(
max
j �=i

Ti > Tj

∣∣∣�I = j

)
= P

(
max
j �=i

Ti|j > Tj|j

)

= P

M−1⋃
i=0
j �=i

{
Ti|j > Tj|j

} . (8.34)

In general the probability in (8.34) is quite tough to compute. While each of the Ti|j , i = 1, M is a
Gaussian random variable, computing the distribution of the maximum of correlated Gaussian random
variables in nontrivial. For a significant number of modulations with small M the probability in (8.34) is
computable with a reasonable amount of work on a computer. Some of these examples will be explored
in the sequel and in a homework problem. For a general modulation and large M the problem is much
tougher. One special case where a general result is available is the case of an orthogonal modulation,
i.e., ρij = 0, ∀i �= j. This is explored in the homework.

8.2.3 Union Bound

A common upper bound on the probability in (8.34) has found great utility in the analysis of commu-
nication systems. This so called union bound is simply stated in general form as

P

(
N⋃

i=1

Ai

)
≤

N∑
i=1

P (Ai) (8.35)

where Ai are arbitrary events. The idea of the union bound is simply understood if one considers the
Venn diagram of Fig 8.3. Consider the probability of each event, Ai to be proportional to the area in
the Venn diagram. The union bound given in (8.35) counts the area in A1

⋂
A2, A1

⋂
A3, and A2

⋂
A3

twice and the area of A1
⋂

A2
⋂

A3 three times. The union bound is satisfied with equality if the events
are disjoint.

The union bound can now be used to upperbound the word error probability in an M -ary optimum
word demodulator. Using the union bound in (8.34) gives

P
(
�̂I �= j

∣∣∣�I = j
)

= P

M−1⋃
i=0
j �=i

{
Ti|j > Tj|j

}
≤

M−1∑
i=0
j �=i

P
(
Ti|j > Tj|j

)
. (8.36)
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Figure 8.3: A Venn diagram to explain the union bound.

P
(
Ti|j > Tj|j

)
is the probability that the ith maximum likelihood metric for the transmitted signal

is greater than the maximum likelihood metric corresponding to the actual transmitted signal. This
probability is often denoted the pair–wise error probability (PWEP).

The PWEP has a form readily analyzed. Recall the form for the decision metrics are

Ti|j = �
[
ρji

√
EiEj

]
− Ei

2
+ N

(i)
I

Tj|j =
Ej

2
+ N

(j)
I . (8.37)

Consequently the PWEP is given as

P
(
Ti|j > Tj|j

)
= P

(
�

[
ρji

√
EiEj

]
− Ei

2
+ N

(i)
I >

Ej

2
+ N

(j)
I

)
= P

(
Nij >

Ei + Ej

2
−�

[
ρji

√
EiEj

])
(8.38)

= P

(
Nij >

∆E(i, j)
2

)
(8.39)

where Nij = N
(i)
I − N

(j)
I . Since Nij is a zero mean Gaussian random variable the PWEP is simply

expressed as the tail probability of a Gaussian random variable. Since

Nij = �
[∫ ∞

−∞
Wz(t)[x∗

i (t) − x∗
j (t)]dt

]
(8.40)

the variance is given as

var (Nij) =
N0

2

[
Ei + Ej − 2�

[
ρji

√
EiEj

]]
=

N0∆E(i, j)
2

. (8.41)
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Using this variance in (8.38) gives

P
(
Ti|j > Tj|j

)
=

1
2
erfc

√
Ei + Ej − 2�

[
ρji

√
EiEj

]
4N0


=

1
2
erfc

√
∆E(i, j)

4N0

 (8.42)

where again

∆E(i, j) =
∫ ∞

−∞
|xj(t) − xi(t)|2 dt (8.43)

is the squared Euclidean distance between xi(t) and xj(t). It should be noted that the PWEP is exactly
the same as the binary error probability given in the previous chapter.

The PWEP can be combined with (8.36) and (8.33) to give a union bound to the overall average
word error probability. The conditional probability of error given that xj(t) was transmitted is now
upperbounded by

P
(
�̂I �= j

∣∣∣�I = j
)
≤

∑
i�=j

1
2
erfc

√
∆E(i, j)

4N0

 . (8.44)

Consequently an upperbound to the word error probability is given as

PW (E) ≤ PWUB(E) =
M−1∑
j=0

∑
i�=j

1
2M

erfc

√
∆E(i, j)

4N0

 (8.45)

and this upperbound is often referred to as the union bound in the literature. It is important to realize
that this sum is over all possible transmitted signal and all possible decoding errors for each of the
possible transmitted signals.

Example 8.5: We can enumerate all the Euclidean distances for the pulse width modulation example in
a table

∆E(i, j)
�I = i

�I = j 0 1 2 3
0 0 8Eb

10
16Eb
10

24Eb
10

1 8Eb
10 0 8Eb

10
16Eb
10

2 16Eb
10

8Eb
10 0 8Eb

10

3 24Eb
10

16Eb
10

8Eb
10 0

The important points resulting from the union bound are

1. Squared Euclidean distance is again an important performance criterion.

2. The union bound typically has the form

PW (E) ≤ PWUB(E) =
N∑

k=1

Ad(k)
2M

erfc

√
∆E(k)
4N0

 (8.46)
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where the sum enumerates the N < M(M − 1)/2 possible different squared Euclidean distances,
∆E(k), k = 1, N . Note that Ad(k) is the number of signal pairs having a squared Euclidean
distance between them of ∆E(k) and that

∑N
k=1 Ad(k) = M(M − 1). The combination of the

enumeration of the squared Euclidean distance, ∆E(k), and the number of signal pairs Ad(k) for
each distance is often denoted the squared Euclidean distance spectrum weight. All sets of pairs
{∆E(k), Ad(k)} , k = 1, N is often denoted the squared Euclidean distance spectrum.

Example 8.6: For pulse width modulation we have N = 3 with ∆E(1) = 8Eb
10 , ∆E(2) = 16Eb

10 ,
and ∆E(3) = 24Eb

10 and Ad(1) = 6, Ad(2) = 4, and Ad(3) = 2. Consequently the union bound is
expressed as

PW (E) ≤ PWUB(E) =
3
4
erfc

(√
8Eb

40N0

)
+

1
2
erfc

(√
16Eb

40N0

)
+

1
4
erfc

(√
24Eb

40N0

)
. (8.47)

3. The bound is often dominated by the minimum squared Euclidean distance of the signal set,
∆E(min), where

∆E(min) = min
j∈{0,... ,M−1}
i∈{0,... ,M−1}

i�=j

∆E(i, j). (8.48)

Since erfc (x) ∼ exp[−x2] it is usually the case that

erfc

√
∆E(min)

4N0

 � erfc

√
∆E(i, j)

4N0

 ∀∆E(i, j) �= ∆E(min). (8.49)

4. The union bound is usually tight at high SNR. The bound over counts the cases when more than
one maximum likelihood metric for a nontransmitted word is greater than the maximum likelihood
metric for the transmitted word. At high SNR the probability of two or more metrics being greater
than the true metric is very small. Consequently the overbounding probability is very small.

5. Using items 3. and 4. allows one to deduce that

PW (E) ≈ Ad(min)
2M

erfc

√
∆E(min)

4N0

 (8.50)

is a good approximation to the true error performance at high SNR.

6. A concept that arises often in performance analysis is the concept of geometric uniformity [For91].
A geometrically uniform signal set is one in which the conditional distance spectrum of each of the
possible transmitted signals is the same. The important characteristic of a geometrically uniform
signal set is the number of terms in the union bound reduces from M(M − 1) to M − 1. Note
that pulse width modulation considered in Example 8.4 is not a geometrically uniform signal set,
but x0(t) and x3(t) have the same conditional distance spectrum as do x1(t) and x2(t).

8.2.4 Signal Design

Signal design for M -ary modulation is typically best optimized with a max-min approach. Since the
minimum squared Euclidean distance will dominate performance of an optimum demodulator the best
signal design will happen when the minimum distance between all pairs of the M signals is maximized.
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The spectral characteristics of an M -ary signal set can be characterized with a straightforward
extension of the techniques used for binary signals. Recall from (6.5) that the average energy spectrum
per bit for a transmitted signal, Xz(t), where Kb bits are transmitted is

Dxz(f) =
E [Gxz(f)]

Kb
. (8.51)

The average here again is over random data bits that are being transmitted.

8.3 Optimum Bit Demodulation

The demodulation structure that minimizes the bit error probability is different than the structure
which minimizes word error probability. In the MAPWD or the MLWD the optimality criterion was
word error probability. It seems obvious that often minimizing bit error probability will be a more
important design goal than minimizing word error probability. A word error regardless of the number
of bit errors is treated the same in a MLWD or a MAPWD. Consequently if the bit error rate is more
important than the word error rate then a new demodulation structure is necessary. The minimum bit
error rate demodulator has some similarities to the minimum word error rate but will be more complex
to implement.

8.3.1 Optimum Bit Demodulation Receivers

First some notation will be introduced to aid with the discussion of the optimum bit detectors. Again
assume that Kb bits, �I = [I(1) I(2) · · · I(Kb)], are being transmitted and that M signals, xi(t), i ∈
{0, . . . , M − 1}, are being used to represent the possible word values that are to be transmitted. Without
loss of generality assume that the interest is in minimizing the bit error rate for the kth bit, I(k). We
know from the previous chapter that the optimum demodulator, the MAPBD, is

P (I(k) = 1 |yz(t))
Î(k)=1

>
<

Î(k)=0

P (I(k) = 0 |yz(t)) . (8.52)

In words, the optimum demodulator computes the a posteriori probability (APP) of the bit values
and makes the bit decision based on which APP is larger. Recall we denoted this architecture the
MAPBD. Unfortunately there is no simple way to express the APP, P (I(k) = m |yz(t)), since the
transmitted signal is not conditionally deterministic with knowledge of I(k). The transmitted signal
is conditionally deterministic if all the other bits are fixed and this idea can be combined with total
probability to give a method to compute the minimum bit error rate demodulator. Define �I(−)(k) =
[I(1) · · · I(k − 1) I(k + 1) · · · I(Kb)]. �I(−)(k) represents all the other bits besides the one for which an
optimum bit decision is to be made. For simplicity in notation let the values of �I(−)(k) be enumerated
by the integers n = 0, M/2 − 1 and using total probability then the APP can be expressed as

P (I(k) = m |yz(t)) =
M/2−1∑

n=0

P
(
I(k) = m, �I(−)(k) = n |yz(t)

)

=
M/2−1∑

n=0

P
(
�I = {m, n} |yz(t)

)
(8.53)

where �I = {m, n} denotes the data word corresponding to I(k) = m and �I(−)(k) = n. The essential idea
in MAPBD for M -ary signaling is that each APP of data words containing I(k) = m is computed and
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then total probability is used to obtain the marginal posterior probability of I(k) = m. This average is
over the 2Kb−1 possible values of the �I(−)(k).

Example 8.7: Consider the case of Kb = 3 and k = 2 where I(−)(2) = [I(1) I(3)]. The bits and the
words are enumerated as

I(1) I(2) I(3) i m n
0 0 0 0 0 0
0 0 1 1 0 1
0 1 0 2 1 0
0 1 1 3 1 1
1 0 0 4 0 2
1 0 1 5 0 3
1 1 0 6 1 2
1 1 1 7 1 3

Our earlier discussion demonstrated that P
(
�I = i |yz(t)

)
has a computable form. Recall from (8.18)

that the APP for �I = i is

CP
(
�I = i |yz(t)

)
= exp

[
2

N0
� [Vi(Tp)] −

Ei

N0

]
πi (8.54)

where C is a constant. This is exactly the decision metric that is computed in the MAPWD. Con-
sequently the MAPBD simply computes the decision metrics in the MAPWD, the word APPs, and
performs an average over the data words as

P (I(k) = m |yz(t)) =
M/2−1∑

n=0

exp
[

2
N0

�
[
V{m,n}(Tp)

]
−

E{m,n}
N0

]
π{m,n}

=
M/2−1∑

n=0

exp
[
2T{m,n}

N0

]
π{m,n}. (8.55)

Note the optimum bit decision is

M/2−1∑
n=0

exp
[
2T{1,n}

N0

]
π{1,n}

Î(k)=1
>
<

Î(k)=0

M/2−1∑
n=0

exp
[
2T{0,n}

N0

]
π{0,n}. (8.56)

In a similar fashion the MLBD for M -ary modulations has the form

M/2−1∑
n=0

exp
[
2T{1,n}

N0

] Î(k)=1
>
<

Î(k)=0

M/2−1∑
n=0

exp
[
2T{0,n}

N0

]
. (8.57)

Denoting the average metric for I(k) = i as

Li(k) =
M/2−1∑

n=0

exp
[
2T{i,n}

N0

]
(8.58)

then the MLBD has the form

L1(k)
Î(k)=1

>
<

Î(k)=0

L0(k). (8.59)
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It is worth noting that optimum bit demodulation algorithms must know the value of N0. This value
of the noise power is one additional level of knowledge needed for MLBD detection that is not needed
for MLWD detection.

Example 8.8: Consider the case of Kb = 3 and k = 2 where I(−)(2) = [I(1) I(3)]. The average likelihood
metrics for I(2) are

L0(2) = exp
[
2T0

N0

]
+ exp

[
2T1

N0

]
+ exp

[
2T4

N0

]
+ exp

[
2T5

N0

]
(8.60)

L1(2) = exp
[
2T2

N0

]
+ exp

[
2T3

N0

]
+ exp

[
2T6

N0

]
+ exp

[
2T7

N0

]
(8.61)

8.3.2 Comparison with Optimum Word Demodulation

A pseudo-code comparison of MLBD and MLWD will illustrate the similarities and differences between
the algorithms.

MLBD

• For i ∈ {0, . . . , M − 1}

1. Compute Ti

2. Compute exp (2Ti/N0)

• For k ∈ {1, . . . , Kb}

1. Identify I(−)(k)

2. Compute

L0(k) =
M/2−1∑

n=0

exp
[
2T{0,n}

N0

]
3. Compute

L1(k) =
M/2−1∑

n=0

exp
[
2T{1,n}

N0

]
4. Compute

Î(k) = arg max
i=0,1

Li(k)

MLWD

• For i ∈ {0, . . . , M − 1}

1. Compute Ti

• �̂I = arg maxi∈{0,... ,M−1} Ti

Recall the complexity of the MLWD is O(M)=O(2Kb). The MLBD computes all the same metrics as
the MLWD and then computes an average for each bit decision. Consequently the complexity of MLBD
is O(KbM)=O(Kb2Kb). Since Kb = ln(M), the increase in the complexity for MLBD is not significant
when M is large.

The performance of bit demodulation algorithms is in general hard to quantify due to the averaging
of the word metrics. I am unaware of rigorous performance analysis for bit detection algorithms.
Performance is usually assessed via a computer simulation except in special cases. One characteristic
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that still holds is that the minimum Euclidean distance will still dominate the performance at high
SNR. Several points are worth noting in conclusion:

1. The performance difference between MLWD and MLBD is small especially at high SNR.

2. MLWD is less complex than MLBD.

These two characteristics led to the MLWD dominating in practical implementations up until the late
1990s. Using the APPs that the MLBD (or MAPBD) computes can offer significant improvements in
performance in suboptimum iterative demodulation schemes that were popularized by the appearance of
Turbo codes [BG96, BGT93] and by the rediscovery of low density parity check codes [Gal62]. Because
of the utility of APPs in iterative demodulation schemes we will continue to look at both ideas in parallel
in the remainder of the text.

8.4 Examples

This chapter is concluded by considering two obvious and important examples of M -ary carrier mod-
ulated digital communication: M -ary frequency shift keying (MFSK) and M -ary phase shift keying
(MPSK). In these examples it is assumed that πi = 1/M, i ∈ {0, . . . , M − 1}.

8.4.1 M-ary FSK

MFSK modulation sends the word of information by transmitting a carrier pulse of one of M frequencies.
This is an obvious simple signalling scheme and one used in many early modems. The signal set is given
as

xi(t) =

√
KbEb

Tp
exp [j2πfd(2i − M + 1)t] 0 ≤ t ≤ Tp

= 0 otherwise (8.62)

where fd is known as the frequency deviation. The frequency difference between adjacent frequency
pulses in the signal set is 2fd. It is apparent that each waveform in a MFSK signal set has equal energy
that has here been set to Es = KbEb.

The matched filter impulse response is given as

hi(t) = x∗
i (Tp − t). (8.63)

Since MFSK is an equal energy signal set the energy correction term is not needed in the demodulator
and the ML decision metrics are given as

Ti = �
[∫ Tp

0
Yz(t)x∗

i (t)dt

]
=

√
KbEb

Tp
�

[∫ Tp

0
Yz(t) exp [−j2πfd(2i − M + 1)t] dt

]
i ∈ {0, . . . , M − 1} .

(8.64)

The MLWD demodulator is then given as

�̂I = arg max
i∈{0,... ,M−1}

Ti. (8.65)

This optimum demodulator has M filters outputs to compute and then must select the signal corre-
sponding to the largest.
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Figure 8.4: The true PW (E) and the union bound for orthogonal MFSK.

Performance of MFSK is a function of the frequency spacing, 2fd. Using the results from BFSK,
i.e., (7.80), the pair-wise squared Euclidean distance is given as ∆E(i, j) = 2KbEb

(
1 − sin(4πfd(i−j)Tp)

4πfd(i−j)Tp

)
.

Consequently for MFSK the placement of the tones is a bit more delicate problem. The union bound
is given as

PWUB(E) =
M−1∑
n=1

M − n

M
erfc

(√
KbEb

2N0

(
1 − sin (4πfdnTp)

4πfdnTp

))
. (8.66)

The selection of the frequency spacing, fd, becomes a tricky problem for M > 2 as one needs to balance
all the terms in the union bound to optimize the performance. The MFSK signal set is not in general
a geometrically uniform signal set.

For the special case of � [ρij ] = 0 both the PW (E) can be easily computed and a simple form for
the union bound results. This is known as orthogonal MFSK and is achieved if fd = n

4Tp
where n is a

positive integer. The closed form probability of error expression for orthogonal MFSK is explored in the
homework and plotted in Fig. 8.4 for M = 2, 4, 8, 16. The important thing to realize for MFSK is that
for large enough Eb/N0, the PW (E) is monotonically decreasing with M . In fact one can show that the
error rate can be made arbitrarily small when Eb/N0 > ln(2) [Sha48]. Consequently the performance of
a digital communication system can be improved by transmitting more bits or having more waveforms
to choose from. This result is also counter normal engineering intuition. Shortly we will show that this
performance improvement is achieved only at the cost of an increase in the bandwidth of the signal.
The union bound for orthogonal MFSK is

PW (E) ≤ M − 1
2

erfc

(√
KbEb

2N0

)
. (8.67)

For � [ρij ] = 0 MFSK is a geometrically uniform signal set. Fig. 8.4 also plots the union bound for
MFSK. It is obvious that the union bound converges to the true error probability at high SNR. For
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Figure 8.5: For 8FSK the Gxi(f) for i ∈ {0, . . . , 7} and Dxz(f).

the particular case of MFSK the bound is tight enough to be indiscernibly different on the graph for
Eb/N0 > 6dB. This characteristic for the union bound holds for most signal sets optimally demodulated
in the presence of an AWGN.

The average energy spectrum per bit is again used to characterize the spectral efficiency. Recall the
average energy spectral density per bit is given for M -ary modulations as

Dxz(f) =
1

Kb

M−1∑
i=0

πiGxi(f). (8.68)

Recall that the energy spectrum of the individual waveforms is given as

Gxi(f) = KbEbTp

(
sin (π(f − fd(2i − M + 1))Tp)

π(f − fd(2i − M + 1))Tp

)2

. (8.69)

Recall that the minimum frequency separation needed to achieve an orthogonal modulation is fdTp =
0.25 and that by considering (8.68) and (8.69) it is obvious that the spectral content is growing propor-
tional to BT = fd(2Kb+1). An example of each of the individual energy spectrums and the average energy
spectrum for 8FSK is plotted in Fig. 8.5. The transmission rate of MFSK is Wb = Kb/Tp. The spectral
efficiency then is approximately ηB = Kb/2Kb−1 and decreases with the number of bits transmitted
or equivalently decreases with M . Conversely MFSK provides monotonically increasing performance
with M . Consequently MFSK has found use in practice when lots of bandwidth is available and good
performance is required.

The MLBD can be formed for the MFSK modulation. Recall the likelihood metrics must be pro-
cessed to give

L0(k) =
M/2−1∑

n=0

exp
[
2T{0,n}

N0

]
L1(k) =

M/2−1∑
n=0

exp
[
2T{1,n}

N0

]
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Figure 8.6: The PB(E) for MLWD and MLBD.

and the decision is made via
Î(k) = arg max

i=0,1
Li(k).

The MLBD does not simplify further for MFSK. Fig. 8.6 also contains the performance for the MLBD
for M = 4. The performance is slightly better than the MLWD but not significantly. The majority of
the improvement is due to the fact that each word error does not result in a bit error at every position.
Consequently for orthogonal MFSK the bit error rate improvement for MLBD does not seem to justify
the additional complexity.

The advantages of MFSK are summarized as

• Very simple to generate. Simply gate one of M oscillators on depending on the word to be sent.

• Performance (error rate) improves monotonically with Kb. This is counter intuition as normal
intuition would expect performance degrading with increasing Kb.

The disadvantages of MFSK are summarized as

• The bandwidth increases exponentially with Kb, hence the spectral efficiency of MFSK decreases
with Kb.

• Complexity increases exponentially with Kb.

Additional important points demonstrated by this example

• Union bound is simple to compute and is a tight bound at moderate to high SNR.

• MLBD has only slightly better bit error rate performance than the MLWD.
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8.4.2 M-ary PSK

MPSK modulation sends the word of information by transmitting a carrier pulse of one of M phases.
This is an obvious simple signalling scheme and one used in many modems. The first form of the signal
set one might consider is given as

xi(t) =


√

KbEb

Tp
exp

[
j
π(2i + 1)

M

]
0 ≤ t ≤ Tp

0 elsewhere
(8.70)

The phases have been chosen uniformly spaced around the unit circle. This methodology maximizes
the minimum Euclidean distance. It is apparent that each waveform in an MPSK signal set has equal
energy that has here been set to Es = KbEb. Unfortunately if the phases are chosen corresponding to
the word value, adjacent phases which are close in Euclidean distance will have many bits different in
the two words. A technique mitigating the effects of word errors on the PB(E) by mapping of binary
words into phases in a way to where adjacent phases are only different in one bit is known as Gray
coding [Gra53]. An example of Gray coding for 4-ary PSK1 is given as

�I = 0 = [0 0]T θ0 = π/4 �I = 1 = [1 0]T θ1 = 3π/4
�I = 2 = [0 1]T θ2 = −π/4 �I = 3 = [1 1]T θ3 = −3π/4. (8.71)

This example will consider MLWD for the general MPSK signal set and MLBD for the Gray coded
4PSK given in (8.71).

Since MPSK is an equal energy signal set the energy correction term is not needed in the demodulator
and the ML decision metrics are given as

Ti = �
[∫ Tp

0
Yz(t)x∗

i (t)dt

]
=

√
KbEb

Tp
�

[∫ Tp

0
Yz(t) exp

[
−j

π(2i + 1)
M

]
dt

]

= �
[
exp

[
−j

π(2i + 1)
M

]√
KbEb

Tp

∫ Tp

0
Yz(t)dt

]

= �
[
exp

[
−j

π(2i + 1)
M

]
Q

]
i ∈ {0, . . . , M − 1} (8.72)

where

Q =

√
KbEb

Tp

∫ Tp

0
Yz(t)dt (8.73)

is denoted the pulse shape matched filter output. The MLWD computes the output of one filter, Q,
derotates this value by each of the possible transmitted phasors and picks the signal that gives the
largest real value. This decision rule is equivalent to picking the transmitted phase that is closest to
the phase of the pulse shape matched filter so that

�̂I = arg max
i∈{0,... ,M−1}

Ti = arg min
i∈{0,... ,M−1}

∣∣∣∣Qp −
π(2i + 1)

M

∣∣∣∣ (8.74)

where Qp = arg {Q}.
Surprisingly this optimum demodulator has only one filter output to compute. This filter output is

then processed to produce the decision metric. The word decision is then made on the basis of which
14-ary PSK modulation is often denoted quaternary PSK or QPSK.
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Figure 8.7: The decision regions for 4PSK.

of these metric is the largest. The decision rule reduces down to the establishing of decision regions in
the complex plane for the pulse matched filter output Q. The decision regions for 4PSK are shown in
Fig. 8.7. The fact that the M-ary demodulator only has one filter is since the transmitted signal set has
the form

xi(t) = Diu(t) (8.75)

where

u(t) =


√

KbEb

Tp
0 ≤ t ≤ Tp

0 elsewhere
(8.76)

is the pulse shape. Modulations which have the form of (8.75) are often denoted linear modulations by
communications engineers. Since linear modulations greatly reduce the demodulator complexity they
will be explored in detail in the sequel.

Performance of MPSK is a function of the phase spacing, 2π
M . The squared Euclidean distance is

given as ∆E(i, j) = 2KbEb

(
1 − cos

(
2π(i−j)

M

))
. Note since cosine is a periodic function, MPSK is a

geometrically uniform signal set. The union bound for MPSK is given as

PW (E) ≤ 1
2
erfc

(√
KbEb

N0

)
+

M/2−1∑
i=1

erfc

(√
KbEb

2N0

[
1 − cos

(
2πi

M

)])
. (8.77)

The MFSK signal set was not in general a geometrically uniform signal set but here we see that the
MPSK signal set is geometrically uniform when the phases of the modulation symbols are uniformly
distributed around the unit circle.

It is interesting to note that for MPSK the union bound can actually be tightened compared to the
general result given in (8.77). This tightening of the union bound is due to the following
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Property 8.1 P (A ∪ B ∪ C) = P (A ∪ B) if C ⊂ A ∪ B.

Since the MPSK signal set is geometrically uniform we can consider x0(t) to be the transmitted signal
without loss of generality. The pair-wise error probability is then given as

{
Ti|0 > T0|0

}
=

{
�

[
exp

[
−j

π(2i + 1)
M

]
Q

]
> �

[
exp

[
−j

π

M

]
Q

]}
=

{∣∣∣∣Qp −
π(2i + 1)

M

∣∣∣∣ <
∣∣∣Qp −

π

M

∣∣∣} . (8.78)

This reduces to {
Ti|0 > T0|0

}
=

{
π(i + 1)

M
≤ Qp ≤ π(M + i + 1)

M

}
. (8.79)

Given this form of the pair-wise error probability it can be seen that

{
T1|0 > T0|0

}
∪

{
TM−1|0 > T0|0

}
=

{
2π

M
≤ Qp ≤ 2π

}
. (8.80)

Consequently for any i ∈ {2, . . . , M − 2}{
Ti|0 > T0|0

}
⊂

{
T1|0 > T0|0

}
∪

{
TM−1|0 > T0|0

}
. (8.81)

This implies that a tighter union bound for MPSK than (8.77) is given as

PW (E) ≤ erfc

(√
KbEb

2N0

[
1 − cos

(
2π

M

)])
. (8.82)

This tightened union bound only includes the minimum squared Euclidean distance terms. For MPSK
these two pair-wise error probability terms include all the possible ways an error can occur.

MPSK word error probability performance can be computed exactly. If we assume that xk(t) was
transmitted, the conditional matched filter output is given as

Q = exp
[
j
π(2k + 1)

M

]
KbEb + Nz (8.83)

where Nz is a complex Gaussian noise with a variance of

var (Nz) = N0KbEb. (8.84)

Considering the decision regions and the form of the conditional matched filter output, the probability
of word error can be computed. This idea is explored in the homework problems. The resulting
probability of word error is plotted in Fig. 8.8 for M=2,4,8,16. In contrast to MFSK the probability of
error increases with M for MPSK. The performance degrades about 4dB for each doubling of M . The
union bound is also plotted in Fig. 8.8 for M=2,4,8,16. The union bound is again asymptotically tight
with moderate SNR. This again demonstrates the utility of a union bound performance analysis.

The average energy spectrum per bit is again used to characterize the spectral efficiency of MPSK.
Recall the average energy spectral density per bit is given for M -ary modulations as

Dxz(f) =
1

Kb

M−1∑
i=0

πiGxi(f). (8.85)
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Figure 8.8: The true PW (E) and the union bound for MPSK.

Recall that the energy spectrum of the individual waveforms is given as

Gxi(f) = EbTp

∣∣∣∣exp
[
j
π(2i + 1)

M

]∣∣∣∣2 (
sin (πfTp)

πfTp

)2

= EbTp

(
sin (πfTp)

πfTp

)2

(8.86)

The occupied bandwidth of MPSK, BT = 1/Tp, does not increase with M while the bit rate does increase
with M , Wb = Kb/Tp to provide a spectral efficiency of ηB = Kb. Unfortunately the performance of
MPSK modulation decreases with increasing M . Consequently MPSK modulations are of interest in
practice when the available bandwidth is small and the SNR is large.

The MLBD for the Gray coded 4PSK yields some interesting results. Considering the decoder for
I(1) we have

L1(1) = exp
[
2T1

N0

]
+ exp

[
2T3

N0

]
(8.87)

where due to (8.72) the ML decision metrics are given as

T1 = �
[
exp

(
−j

3π

4

)
Q

]
=

−1√
2
QI +

1√
2
QQ (8.88)

T3 = �
[
exp

(
j
3π

4

)
Q

]
=

−1√
2
QI −

1√
2
QQ. (8.89)

Combining these results give

L1(1) = exp

[
−
√

2QI

N0

] (
exp

[√
2QQ

N0

]
+ exp

[
−
√

2QQ

N0

])
(8.90)
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Likewise

L0(1) = exp

[√
2QI

N0

] (
exp

[√
2QQ

N0

]
+ exp

[
−
√

2QQ

N0

])
(8.91)

The resulting binary decision rule for I(1) is

L1(1)
Î(1)=1

>
<

Î(1)=0

L0(1)

exp

[
−
√

2QI

N0

] Î(1)=1
>
<

Î(1)=0

exp

[√
2QI

N0

]

QI

Î(1)=0
>
<

Î(1)=1

0. (8.92)

Note this MLBD simplifies down to a very simple threshold test. In fact this threshold test is exactly
the same as the threshold test for BPSK given in (7.92). Similarly the MLBD for I(2) is

QQ

Î(2)=0
>
<

Î(2)=1

0. (8.93)

Now it can be seen that the MLBD for Gray coded QPSK is exactly two BPSK demodulators operating
in parallel. This simplification of a general M -ary demodulator down to a set of binary demodulators
is due to the bits being orthogonally modulated into the data symbols. This can be seen in that Gray
coded QPSK is essentially two orthogonal BPSK signals (one on the I component and one on the Q
component of the carrier). This orthogonality idea will come up in the sequel as methods are investigated
for reducing the complexity of demodulators for large number of transmitted bits. The advantages of
MPSK are summarized as

• Very simple to generate. Simply change the phase of an oscillator to one M values depending on
the word to be sent.

• No increase in the bandwidth occupancy with increasing Kb. Consequently spectral efficiency
increases with Kb.

• Demodulation complexity does not increase exponentially with Kb

The disadvantages of MPSK are summarized as

• Performance decreases monotonically with Kb.

Additional important points demonstrated by this example

• The most general union bound is simple to compute and is a tight bound at moderate to high
SNR.

• The demodulator structure of MPSK allows a tighter union bound to be computed by considering
the overlap in the decision regions.

• MLBD can have a greatly simplified form in some special cases.

c©1996-2004 - Michael P. Fitz - The University of California Los Angeles



0

2

4

6

8

10

-5 0 5 10 15 20

Upper Bound

MPSK

MFSK

S
pe

ct
ra

l E
ffi

ci
en

cy
, η

B

E
b
/N

0
, dB

186 Transmitting More Than One Bit

Figure 8.9: A comparison of the spectral efficiency of MPSK and MFSK with the upper bound.

8.4.3 Discussion

This section introduced two example modulations to transmit Kb bits of information: MFSK and
MPSK. MPSK has the advantage in being able to supply an increasing spectral efficiency with Kb

at the cost of requiring more Eb/N0 to achieve the same performance. MFSK can provide improved
performance with Kb but at a cost of a loss of spectral efficiency. Also the decoding complexity of MPSK
is significantly less than the decoding complexity of MFSK. As a final point it is worth comparing the
spectral efficiency performance of these two modulations with the upper bounds provided by information
theory (see Section 6.3). As before we will denote reliable communication as being an error rate of 10−5.
The operating points of MFSK and MPSK and the upper bound on the possible performance are plotted
in Fig. 8.9. It is clear from this graph that different modulations give us a different set of points in a
performance versus spectral efficiency tradeoff. Also the two examples we considered in this Chapter
have a performance much lower than the upperbound provided by information theory. This is still not
too disturbing as we have lots of digital communication theory to explore.

8.5 Homework Problems

Problem 8.1. Find the probability of word error in MLWD for an arbitrary M for the case of equal
energy orthogonal signaling, � [ρij ] = 0, ∀i �= j. Hint: Condition on a value of the correct likelihood
metric and find the conditional probability of word error (a distribution function of a max(•) random
variable). Next average over the density function of correct likelihood metric. Compute numeric values
and plot for M=4,8,16 for values of Eb/N0=0–10dB. The first derivation of this result is available in
[Kot60] but it is worth it to try to obtain the solution yourself before checking the reference. What
value of fd achieves orthogonality for the MFSK example considered in this chapter for a given Tp.
Problem 8.2. Show that if you design an equicorrelated (� [ρij ] = ρ ≤ 0, ∀i �= j), equal energy M-ary
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signaling scheme then

ρ ≥ − 1
M − 1

.

Interpret what this means as M gets large. Hint: Consider a composite signal that is a sum of all M
signals.
Problem 8.3. Recall from Chapter 5 that the phase error between the signal phase and the measured
phase, EP = YP − xP , of the complex envelope of a carrier modulated signal in bandpass Gaussian
noise, Yz = xz + Nz, is given as

fEP
(ep) =

 exp [−P ]
2π

+

√
P

4π
cos (ep) exp

[
−P sin2 (ep)

] (
1 + erf

(√
P cos (ep)

))
−π ≤ ep ≤ π

0 elsewhere
(8.94)

where P = x2
A

var(Nz) .

a) Plot this PDF for P = 10dB.

b) Use this result to compute the word error probability for M -ary PSK. Compute numeric values
and plot for M=4,8,16 for values of Eb/N0=0–20dB.

Problem 8.4. A simple 4-ary modulation is given as

xi(t) = di(1)u(t) + di(2)u(t − T )

where u(t) is a pulse shape with energy Eu having support on [0, Tu] and Tu > T , i = 2 ∗ I(2) + I(1),
and di(l) = (−1)I(l). This signal is to be detected in the presence of an AWGN with one-sided spectral
density of N0 and the words are a priori equally likely, πi = 0.25 i ∈ {0, . . . , 3}.

a) What is the length of the transmission, Tp?

b) Find and detail out the optimum word error demodulator as a function of Vu(T ).

c) Find the union bound to the optimum word error demodulator probability of word decision error.

d) Define the following matched filter outputs

Q(1) =
∫ Tp

0
yz(t)u∗(t)dt Q(2) =

∫ Tp

0
yz(t + T )u∗(t)dt.

Find a simple form for the optimum demodulators given above as a function of Q(1) and Q(2).
Q(1) and Q(2) are sufficient statistics for optimal detection.

e) Find and detail out the optimum bit error probability demodulator.

f) If Q(1) = 0.5, Q(2) = −0.1, N0 = 0.3, Vu(T ) = 0.1, and Eu = 1 what is the optimum word and
bit decisions?

f) What conditions must exist such that simple decisions can be made on the value of I(k) based
solely on Q(k) without loss in optimality?
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Problem 8.5. Show via the union bound that M -ary FSK signaling can have a PW (E) arbitrarily small
by a proper selection of Kb as long as Eb/N0 > 2 ln(2). Actually this statement is true for Eb/N0 > ln(2)
[Sha48] but the result is harder to prove (but worth an attempt by the interested student!)
Problem 8.6. 8-ary phase shift keying (8PSK) has an received signal of the form

Yz(t) = xi(t) + Wz(t) = diu(t) + Wz(t) (8.95)

where Wz(t) is a complex AWGN and if �I = i then di = exp
(

jπi
4

)
i ∈ {0, . . . , 7}. Assume πi =

1
8 i ∈ {0, . . . , 7}.

a) Find the minimum probability of word error demodulator.

b) Find and plot the tightest union bound to the probability of word error for the demodulator found
in a) for Eb/N0=0-13dB.

c) Gray coding assigns bit patterns to M-ary signal points in such a way that adjacent signals (in
Euclidean space) only have one bit different. Find a Gray code mapping for this 8PSK signal set.

d) Show that with the demodulator in a) and the bit to symbol mapping derived in c) that the
resulting BEP is

PB(E) =
1
3

[
erfc

(√
3Eb

N0
sin

(π

8

))
+ erfc

(√
3Eb

N0
cos

(π

8

)) [
1
2

+
1
2
erf

(√
3Eb

N0
sin

(π

8

))]]
(8.96)

e) Given the mapping in c) find the minimum probability of bit error demodulator. (Note any bit
of the three will do.)

f) Run a computer simulation of the MLBD performance and plot the bit error probability for
Eb/N0=0-13dB along with performance of the MLWD given in (8.96).

Problem 8.7. Consider a 4-ary communication waveform that achieves Wb = 2/Tp having the form
shown in Fig. 8.10. Assume all words have equal priors and the corrupting noise is an AWGN with a
one-sided spectral density of N0.

a) Identify the MLWD structure.

b) Give the union bound for the performance.

c) Identify the 3dB bandwidth of the transmitted waveform and the spectral efficiency.

A proposed approach to increase the throughput of digital communications waveforms like that shown
in Fig. 8.10 is variable phase shift keying (VPSK) [Wal97]. In variable phase shift keying the transition
time between different voltage levels can be modulated to provide more possible waveforms. For example
Fig. 8.11 shows a waveform with three possible transition times.

d) Design a VPSK signal set based on Fig. 8.10 that has Wb = 3/Tp. Hint: You need eight waveforms
and only two of four waveforms in Fig. 8.10 have transitions.

e) Optimize performance of the signal set proposed in d) as a function of the shift parameter, τs and
compare it to the original waveform.

f) Compute the spectral efficiency (using 3dB bandwidth again) for this case of optimal performance.
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Figure 8.10: A 4-ary modulation.

Figure 8.11: A waveform from Fig. 8.10 where the transition time is modulated.

c©1996-2004 - Michael P. Fitz - The University of California Los Angeles



X tz( )

∑

∑

W t1( )

W t2( )

c1

c2

Y t1( )

Y t2( )

190 Transmitting More Than One Bit

Problem 8.8. In wireless communications it is often useful to observe a received waveform on more
than one receiver antenna to improve the reliability of the decision. A situation like this is depicted in
Fig. 8.12 for Lr = 2 antennas where the received signal at the jth antenna is given as

Yj(t) = cjXz(t) + Wj(t) (8.97)

where Cj is a complex constant that represents jth channel distortion and Wj(t) is a white Gaussian
noise with RWj (τ) = N0δ(τ). Assume that W1(t) is independent of W2(t). Assume that c1 and c2 are
known at the demodulator and that π0 = 0.5.

a) Optimal decisions are based on APPs, i.e., P (I = m|y(t)) Bayes rule tells us that

P (I = m|y) =
fY (y|I = m)πm

fY (y)
. (8.98)

The results from detection theory tells us that

fY (y|I = m)
fY (y)

= C exp[2Tm/N0] (8.99)

How would the computation of the APP change if two observations with independent noises are
obtained.

b) Using the results from a) for a given x0(t) and x1(t) find the minimum probability of error receiver
obtained by observing Yj(t) = yj(t) j = 1, 2. Simplify as much as possible. The resulting receiver
structure is known as maximal ratio combining [Bre59] and essentially gives a matched filter in
space and time.

c) Compute the error rate performance of the optimum receiver as a function of c1, c2, and ∆E(0, 1)

d) Knowing the values of c1 and c2 what is the signaling scheme that would minimize the bit error
rate for a fixed transmitted energy per bit.

Figure 8.12: Observing a signal on multiple antennas.
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Problem 8.9. In this problem we examine a binary communication system where three decisions are
possible, Î = 1, Î = 0, Î = E where E represents a no decision (erasure). The two possible baseband
transmitted signals are x0(t) and x1(t) = −x0(t) with π0 = π1 = 0.5. Recall the optimum binary
demodulator is of the form

P (I = 1 |vI )
Î=1
>
<

Î=0

P (I = 0 |vI ) (8.100)

where vI is the output of the matched filter. The generalization considered in this problem is

Î = 1 P (I = 1 |vI ) > 0.75 (8.101)
Î = E 0.25 < P (I = 1 |vI ) ≤ 0.75
Î = 0 P (I = 1 |vI ) ≤ 0.25

a) Assume yz(t) = xz(t) + Wz(t) where Wz(t) is a complex additive white Gaussian with RWz(τ) =
N0δ(τ), then the demodulator in (8.101) simplifies to a threshold test as in the binary case.
Identify the decision statistic and the two decision thresholds.

b) Give an expression for the bit error probability P
(
Î �= I, Î �= E

)
in terms of Eb, and N0 for

this signal set and demodulator. Plot this performance in comparison to the traditional binary
demodulator.

Problem 8.10. Consider the MFSK example given in the text. Use the union bound to find the
optimum frequency spacing for

a) M = 4 at Eb/N0 = 8dB.

b) M = 8 at Eb/N0 = 9dB.

For each case plot the union bound and compare it to the union bound for �[ρij ] = 0. A computer
might be a friend in this problem.
Problem 8.11. The touch-tone dialing in a telephone is a form of M-ary communication. When a key
is pressed on a telephone two tones are generated, i.e.,

xi(t) = A cos (2πfi(1)t) + A cos (2πfi(2)t) (8.102)

This type of modulation is referred to as dual tone multiple frequency (DTMF) modulation. The DTMF
tones can send Kb = 4 bits even though there are only twelve keys on the phone. The modulation
mappings are shown in Table 8.1. To simplify the problem assume Tp = 1 seconds. Note also that the
modulation is given as a real signal.

a) Plot the transmitted signal when person tries to call the operator (i = 13) for A = 1 over the
interval [0, 0.1].

b) Transmission on telephone lines are often thought of as having fc = 1200 Hz. Give the simplest
form of the complex envelope when a person tries to call the operator (i = 13).

c) What is Ei i ∈ {0, . . . , 15}.

d) Detail out the MLWD. Can you get away with only 8 filters instead of 16? If so show the structure.

e) Compute and plot the union bound to the probability of word error for Eb/N0=0-10dB. Note with
a 16-ary modulation a computer will be your friend in this problem.
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fi(2)
fi(1) 1209 Hz 1336 Hz 1477 Hz 1633 Hz

i=0 i=1 i=2 i=3
697 Hz ABC DEF

1 2 3 A
i=4 i=5 i=6 i=7

770 Hz GHI JKL MNO
4 5 6 B

i=8 i=9 i=10 i=11
852 Hz PRS TUV WXY

7 8 9 C
i=12 i=13 i=14 i=15

941 Hz oper
* 0 # D

Table 8.1: The dual tone multiple frequency (DTMF) modulation mappings

Problem 8.12. Consider a 4-ary communication waveform set that achieves Wb = 2/Tp having the
form shown in Fig.8.13. assume all words are equally likely and that the corrupting noise is an AWGN
with a one-side spectral density of N0.

a) Compute the value of A and B such that Ei = 2Eb i = 0, 3

b) Identify the MLWD structure.

c) Show that only two filters are needed to implement this structure

d) Compute the union bound to the probability of word error.

Problem 8.13. Three bits of information are transmitted with an 8-ary modulation that has been
called pulse position modulation (PPM) and is characterized with

x0(t) = u(t) x1(t) = u(t − Tp/8) x2(t) = u(t − Tp/4) x3(t) = u(t − 3Tp/8) (8.103)
x4(t) = u(t − Tp/2) x5(t) = u(t − 5Tp/8) x6(t) = u(t − 3Tp/4) x7(t) = u(t − 7Tp/8)

where

u(t) =


√

24Eb

Tp
0 ≤ t ≤ Tp/8

0 elsewhere.
(8.104)

Recall for comparison that 8-ary orthogonal frequency shift keying (8FSK) has a minimum fd = 1
4Tp

and a transmitted signal given as

xi(t) =


√

3Eb

Tp
exp

[
jπt(i − 3.5)

Tp

]
0 ≤ t ≤ Tp

0 elsewhere.
(8.105)

a) Detail out the maximum likelihood word demodulator for 8PPM. Are there any simplifications
that are possible due to using PPM?
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Figure 8.13: The waveforms for a 4-ary communication system.

b) Find the union bound to the word error performance for 8PPM. How will this performance compare
to 8FSK?

c) Find the average energy spectrum per bit for 8PPM. How does this spectrum compare to 8FSK?

d) As a communication engineer assess the advantages and disadvantages of 8PPM versus 8FSK.

e) Assume a normal binary mapping into the word indices and find the maximum likelihood bit
demodulator (MLBD) for the first bit.

Problem 8.14. In the wireless local network protocol denoted IEEE 802.11b the lowest rate modulation
is a binary modulation using the two waveforms given in Fig. 7.29. A modified system chooses to send
Kb = 2 equally likely bits by adding two more waveforms as shown in Fig. 8.14

a) Select A such that the energy per bit is Eb.

b) Show how to compute T2.

c) Compute the union bound for this 4-ary modulation.

Problem 8.15. Recall that

� [Wz(t)x∗
i (t)] = WI(t)xi,I(t) + WQ(t)xi,Q(t) (8.106)

and use it to show that the correlation coefficient between the noise in different maximum likelihood
metrics is

ρ =
E

[
N

(i)
I N

(k)
I

]
N0
2

√
EiEk

= � [ρik] . (8.107)
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Figure 8.14: Two more waveforms for a 4-ary modulation.

Problem 8.16. Assume Kb = 3, equally likely transmitted signals, that the maximum likelihood
metrics are given as

T0 = 1.375 T1 = 1 T2 = 1.25 T3 = 1 T4 = 0.75 T5 = 0.875
T6 = 1.25 T7 = 1.2, (8.108)

and N0 = 0.5.

a) Find the maximum likelihood word demodulation output word and bits.

b) Compute L0(k) and L1(k) for k ∈ {1, 2, 3}.

c) Find each of the maximum likelihood bit decisions. Are any of the maximum likelihood bit
decisions different than the bit decisions in the maximum likelihood word demodulator output?
If so why?

Problem 8.17. Assume Kb = 2 and that the maximum likelihood metrics and the a priori probabilities
are all available, i.e., Ti and πi i = 0, 1, 2, 3.

a) Find the MAPBD for I(1) and I(2).

b) Taking the exponential function of the maximum likelihood metric greatly expands the range
of the possible values needed in the processing of the signals in a MAPBD. Consequently the
processing of the signals in MAPBD is often done in the “log” domain. An operation that has
proved useful for operating in the “log” domain is known as the max* operation [?], specifically

max*(A, B) = log (exp [A] + exp [B]) . (8.109)

Show that this can be evaluated as

max*(A, B) = max (A, B) + log (1 + exp [−|B − A|]) (8.110)
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Figure 8.15: Waveforms for a 4-ary modulation.

c) Plot the funtion log (1 + exp [X]) for X < 0. How might you approximate the computation of this
function to reduce complexity.

d) Show how to use max* to compute the MAPBD for I(1) and I(2). Use the notation pi = log (πi).

e) Show that

max*(A, B, C) = max* (max* (A, B) , C) . (8.111)

Discuss how this impacts the computation of the MAPBD for Kb > 2.

Problem 8.18. The four waveforms in Fig. 8.15 are to be used to send Kb = 2 bits. Assume the
received signal is distorted by an AWGN with a one–sided spectral density of N0 and that all the
signals are a priori equally likely.

a) Select A such that the energy per bit is Eb.

b) What is the average energy spectrum per bit?

c) Detail out the MLWD. It is possible to have the MLWD be implemented with one filter that is
sampled at four different time instances. Give the form for this filter.

d) Compute the union bound for this 4-ary modulation.

e) Would this modulation perform better or worse than 4-ary orthogonal FSK in terms of word error
probability?

f) Would this modulation have better or worse spectral efficiency than 4-ary orthogonal FSK?

g) Assume that �I = i = [I(1)I(2)], find the MLBD for both I(1) and I(2). There turns out to be a
simple threshold test for this problem. What characteristic enables this simple threshold test.

8.6 Example Solutions

Problem 8.18.
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a) 2Eb = A2Tp

2 so that A = 2
√

Eb
Tp

.

b) Defining

u4(t) =
{

1 0 ≤ t ≤ Tp/4
0 elsewhere

(8.112)

then it is apparent that

xi(t) = u4 (t − τ1,i) + u4 (t − τ2,i) . (8.113)

Consequently the Fourier transform is given as

Xi(f) =
ATp

4
sinc

(
ftp
4

)
exp [−j2πfτ1,i] +

ATp

4
sinc

(
ftp
4

)
exp [−j2πfτ2,i] (8.114)

=
ATp

4
sinc

(
ftp
4

)
(exp [−j2πfτ1,i] + exp [−j2πfτ2,i]) (8.115)

The energy spectrum of the individual waveforms is then given as

Gxi(f) =
A2T 2

p

16

(
sinc

(
ftp
4

))2

[2 + 2 cos (2πf (τ1,i − τ2,i))] . (8.116)

The average energy spectrum is then given as

Dxz(f) =
A2T 2

p

32

(
sinc

(
ftp
4

))2 [
4 + 2 cos (πfTp) + cos

(
πfTp

2

)
+ cos

(
3πfTp

2

)]
. (8.117)

c) The ML decision metric is

Ti = �
[∫ Tp

0
Yz(t)xi(t)dt

]
i = 0, · · · , 3 (8.118)

and the decoded bit is

�̂I = arg max
i=0,··· ,3

Ti (8.119)

It should be noted that this modulation is an equal energy modulation scheme and no energy
correction scheme is required. The one filter has an impulse response of u4(t) where

Q(t) =
∫

Yz(λ)u4(t − λ)dλ. (8.120)

The four sample points are

Q1 = Q(Tp/4) =
∫ Tp/4

0
Yz(t)dt Q2 = Q(Tp/2) =

∫ Tp/2

Tp/4
Yz(t)dt (8.121)

Q3 = Q(3Tp/4) =
∫ 3Tp/4

Tp/2
Yz(t)dt Q4 = Q(Tp) =

∫ Tp

3Tp/4
Yz(t)dt. (8.122)

The ML metrics are given as

T0 = � [Q1 + Q3] T1 = � [Q1 + Q4] T2 = � [Q2 + Q3] T3 = � [Q2 + Q4] (8.123)
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d) A quick examination of the waveforms shows the signal set is geometrically uniform so that

PWUB(E) = erfc

(√
Eb

2N0

)
+

1
2
erfc

(√
Eb

N0

)
(8.124)

e) Recall the union bound for orthogonal 4FSK is

PWUB(E) =
3
2
erfc

(√
Eb

N0

)
(8.125)

minimum squared Euclidean distance between signals for 4FSK is 3dB larger than the minimum
squared Euclidean distance for the signal set considered in this problem.

f) The spectral efficiency of 4FSK is approximately ηB = 1 while it is apparent from (8.117) the
spectral efficiency of the considered modulation is approximately ηB = 0.5

g) Note that

T00 = � [Q1 + Q3] T01 = � [Q1 + Q4] T10 = � [Q2 + Q3] T11 = � [Q2 + Q4] (8.126)

so it is easy to see that Tm1m2 = T
(1)
m1 + T

(2)
m2 where

T (k)
mk

= �
[
Q2(k−1)+mk+1

]
(8.127)

and the maximum likelihood metric has an additive form as needed for a simple MLBD. The
threshold tests are

� [Q1]
Î(1)=0

>
<

Î(1)=1

� [Q2] � [Q3]
Î(1)=0

>
<

Î(1)=1

� [Q4] (8.128)
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Chapter 9

Managing the Complexity of Optimum
Demodulation

The results of the previous chapter have shown that the idea of transmitting and demodulating many bits
of information is a direct extension of the ideas for transmitting and demodulating one bit of information.
The biggest impediment to using these concepts in practical communication systems is the fact that the
optimal demodulator complexity grows exponentially with the number of bits transmitted (O(2Kb)).
The goal for a practical system has to be a demodulator with complexity that grows linearly with
the number of bits (O(Kb)). Fortunately the example of M-ary phase shift keyed (MPSK) modulation
considered in Chapter 8 gives us two insights into how complexity of optimal demodulation can be made
practical. These two characteristics of MPSK modulation are

1. MPSK has a form xi(t) = diu(t) where a modulation symbol, di, is linearly modulated on a pulse
shape, u(t). When a modulation takes this form only one matched filter needs to be computed
for the optimum demodulator. The complexity of the demodulator is then greatly reduced.

2. Gray coded 4PSK has an optimum bit demodulator that has exactly the same form as a demod-
ulator for a single bit being transmitted in isolation. If this decoupling of each bit decision can be
generalized it would allow the complexity of the optimal demodulator to have a complexity that
is linear in the number of bits transmitted.

9.1 Linear Modulations

Linear modulation has the form

xi(t) = di

√
Ebu(t) i ∈ {0, . . . , M − 1} . (9.1)

The function of time u(t) is known as the pulse shape. In this text it will be assumed that u(t) has unit
energy, Eu = 1. The modulation symbol, di, is, in general, complex valued function of the transmitted
information word, Dz = a

(
�I
)
, and di = a(i) ∈ Ωd. The function a(i) is known as the constellation

mapping. A commonly used graphic for interpreting linear modulations is the constellation plot. A
constellation plot for 4PSK modulation, Ωd =

{√
2e

jπ
4 ,

√
2e

j3π
4 ,

√
2e

−jπ
4 ,

√
2e

−j3π
4

}
, is shown in Fig. 9.1.

For a consistent energy normalization the constellation will always be chosen such that

M−1∑
i=0

|di|2 πi = Kb. (9.2)
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Figure 9.1: The constellation plot of 4PSK modulation.

9.1.1 MLWD for Linear Modulation

The MLWD for a linear modulation has a greatly simplified form. Recall the optimum demodulator
has the form

�̂I = arg max
i∈{0,... ,M−1}

� [Vi(Tp)] −
Ei

2
(9.3)

where the ith matched filter output has the form

Vi(Tp) =
∫ Tp

0
yz(t)x∗

i (t)dt

= d∗i
√

Eb

∫ Tp

0
yz(t)u∗(t)dt

= d∗i
√

EbQ (9.4)

where Q is denoted that pulse shape matched filter output and is given as

Q =
∫ Tp

0
yz(t)u∗(t)dt (9.5)

Note the matched filter can be viewed as a fixed filter with an impulse response u∗(Tp − t) that is
sampled at time Tp. A block diagram of the demodulator for linear modulations is shown in Fig. 9.2.
Several observations can be made about the this structure:

1. The number of filtering operations in the demodulation has been reduced from M = 2Kb to one
when compared to the demodulator for a general M -ary modulation.
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Figure 9.2: The block diagram of a demodulator for linear modulation.

2. The decision device can still potentially have a complexity that is O
(
2Kb

)
.

3. The energy of the ith transmitted signal is Ei = |di|2 Eb.

The optimum demodulator for linear modulation has an intuitively pleasing geometric interpretation.
The optimum demodulator can be expressed as

�̂I = arg max
i∈{0,... ,M−1}

√
Eb� [d∗i Q] − |di|2 Eb

2
. (9.6)

Multiplying by 2 and adding a constant with respect to the possible transmitted symbols, −|Q|2, gives

�̂I = arg max
i∈{0,... ,M−1}

−|Q|2 + 2�
[
d∗i Q

√
Eb

]
− |di|2 Eb

= arg max
i∈{0,... ,M−1}

−
∣∣∣Q − di

√
Eb

∣∣∣2
= arg min

i∈{0,... ,M−1}

∣∣∣Q − di

√
Eb

∣∣∣2 (9.7)

Consequently the optimum demodulator computes Q and the finds the possible transmitted constellation
point di

√
Eb which has the minimum square Euclidean distance to Q. This is known by communications

engineers as a minimum distance decoder. This minimum distance decoder induces decision regions in
the complex plane. These decision regions represent the matched filter output values that correspond
to a most likely transmitted symbol. The decision regions for 4PSK MLWD is shown in Fig. 9.3. In the
sequel the decision regions will be denoted Ai where if Q ∈ Ai then Î = i represents the MLWD output.

Recall the matched filter output when the ith word was transmitted has the form

Q =
∫ Tp

0
yz(t)u∗(t)dt =

∫ Tp

0
xi(t)u∗(t)dt +

∫ Tp

0
Wz(t)u∗(t)dt

= di

√
Eb + Nz(Tp). (9.8)

With this view the signal portion of the matched filter output corresponds to the transmitted symbol
scaled by the bit energy,

√
Eb, and the noise causes a random translation of the signal in the complex

plane. The idea of a minimum distance decoder is simply trying to find which signal set would correspond
to the smallest noise magnitude. For example if d0 from the 4PSK constellation in Fig.9.1 is the
transmitted symbol then the matched filter output would have a representation as given in Fig. 9.4.

9.1.2 Performance Evaluation for Linear Modulation

The symbol error probability calculation also has a nice geometric interpretation. Comparing the signal
form in Fig. 9.4 to decision regions in Fig. 9.3 an error will occur when the noise, Nz(Tp), pushes the
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Figure 9.3: The minimum distance decision regions for 4PSK.

Figure 9.4: An example geometric interpretation of the signal and noise in linear modulation. Dz =
d0 =

√
2ejπ/4 = 1 + j.
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matched filter into a decision region that does not correspond to the transmitted symbol. Since Nz(Tp)
is a complex Gaussian random variable with

var (Nz(Tp)) = EuN0 = N0 var (NI(Tp)) =
N0

2
= var (NQ(Tp)) (9.9)

the PDF of the noise is easily computed using (4.26). An example noise PDF is plotted in Fig. 9.6-a).
The probability of word error conditioned on the ith symbol being sent is

PW (E |i) = P (Q �∈ Ai) = P
(
di

√
Eb + Nz(Tp) �∈ Ai

)
. (9.10)

Consequently this probability is simply an integral of the noise PDF, i.e.,

PW (E |i) =
∫

Ri

fNz(nz)dnz =
∫

1Ri(nz)fNz(nz)dnz (9.11)

where the indicator function is used to mask the PDF only in the regions where noise will cause an error.
Fig. 9.6-b) shows the masked PDF for a 4PSK decision regions given in Fig. 9.3 for d0 =

√
2 exp

(
j π

4

)
.

The PW (E) for a given Kb can be a significant function of how the constellation points are placed in
the complex plane. For example consider two common linear modulations, pulse amplitude modulation
(PAM) and phase shift keyed (PSK) modulation that have been implemented often in engineering
practice. PSK uses only the phase to transmit information while PAM uses only the amplitude to
transmit information. Examples of the constellation plots for these two modulations are shown in
Fig. 9.5 for Kb = 2. Note 4-ary pulse amplitude modulation (4PAM) is characterized with Ωd ={
±
√

2/
√

5,±3
√

2/
√

5
}
. The PW (E) for each of these linear modulations are given for Kb = 1, 2 as (see

problems)

PW (E) =
1
2
erfc

(√
Eb

N0

)
BPSK/BPAM (9.12)

PW (E) = erfc

(√
Eb

N0

)
−

(
1
2
erfc

(√
Eb

N0

))2

4PSK (9.13)

PW (E) =
3
4
erfc

(√
2Eb

5N0

)
4PAM. (9.14)

These curves are plotted in Fig 9.7. It is clear from Fig 9.7 that how constellation points are chosen in
sending Kb bits with a linear modulation can have a significant impact on the performance.

The union bound for the word error probability of a linear modulation is straightforward to compute.
The union bound can be formed by noting that the pair-wise Euclidean squared distance is given as

∆E(i, j) = Eb |di − dj |2 . (9.15)

Consequently the union bound can be form only by looking at the constellations and does not need to
worry about the pulse shaping function.

So an additional benefit of linear modulation beside the simple MLWD is that the PW (E) can
always be calculated. This calculation might require a little computer work (two dimensional numerical
integration) but this effort is not unreasonable for a modern communication engineer. While often a
general M -ary modulation must resort to a union bound computation to characterize the PW (E) this
is not necessary for linear modulation.
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Figure 9.5: Constellation diagrams for 4PAM and 4PSK.

a) Noise PDF b) Noise PDF after masking,
d0 = 1 + j1, Eb = 1

Figure 9.6: A noise PDF corresponding to var (Nz(Tp)) = 1.
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Figure 9.7: Word error probability curves for several linear modulations.
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9.1.3 Spectral Characteristics of Linear Modulation

For linear modulations the average energy spectrum per bit is straightforward to compute.

Dxz(f) =
E [Gxz(f)]

Kb
= Gu(f)

E
[
|Dz|2

]
Kb

= Gu(f)
∑M−1

i=0 |di|2πi

Kb
= EbGu(f). (9.16)

The important point to note about (9.16) is that the average energy spectrum per bit is entirely (up to
a constant multiple) a function of the pulse shape spectrum, Gu(f). Transmitting more bits (increasing
Kb) has no effect on the occupied spectrum. Consequently with a bandwidth efficient choice of the
pulse shape, u(t), linear modulation is a very effective modulation for bandlimited channels. A design
of a pulse shape that will meet a specified spectral mask is explored in the projects at the end of the
Chapter 7.

9.1.4 Summary of Linear Modulation

Important points about linear modulation are

• Demodulation of linear modulation does not increase exponentially with the number of bits trans-
mitted since only one matched filter output needs to be computed and simple decision regions can
be identified. Linear modulation is often used because it has a low demodulation complexity.

• The energy spectrum per bit of a linear modulation is entirely a function of the pulse shape
that is used. Bandwidth efficient pulse shapes are often used in conjunction with M -ary linear
modulation when bandwidth efficiency is of paramount importance. This will be examined in
more detail in Chapter 10.

• Performance gets significantly worse as M gets larger. This can be seen by examining the per-
formance of linear modulations in both Fig 9.7 and Fig 8.8. Consequently linear modulation
provides a classic tradeoff in bandwidth efficiency (highly bandwidth efficient) versus performance
(not highly energy efficient).

• The selection of the constellation points in an M -ary linear modulation can significantly affect
performance. This can be seen by examining the performance of 4PAM and 4PSK (both Kb=2)
in Fig 9.7. 4PAM has a 3dB worse performance than 4PSK since the 4PAM constellation points
have not been placed as effectively in the complex plane as the 4PSK constellation points. An
interesting paper that investigates optimal and suboptimal constellations is [FGL+84].

9.2 Low Complexity Optimal Bit Decisions

Recall from Chap 8 that Gray coded 4PSK has an optimum bit demodulator that has exactly the
same form as a demodulator for a single bit being transmitted in isolation. If this decoupling of
each bit decision can be generalized it would allow the complexity of the optimal demodulator to have a
complexity that is linear in the number of bits transmitted. Here we explore the most general conditions
that must exist for optimum signal bit demodulation to have the same complexity as the case when the
bit is translated in isolation as discussed in Chap. 7.
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9.2.1 Optimum Bit Demodulation

We know from the previous chapter that the optimum bit demodulator, the MAPBD, is

P (I(k) = 1 |yz(t))
Î(k)=1

>
<

Î(k)=0

P (I(k) = 0 |yz(t)) . (9.17)

Simplifications presented in Chap. 8 show the optimum bit decision is given as

M/2−1∑
n=0

exp
[
2T{1,n}

N0

]
π{1,n}

Î(k)=1
>
<

Î(k)=0

M/2−1∑
n=0

exp
[
2T{0,n}

N0

]
π{0,n}. (9.18)

From this point forward we will assume each of the bits is generated independently, i.e.,

πi =
Kb∏
l=1

πml
(l) (9.19)

where �I = i = [m1 m2 . . . mKb
]. Without this assumption there is little hope in finding simplified

optimum single bit decisions as all the individual bits are related before they are even transmitted. In
a similiar fashion the MLBD for M -ary modulations has the form

M/2−1∑
n=0

exp
[
2T{1,n}

N0

] Î(k)=1
>
<

Î(k)=0

M/2−1∑
n=0

exp
[
2T{0,n}

N0

]
. (9.20)

Note that the summation in (9.20) can only have a simple form if the terms corresponding to the bit of
interest, I(k), can be factored out of the summation. It is easy to see that this can only be if

T{m,n} = T (−)
n + T (k)

m (9.21)

where

T (−)
n = f1

(
I(−)(k) = n

)
T (k)

m = f2 (I(k) = m) . (9.22)

Since the maximum likelihood metric has the sum form for every possible transmitted word, the APP
for each word can be formed into a product of two terms.

Since the APP of each word can be factored into a term related to the bit of interest and all other
bits, the MAPBD simplifies to

exp

[
2T

(k)
1

N0

]
π1(k)

M/2−1∑
n=0

exp

[
2T

(−)
n

N0

]
πn

Î(k)=1
>
<

Î(k)=0

exp

[
2T

(k)
0

N0

]
π0(k)

M/2−1∑
n=0

exp

[
2T

(−)
n

N0

]
πn.(9.23)

Cancelling out the common terms in (9.23) gives

exp

[
2T

(k)
1

N0

]
P (I(k) = 1)

Î(k)=1
>
<

Î(k)=0

exp

[
2T

(k)
0

N0

]
P (I(k) = 0) . (9.24)

In is very important to note that the form in (9.24) is exactly the same form as the MAP detector for
one bit transmitted in isolation (see Chapter 7 and 8). In other words, if the maximum likelihood metric
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can be put into an additive form for the bit of interest like in (9.21) then each bit can be optimally
detected independently. Likewise for MLBD if T{m,n} = T

(−)
n + T

(k)
m then

exp

[
2T

(k)
1

N0

] Î(k)=1
>
<

Î(k)=0

exp

[
2T

(k)
0

N0

]
. (9.25)

The monotonicity of the exponential function results in

T
(k)
1

Î(k)=1
>
<

Î(k)=0

T
(k)
0 . (9.26)

The outstanding question is how do we get

T{m,n} = �
[
V{m,n}(Tp)

]
−

E{m,n}
2

= T (−)
n + T (k)

m ? (9.27)

First it should be noted that if the additive form holds for each of the Kb bits then the maximum
likelihood metric needs to be in an additive form as in

Ti =
Kb∑
k=1

T (k)
mk

(9.28)

where
{

�I
}

= {I(1) = m1, · · · , I(Kb) = mKb
}. In other words each Ti can be broken up into a sum of

terms which are individually only a function of a single bit position, k, and bit value for that position,
I(k) = mk.

In general there are a wide variety of ways that this sum form can be achieved for the ML decision
metric. At this point we return to the example of Gray coded 4PSK modulation that was introduced
in Chap. 8 to give one example. Denoting i = {m1, m2}, it is apparent that Gray coded 4PSK is a
constant energy linear modulation (M=4) with

di = dm1 + jdm2 , (9.29)

where the in-phase and quadrature modulation is given as dm = (−1)m. It is clear that the in-phase
part of the message symbol is a function of only I(1) and the quadrature part of the message symbol is
a function of only I(2). Consequently the ML decision metric is given as

Ti =
√

Eb� [d∗i Q] − Eb =
√

Eb� [(dm1 + jdm2)
∗ Q] − Eb

=
√

Eb� [dm1Q] − Eb

2
+

√
Eb� [−jdm2Q] − Eb

2
= T (1) + T (2). (9.30)

Gray coded 4PSK has a simple optimum bit demodulator because each of the two bits is modulated on
an orthogonal set of signals (the I and Q components of the data symbol). The most commonly used
techniques to achieve this simple demodulation structure is considered in the next section.

9.2.2 Orthogonal Modulations

Many of the modulation schemes that are used in practice for their reduced complexity optimal demod-
ulation are due to the following property
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Property 9.1 (Orthogonal Modulations) If

Xi(t) =
Kb∑
l=1

x (ml, l, t) (9.31)

where again �I = i = [m1 m2 . . . mKb
] then the MLBD metric can be put in the additive form required

for simplified bit detection if the waveforms used to transmit each of the bits are orthogonal, i.e.,

�
[∫ ∞

−∞
x (ml, l, t) x∗ (mk, k, t) dt

]
= 0 ∀k �= l, ml = 0, 1, mk = 0, 1 (9.32)

Proof: The ML metric consists of two components: the matched filter output and the energy correction
term. The matched filter term for the transmitted signal that has the form in (9.31) is given as

�
[∫ ∞

−∞
yz(t)x∗

i (t)dt

]
= �

∫ ∞

−∞
yz(t)

(
Kb∑
l=1

x (ml, l, t)

)∗

dt


=

Kb∑
l=1

�
[∫ ∞

−∞
yz(t)x∗ (ml, l, t) dt

]
. (9.33)

Consequently just due to the form in (9.31) the matched filter output has the additive form required
for simplified detection. The remaining term is the energy correction term given for (9.31) as

Ei

2
=

1
2

∫ ∞

−∞
|xi(t)|2 dt =

1
2

∫ ∞

−∞

Kb∑
l=1

x (ml, l, t)

(
Kb∑
k=1

x (mk, k, t)

)∗

dt

=
1
2

Kb∑
l=1

∫ ∞

−∞
|x (ml, l, t)|2 dt +

1
2

Kb∑
l=1

Kb∑
k=1
k �=l

∫ ∞

−∞
x (ml, l, t) (x (mk, k, t))∗ dt (9.34)

=
1
2

Kb∑
l=1

Ex(ml,l) +
Kb∑
l=2

l∑
k=1

�
[∫ ∞

−∞
x (ml, l, t) (x (mk, k, t))∗ dt

]
. (9.35)

Clearly the second term in (9.35) will go to zero if the orthogonality condition holds and then the energy
correction term will also have an additive form. �

An interesting characteristic of orthogonal modulations is that the decision metric has exactly the
same form as the single bit detector presented in Chapter 7. Using the above notation for orthogonal
modulation we see that the optimal decision rule (MAPBD) is given as

exp

[
2T

(k)
1

N0

]
π1

Î(k)=1
>
<

Î(k)=0

exp

[
2T

(k)
0

N0

]
π0. (9.36)

The MLBD has the form

T
(k)
1

Î(k)=1
>
<

Î(k)=0

T
(k)
0

� [V1(k)] − 1
2
Ex(1,k)

Î(k)=1
>
<

Î(k)=0

� [V0(k)] − 1
2
Ex(0,k) (9.37)

c©1996-2004 - Michael P. Fitz - The University of California Los Angeles



210 Managing the Complexity of Optimum Demodulation

where

Vmk
(k) =

∫ ∞

−∞
yz(t)x∗ (mk, k, t) dt (9.38)

is the matched filter to the waveform used to transmit I(k) = mk. Since the orthogonality reduces the
demodulation to exactly that of a single bit developed in Chapter 7 we can deduce the performance is
exactly that of the single bit demodulator. Consequently the bit error probability performance is lower
bounded by

PB(E) ≥ 1
2
erfc

(√
Eb

N0

)
. (9.39)

The orthogonality implies each decision is independent so that the word error probability for orthogonal
modulation becomes (see Problem 9.12)

PW (E) = 1 − (1 − PB(E))Kb ≥ 1 −
(

1 − 1
2
erfc

(√
Eb

N0

))Kb

. (9.40)

9.3 Orthogonal Modulation Examples

9.3.1 Orthogonal Frequency Division Multiplexing

A commonly used modulation that admits a simple optimal bit demodulation is orthogonal frequency
division multiplexing (OFDM) [Cha66]. OFDM has found utility in telephone, cable, and wireless
modems. With OFDM each of the Kb bits is independently modulated on a separate subcarrier fre-
quency and the subcarrier frequencies are chosen to ensure the orthogonality. The format for an OFDM
signal is

Xz(t) =


Kb∑
l=1

Dz(l)

√
Eb

Tp
exp [j2πfd(2l − Kb − 1)t] 0 ≤ t ≤ Tp

0 elsewhere

(9.41)

where D(l) = a (I(l)) and 2fd is the separation between adjacent freqeuncies that are used to transmit
the information. The transmission rate of this form of OFDM is Wb = Kb/Tp bits per second. In
examining (9.41) it is clear that in this form of OFDM a binary linear modulation is used on each of
the Kb different frequencies. For clarity of discussion the remainder of the section will assume the linear
modulation is BPSK (i.e., a(0) = 1 and a(1) = −1). A more general form of OFDM could use any type
of linear modulation and any number of bits per subcarrier. For example 4 bits could be transmitted
per frequency using a 16QAM modulation (see Problem 9.1). Some of the generalizations of OFDM
will be explored in the homework.

The OFDM transmitted waveform is a sum of Kb complex sinusoids. This transmitted waveform
will have a complex envelope that changes significantly over the transmission time as the Kb complex
sinusoids change in phase relative to each other. The larger the value of Kb the larger this variation over
the transmission time will be. Fig. 9.8 shows the vector diagrams of some example OFDM transmitted
waveforms. The vector diagram clearly becomes more complex as more bits are transmitted. In addition
the peak value of the amplitude of the complex envelope increases with Kb. For example Fig. 9.9 shows
xA(t) of some example OFDM transmitted waveforms. An OFDM waveform has a significant difference
between the peaks in amplitude and the average value of the amplitude. This high peak to average
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a) Kb=4 b) Kb=64

Figure 9.8: Example vector diagrams of OFDM transmissions.

a) Kb=4 b) Kb=64

Figure 9.9: Example xA(t) for OFDM transmissions.
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ratio requires the radios in an OFDM system to have the dynamic range necessary to process the signal
without distortion.

In the general framework of orthogonal modulations OFDM has set

x (I(l), l, t)) =

 Dz(l)

√
Eb

Tp
exp [j2πfd(2l − Kb − 1)t] 0 ≤ t ≤ Tp

0 elsewhere
(9.42)

The orthogonality condition then corresponds to

�
[∫ ∞

−∞
x (ml, l, t)x∗ (mk, k, t) dt

]
= 0 (9.43)

�
[
dml

d∗mk

Eb

Tp

∫ Tp

0
exp [j4πfd(l − k)t] dt

]
= 0. (9.44)

Using the result of (7.79) shows that the minimum spacing with an arbitrary complex constellation for
orthogonality is achieved for fd = 1/(2Tp). If the constellation is restricted to have real values (e.g.,
BPSK) then the minimum frequency spacing is achieved with fd = 1/(4Tp).

Example 9.1: The wireless local area network standard denoted IEEE 802.11a uses OFDM. The 802.11a
standard uses OFDM that can be represented with Kb = 53 with Tp = 3.2µs. The frequency spacing of
the subcarrier tones is set with fd = 156.25kHz because complex constellations are used in some modes
of transmission. The potential transmission rate of the 802.11a waveform with BPSK modulation would
be 16.25 MHz. The top transmission speed of 54Mbps is achieved by using a QAM modulation on each
subcarrier. QAM constellations are investigated in the problems at the end of the chapter.

The optimal demodulator has the form of Kb parallel single bit optimal demodulators. This demodula-
tor is shown in Fig. 9.10. Restricting ourselves to BPSK modulation on each subcarrier frequency the
MLBD has the form

�
[∫ Tp

0
Yz(t)

√
1
Tp

exp [−j2πfd(2k − Kb − 1)t] dt

]
= � [Q(k)]

Î(k)=0
>
<

Î(k)=1

0 (9.45)

Since OFDM is using a linear modulation on each subcarrier we will use Q(k) to denote the matched
filter output for the kth bit or subcarrier. The demodulator computes a filter output for each bit,
k ∈ {1, . . . , Kb}, and hence the complexity of the OFDM optimum demodulator is O(Kb) as opposed to
the O(2Kb) for an arbitrary modulation that transmits Kb bits of information. For future reference here
we note that Q(k) can be viewed at the Fourier transform of Yz(t) evaluated at f = fk = fd((2k−Kb −
1). The OFDM optimum demodulator evaluates the real part of the Fourier transform at Kb points
symmetrically spaced around f = 0 and uses these Fourier transform values in a threshold test. Since
� [Q(k)] = Dz(k)

√
Eb +NI(k) where var (NI(k)) = N0

2 , the bit error probability performance of OFDM
using BPSK on each subcarrier is clearly

PB(E) =
1
2
erfc

(√
Eb

N0

)
. (9.46)

The optimum demodulator for OFDM is essentially Kb single bit demodulators implemented in parallel
(one for each subcarrier). Because of the orthogonality of the subcarriers the performance of an OFDM
demodulator is the same a the demodulator for a single bit transmitted in isolation (see Chapter 7).
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Figure 9.10: The optimal demodulator for OFDM using BPSK.

Spectral Characteristics of OFDM

Recall that the average energy spectrum per bit is

Dxz(f) =
E [Gxz(f)]

Kb
. (9.47)

To simplify the notation needed in this discussion we will make the following definition.

Definition 9.1 The Fourier transform of the unit energy rectangular pulse function

ur(t) =


1√
Tp

0 ≤ t ≤ Tp

0 elsewhere
(9.48)

is

Ur(f) =
√

Tp
sin (πfTp)

πfTp
exp [−jπfTp] (9.49)

Taking the Fourier Transform of the OFDM signal (9.41) and using the frequency shift property of the
Fourier transform gives

Xz(f) =
Kb∑
l=1

Dz(l)
√

EbUr (f − fd(2l − Kb − 1)) . (9.50)

The energy spectrum is then given as

GXz(f) = Eb

Kb∑
l1=1

Kb∑
l2=1

Dz(l1)D∗
z(l2)Ur (f − fd(2l1 − Kb − 1))U∗

r (f − fd(2l2 − Kb − 1)) . (9.51)

c©1996-2004 - Michael P. Fitz - The University of California Los Angeles



214 Managing the Complexity of Optimum Demodulation

The average energy spectrum per bit is then

DXz(f) =
Eb

Kb
E

 Kb∑
l1=1

Kb∑
l2=1

Dz(l1)D∗
z(l2)Ur (f − fd(2l1 − Kb − 1))U∗

r (f − fd(2l2 − Kb − 1))

 . (9.52)

The average energy spectrum per bit can be greatly simplified when BPSK modulation is used on
each frequency in OFDM. Recall each bit is assumed to be random and independently distributed.
Examing the term corresponding to a fixed l1 and l2, l1 �= l2, in (9.52) (one of K2

b terms in the
summation) gives

E [Dz(l1)D∗
z(l2)]Ur (f − fd(2l1 − Kb − 1))U∗

r (f − fd(2l2 − Kb − 1))
= (π0π0 + π1π1 − π0π1 − π1π0) Ur (f − fd(2l1 − Kb − 1))Ur (f − fd(2l2 − Kb − 1))
= (π0 − π1)

2 Ur (f − fd(2l1 − Kb − 1))Ur (f − fd(2l2 − Kb − 1)) (9.53)

Examing the term corresponding to l1 = l2, in (9.52) gives

E
[
|Dz(l1)|2

]
|Ur (f − fd(2l1 − Kb − 1))|2 = (π0 + π1) |Ur (f − fd(2l1 − Kb − 1))|2

= |Ur (f − fd(2l1 − Kb − 1))|2 (9.54)

The average energy spectrum per bit is then given as

DXz(f) =
Eb

Kb

Kb∑
l1=1

|Ur (f − fd(2l1 − Kb − 1))|2 + (9.55)

Eb

Kb
(π1 − π0)2

Kb∑
l2=1

Kb∑
l1=1
l1 �=l2

Ur (f − fd(2l1 − Kb − 1))U∗
r (f − fd(2l2 − Kb − 1)) .

Further simplifications occur if each bit is equally likely. For equally likely bits the second term in
(9.55) becomes zero. The spectrum in this case becomes

DXz(f) =
Eb

Kb

Kb∑
l=1

|Ur (f − fd(2l − Kb − 1))|2 . (9.56)

This spectrum is plotted in Fig. 9.11 for Kb = 4 and fd = 0.5/Tp. The conclusions we can draw about
the average energy spectrum of OFDM is that the bandwidth occupancy for this type of an OFDM
is proportional to 1/Tp and to Kb. Recall that the transmission rate is Wb = Kb/Tp bits/second.
Consequently the transmission efficiency is in the neighborhood of 1 bit/s/Hz, though the exact number
will be a function of how the engineering bandwidth is defined.

In conclusion OFDM provides a method to implement multiple bit transmission with good perfor-
mance and reasonable complexity and spectral efficiency. The bit error probability performance of the
OFDM scheme highlighted in this section gives the same bit error probability performance as BPSK
used in isolation. The spectral efficiency is roughly 1 bit/s/Hz. The complexity of the optimum receiver
is O(Kb). Consequently OFDM has found significant utility in engineering practice.

9.3.2 Orthogonal Code Division Multiplexing

A second commonly used modulation that admits a simple optimal bit demodulation is orthogonal code
division multiplexing (OCDM). Orthogonal code division multiplexing is often used in cellular radio
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Figure 9.11: Average energy spectrum per bit for OFDM. Kb = 4, equally likely bits and BPSK
modulation, with fd = 1/2Tp.

communication and in satellite communication on the downlink. With OCDM each of the Kb bits is
independently modulated on the same carrier frequency with an orthogonal waveform. This orthogonal
waveform is often termed the spreading waveform. The typical format for an OCDM signal is

Xz(t) =


Kb∑
l=1

Dz(l)
√

Ebsl(t) 0 ≤ t ≤ Tp

0 elsewhere

(9.57)

where D(l) = a (I(l)) and sl(t) is often denoted the spreading signal for the lth bit. Here we assume that
both E

[
|D(l)|2

]
= 1 and that Esl

= 1. The transmission rate of this form of OCDM is Wb = Kb/Tp

bits per second. In examining (9.57) it is clear that in this form of OCDM a binary linear modulation
is used on each of the Kb different spreading waveforms. Again for clarity of discussion the remainder
of the section will assume the linear modulation is BPSK (i.e., a(0) = 1 and a(1) = −1). It should be
noted that OFDM is a special case of OCDM with sl(t) = exp [j2πflt] /

√
Tp.

In the general framework of orthogonal modulations OCDM has set

x (I(l), l, t)) =
{

Dz(l)
√

Ebsl(t) 0 ≤ t ≤ Tp

0 elsewhere
(9.58)

The orthogonality condition then corresponds to

�
[∫ ∞

−∞
x (ml, l, t) x∗ (mk, k, t) dt

]
= Eb�

[
dml

d∗mk

∫ Tp

0
sl(t)s∗k(t)dt

]
= 0. (9.59)

The remaining question is how to find a set of Kb orthogonal waveforms. There is a wide variety of
ways to construct these waveforms and one example is given in Fig. 9.12 for Kb=4. Certainly this
construction is not unique. The time waveform of OCDM can have significant variations across the
transmission time. For instance Fig 9.13 shows the time plot of the output envelope1 of two possible
transmitted waveforms for the spreading waveforms introduced in Fig. 9.12 for Kb=4. In both cases

1Because the spreading waveforms are all real xA(t) = |xI(t)|.
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Figure 9.12: Example spreading waveforms for OCDM and Kb = 4.

the transmitted energy is equal but how that energy is spread across the transmit time is very much a
function of the transmitted information. An OCDM waveform can have a significant difference between
the peaks in amplitude and the average value of the amplitude. This difference will increase as Kb

increases. This high peak to average power ratio requires the radios in an OCDM system to have the
dynamic range necessary to process the signal without distortion.
Example 9.2: One of the standards for mobile telephones is denoted IS-95. IS-95 uses OCDM as the
forward link modulation with Kb = 64. The spreading waveforms used to send each bit are Walsh
functions which are discussed in Problem 9.22 (This problem shows how Walsh functions are derived
from Hadamard matrices). In IS-95 Tp = 52.083̄µs so if BPSK modulation was used a bit rate of
1.2288Mbps could be achieved. In voice mobile telephony data rates only need to support voice band
speech transmission. Hence IS-95 uses each of the spreading waveforms to transmit a bit to potentially
64 different users. This use of one physical layer radio link to support many information transactions
is known as multiple access communications. Each spreading waveform is simultaneously capable of
supporting a 19.2kbps transmission rate which is a data rate greater than necessary for modern speech
encoders.

The optimal demodulator again has the form of Kb parallel single bit optimal demodulators. This de-
modulator is shown in Fig. 9.14. Restricting ourselves to BPSK modulation on each spreading waveform
the MLBD has the form

�
[∫ Tp

0
Yz(t)s∗k(t)dt

]
= � [Q(k)]

Î(k)=0
>
<

Î(k)=1

0 (9.60)

The demodulator computes a filter output for each bit, k ∈ {1, . . . , Kb}, and hence the complexity of
the OCDM optimum demodulator is again O(Kb) as opposed to the O(2Kb) for an arbitrary modulation
that transmits Kb bits of information. Since � [Q(k)] = Dz(k)

√
Eb + NI(k) where var (NI(k)) = N0

2 ,
the bit error probability performance of OCDM using BPSK on each spreading waveform is again

PB(E) =
1
2
erfc

(√
Eb

N0

)
. (9.61)

The optimum demodulator for OCDM is again Kb single bit demodulators implemented in parallel (one
for each orthogonal spreading waveform). Because of the orthogonality of the spreading waveforms the
performance of an OCDM demodulator is the same a the demodulator for a single bit transmitted in
isolation (see Chapter 7).
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Figure 9.13: Output envelope time waveforms for the spreading waveforms in Fig. 9.12. i1 = [1110] and
i2 = [1010]

Figure 9.14: The optimal demodulator for OCDM using BPSK.
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Figure 9.15: The average energy spectrum per bit for OCDM.

Spectral Characteristics of OCDM

Again the average energy spectrum per bit is

Dxz(f) =
E [Gxz(f)]

Kb
=

Eb

Kb
E

[
Kb∑
l=1

Kb∑
k=1

Dz(l)D∗
z(k)Sl(f)S∗

k(f)

]
. (9.62)

Using the results of Section 9.3.1 and assuming for simplicity that each bit is equally likely and BPSK
modulation is used, the spectrum in this case becomes

DXz(f) =
Eb

Kb

Kb∑
l1=1

|Sl (f)|2 (9.63)

where Sl (f) = F {sl(t)}. The important thing to note here is that the spectrum of OCDM waveforms
is directly proportional to the spectrum of the chosen spreading waveforms. The spectrum of the set
of spreading signals chosen in Fig. 9.12 is shown in Fig. 9.15. The conclusions we can draw about
the average energy spectrum of OCDM is that the bandwidth occupancy for this type of an OCDM is
proportional to 1/Tp and to Kb. The bandwidth is greater than if a single bit was sent in isolation since
Kb orthogonal waveforms need to be constructed for each of the Kb transmitted bits.

9.3.3 Binary Stream Modulation

A third commonly used modulation that admits a simple optimal bit demodulation is orthogonal time
division multiplexing. This is perhaps the most intuitive form of orthogonal modulation. Orthogonal
time division multiplexing is used in a vast majority of digital communication systems in some form.
The idea is simple, data is streamed in time (one bit following another) and for the remainder of this
text this orthogonal time division multiplexing will be referred to as stream modulation. With a stream
modulation each of the Kb bits is independently modulated on the same carrier frequency with a time
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Figure 9.16: An example of time shifted pulses for a linear stream modulation and Kb=4.

shifted waveform. The typical format for a stream modulation using linear modulation is

Xz(t) =
Kb∑
l=1

Dz(l)
√

Ebu(t − (l − 1)T ) (9.64)

where D(l) = a (I(l)), T is known as the symbol or bit time in stream modulations, and u(t) is the unit
energy pulse of length Tu. The transmission rate of stream modulation is Wb = Kb/Tp bits per second.
It should be noted that Tp = (Kb − 1)T + Tu and for large Kb that Wb ≈ 1/T . In examining (9.64) it
is clear that in stream modulation a binary linear modulation is used in each of the Kb different time
intervals. Again for clarity of discussion the remainder of the section will assume the linear modulation
is BPSK (i.e., a(0) = 1 and a(1) = −1).

In the general framework of orthogonal modulations stream modulation has set

x (I(l), l, t)) =
{

Dz(l)
√

Ebu(t − (l − 1)T ) 0 ≤ t ≤ Tp

0 elsewhere
(9.65)

where again u(t) is denoted the pulse shape. The orthogonality condition then corresponds to

0 = �
[∫ ∞

−∞
x (I(l), l, t)x∗ (I(k), k, t) dt

]
(9.66)

= Eb�
[
Dz(l)D∗

z(k)
∫ ∞

−∞
u(t − lT )u∗(t − kT )dt

]
= Eb� [Dz(l)D∗

z(k)Vu ((k − l)T )] .

This orthogonal time shift condition is often known as Nyquist’s criterion for zero intersymbol interfer-
ence (ISI) [Nyq28]. The remaining question is how to design orthogonal time shifted waveforms. There
is a wide variety of ways to construct these waveforms but the simplest way is to limit u(t) to only
have support on [0, T ]. For example if Kb=4 one can choose T = Tp/4 and have the set of time shifted
waveforms as given in Fig. 9.16. Certainly this construction is not unique. It is interesting to note with
the waveforms chosen in Fig. 9.16 the amplitude of the transmitted signal will be constant. The ability
to more carefully control peak to average power ratio is one advantage of stream modulation.

The optimal demodulator has again has the form of Kb parallel single bit optimal demodulators.
Since the sample modulation format is repeated in time the required filtering operation can also be
serially with one filter sample serially. This demodulator is shown in Fig. 9.17. Restricting ourselves to
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Figure 9.17: The optimal demodulator for stream modulations using BPSK.

BPSK modulation on each time shifted pulse the MLBD has the form

�
[∫ Tp

0
Yz(t)u∗(t − (k − 1)T )dt

]
= � [Q(k)]

Î(k)=0
>
<

Î(k)=1

0 (9.67)

The demodulator has one filter output whose output is sampled for each bit, k ∈ {1, . . . , Kb}, and
hence the complexity of the stream modulation optimum demodulator is again O(Kb) as opposed to
the O(2Kb). The pulse shape matched filter output will be reference frequently in the sequel hence we
formally define it.

Definition 9.2 Recall the pulse shape matched filter has an impulse response ho(t) = u∗(Tu − t), so
that the pulse shape matched filter output is

Qu(t) =
∫ Tp

0
Yz(λ)u∗(λ + Tu − t)dλ. (9.68)

where Tu is the pulse shape time support.

Using this definition it is easy to see that

Q(k) = Qu(Tu + (k − 1)T ). (9.69)

A characteristic of linear stream modulation that makes for an efficient implementation is that only
one filter is needed to implement the demodulator. This pulse shape matched filter only needs to be
sampled at different times to obtain the sufficient statistics for demodulation.

Finally, again the performance of stream modulation is upperbounded by performance on binary
modulations transmitted in isolation. This is true since � [Q(k)] = Dz(k)

√
Eb+NI(k) where var (NI(k)) =

N0
2 , the bit error probability performance of stream modulation using BPSK is

PB(E) =
1
2
erfc

(√
Eb

N0

)
. (9.70)

Spectral Characteristics of Stream Modulations

Again the average energy spectrum per bit is

Dxz(f) =
E [Gxz(f)]

Kb
=

Eb

Kb
E

[
Kb∑
l=1

Kb∑
k=1

Dz(l)D∗
z(k)U(f)U∗(f) exp [−j2πf(l − k)T ]

]
. (9.71)
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Figure 9.18: The average energy spectrum per bit for stream modulation.

Using the results of Section 9.3.1 and assuming for simplicity that each bit is equally likely and BPSK
modulation is used, the spectrum in this case becomes

DXz(f) =
Eb

Kb

Kb∑
l1=1

|U (f)|2 = EbGu(f) (9.72)

where U (f) = F {u(t)} and Gu(f) = |U (f)|2. The important thing to note here is that the spectrum
of linear stream modulation is directly proportional to the spectrum of the chosen pulse shape. The
spectrum of the linear stream modulation defined in Fig. 9.16 is shown in Fig. 9.18. The conclusions we
can draw about the average energy spectrum of stream modulation is that the bandwidth occupancy is
also proportional to 1/Tp and to Kb.

9.4 Conclusions

This chapter looked at two signal design techniques that simplify the optimal demodulator structures:
linear modulation and orthogonal modulation. Linear modulation simplifies the demodulator by only
requiring one matched filter. Linear modulation provides reduced performance but no bandwidth ex-
pansion as Kb grows larger. Consequently linear modulations often find utility when spectral efficiency
is at a premium and the expected SNR is high. Orthogonal modulation is a technique where Kb bit
are transmitted by using orthogonal waveforms for each bit. The orthogonality of the individual bit
waveforms enables each bit to be detected optimally with a complexity identical to the situation where
the bit was transmitted in isolation. Examples of orthogonal modulation included in this chapter were
modulations where orthogonality was obtained by frequency spacing (OFDM), obtained by complex
waveforms (OCDM), and obtained by time spacing (stream modulation). Both of these techniques
address the exponential complexity of optimum demodulation by an appropriate signal design. Using
signals designed as either a linear or an orthogonal modulation produces a performance upperbounded
by the performance of BPSK. As a final note all deployed communication systems use stream modulation
in some form even when using OFDM or OCDM. Also better than 90% of the digital communication
systems use linear modulations in some form.
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9.5 Homework Problems

Problem 9.1. 16QAM is a linear modulation with Di = DIi+jDQi where DIi, DQi ∈ {−3A,−A, A, 3A}
that can be used to transmit four bits per symbol (Kb=4).

a) Find the value of A such that Eb is the energy per bit.

b) Find the decision regions corresponding to the values of Q for MLWD of 16QAM.

c) Is 16QAM a geometrically uniform signal set?

d) Compute the probability of word error for MLWD, PW (E), for 16QAM and plot for Eb/N0 =0,
15dB.

e) Compute the full union bound to the probability of word error for MLWD for 16QAM and plot
for Eb/N0 =0, 15dB. Hint: The union bound requires the computation of 15 distances for each of
the 16 possible transmitted signals so it might be useful to use the computer.

f) It is possible to eliminate some terms in the union bound for 16QAM as was done for MPSK.
Identify the union bound having the smallest number of terms for 16QAM.

g) Using the union bound result and assuming a pulse shape is chosen such that BT = 1/Tp plot the
16QAM spectral efficiency in Fig. 8.9.

Problem 9.2. Consider the two 8-ary (Kb=3) linear modulations whose constellations are given in
Fig. 9.19. One of the 8-ary constellations has four points each placed on two concentric circles. The
other 8-ary constellation has eight points selected from the 16QAM (see Problem 9.1) constellation in
a checkerboard fashion.

a) Determine the value of each constellation point such that Eb is the energy per bit and ∆1 = ∆2.

b) Find the decision regions corresponding to the values of Q for MLWD of these two 8-ary modu-
lations.

c) Which constellation has a better performance? Why?

Problem 9.3. This problem examines the probability of word error for MLWD of some common linear
modulations.

a) Show that the probability of word error for 4PSK is given as

PW (E) = erfc

(√
Eb

N0

)
−

(
1
2
erfc

(√
Eb

N0

))2

(9.73)

b) 4-ary equally spaced pulse amplitude modulation (PAM) has a constellation that is characterized
with Ωd =

{
±

√
2/5,±3

√
2/5

}
. Show that the probability of word error for 4PAM is given as

PW (E) =
3
4
erfc

(√
2Eb

5N0

)
(9.74)

c) Plot the spectral efficiency versus Eb/N0 of 4PAM on Fig. 8.9 using a word error rate of 10−5.

Problem 9.4. This problem examines the full union bound to the probability of word error for MLWD
of some common linear modulations.
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a) b)

Figure 9.19: Two 8-ary constellation plots for linear modulations.

a) Show that the full union bound for 4PSK is given as

PW (E) = erfc

(√
Eb

N0

)
+

1
2
erfc

(√
2Eb

N0

)
(9.75)

b) Is there a way to tighten the union bound for 4PSK?

c) Show that the full union bound for 4PAM (Ωd =
{
±

√
2/5,±3

√
2/5

}
) is given as

PW (E) =
3
4
erfc

(√
2Eb

5N0

)
+

1
2
erfc

(√
8Eb

5N0

)
+

1
4
erfc

(√
18Eb

5N0

)
(9.76)

d) Is there a way to tighten the union bound for 4PAM?

Show that these results are tight to the true values given in Problem 9.3 at high SNR. In each case the
full union bound can be tightened. Derive the tightest union bound to the probability of error for both
4PSK and 4PAM.
Problem 9.5. Imagine that digital computers were first developed with five logic levels to match
the number of fingers on the typical human hand. Digital communications would have evolved to be
the transmission of quinits (having five possible values) as opposed to the transmission of bits. In this
problem you will consider what this course might have been like if this alternate evolution had occurred.

Consider a 5-ary modulation of the form Xz(t) = Dzu(t) corrupted by an additive white Gaussian
noise with one-sided spectral density of N0. Consider two possible signal sets:

i d
(1)
i d

(2)
i

0 1 A

1 exp
(

j2π
5

)
jA

2 exp
(

j4π
5

)
−A

3 exp
(

j6π
5

)
−jA

4 exp
(

j8π
5

)
0
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where A is a positive real constant.

a) Choose the value of A such that both signal sets have the same average Es.

b) Give the demodulator that minimizes the word error probability and define the decision regions
for each of the two possible signal sets.

c) Are either signal sets geometrically uniform?

d) Compute the full union bound to PW (E) for each of the two signal sets.

e) Simplify the union bound as much as possible for each signal set by eliminating terms from the
full union bound if possible.

f) Use numerical integration to compute the actual PW (E).

Problem 9.6. Consider one of the 5-ary modulations from the previous problem of the form Xz(t) =
Dzu(t) with equally likely symbols and corrupted by an additive white Gaussian noise with one-sided
spectral density of N0.

i di

0 1

1 exp
(

j2π
5

)
2 exp

(
j4π
5

)
3 exp

(
j6π
5

)
4 exp

(
j8π
5

)

a) What is the average energy spectral density per quinit, Dxz(f)?

b) If u(t) =
√

Eu
W

sin(πWt)
πWt give Dxz(f)?

c) If this particular communication system’s electronics was particularly susceptible to 60Hz interfer-
ence from the power supply, could you come up with a pulse shape that produced a communication
signal that did not have significant spectral content at 60Hz. Assume that Tp < 0.05

Problem 9.7. A problem examining Alamouti space–time signaling [Ala98]. Consider a 4-ary digital
communication system with equally likely words where the received signal is corrupted by an additive
white Gaussian noise of two-sided spectral density of N0/2. The system uses two antennas as shown in
Fig. 9.20 and the four possible transmitted signals are shown in Fig. 9.21. The received signal is of the
form

yz(t) = c1xi1(t) + c2xi2(t) + Wz(t) = xi(t) + Wz(t)

where c1 and c2 are known constants at the demodulator. The signal set is defined with

x01(t) = u1(t) x11(t) = u2(t) x21(t) = u4(t) x31(t) = u3(t)
x02(t) = u2(t) x12(t) = u3(t) x22(t) = u1(t) x32(t) = u4(t).
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Figure 9.20: The two antenna communication system.

Figure 9.21: The transmitted waveforms.

a) Show that this system results in an equal received energy signal set for any values of c1 and c2.
Compute Es.

b) Detail out the optimum word demodulator (MLWD). Give impulse responses for any filters and
simplify the structure as much as possible.

c) Compute the square Euclidean distance between each of the signal pairs.

d) Show that xi(t) = di(1)s1(t) + di(2)s2(t) where s1(t) is orthogonal to s2(t). This implies the
maximum likelihood bit demodulator (MLBD) for each bit simplifies to a binary threshold test.
Derive the MLBD for I(1).

e) Compute the PB(E) for the MLBD for I(1) and a given c1 and c2 conditioned on �I = 0.

Problem 9.8. Consider a demodulation scheme for a binary linear stream modulation where Nyquist’s
criterion for zero ISI holds. Prove that the real part of the noise sample taken from the matched filter
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for bit k1, k1 ∈ {1, . . . , Kb}, NI(k1), is independent of the real part of the noise sample taken from the
matched filter for bit k2, k2 ∈ {1, . . . , Kb}, NI(k2) where k1 �= k2.
Problem 9.9. In Problem ??.11 three pulse shapes are presented and this problem considers their use
in a binary stream modulation of the form

Xz(t) =
Kb∑
l=1

xI(l)(t − (l − 1)T ) (9.77)

a) If x0(t) = u1(t) and x1(t) = u2(t) find the smallest value of T where Nyquist criterion is still
satisfied.

b) If x0(t) = u1(t) and x1(t) = u2(t) plot the resulting transmitted waveform for Kb = 10 and
�I = [0 1 1 1 1 0 0 1 0 0] for the value of T selected in a).

c) If x0(t) = u1(t) and x1(t) = u2(t) plot the resulting matched filter output waveform both signals
for Kb = 10 and �I = [0 1 1 1 1 0 0 1 0 0] for the value of T selected in a).

d) Repeat a), b), and c) for the case when x0(t) = u1(t) and x1(t) = u3(t)

Problem 9.10. In this problem we examine an M -ary linear wireless communication system that uses
multiple transmit antennas. This problem assumes each of the Lt antennas simultaneously transmitts
one bit of information. The complex envelope of the transmitted signal from the ith antenna has the form
Xzi(t) = Diu(t) where Di = ai(Ii) is a complex modulation symbol with |Di| ≤ 1, Ii is the information
bit transmitted from the ith antenna, and u(t) is the pulse shape. The constellation mapping is denoted
with

ai(0) = d0i ai(1) = d1i. (9.78)

The received signal has the form

Yz(t) =
Lt∑
i=1

ciXzi(t) + W (t) (9.79)

where ci are the complex channel gains for the ith antenna and W (t) is a complex AWGN of one-sided
spectral density of N0, i.e. RW (τ) = N0δ(τ).

a) What is the bandpass signal corresponding to Xz1(t) when a carrier frequency of fc is used?

b) Show

Yz(t) = Dzu(t) + W (t) (9.80)

and find Dz. How many values can Dz take and what are they?

c) Assume Lt = 2 and that c1 and c2 are known at the receiver. Formulate the optimum demodulator
and simplify as much as possible.

d) Assume BPSK modulation is used on each antenna d0i = 1 and d1i = −1 and compute the
resulting union bound on the word error probability as a function of c1 and c2.

e) If it is known before transmission that c1 = 1 and c2 = 1√
2
(1 + j) postulate a binary modulation

Di = ai(Ii) for each antenna that would result in the best word error probability performance.
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Problem 9.11. You have been asked to design a data communication system for the Zwertians. The
Zwertians are a people from a distant solar system who have the unique characteristic of having 3
fingers. Consequently their number system is entirely base 3 and units of information are available in
trinits (1 of 3 values). The Zwertians want a linear modulation, consequently a trinit is transmitted
with the complex envelope

Xz(t) = Dzu(t) (9.81)

where the pulse, u(t), has energy Eu = 1. To complete your design you must specify an optimum
demodulator and a 3-ary modulation scheme. Assume each value of the transmitted trinit is equally
likely. The received signal is corrupted by an additive white Gaussian noise of one-sided spectral density
N0.

a) Assume the three possible transmitted symbols are denoted di i = 1, 2, 3. Find the demodulator
that minimizes the probability of symbol error.

b) Find the union bound to the symbol error in terms of N0, and di i = 1, 2, 3 for the optimum
demodulator decision when Dz = d1.

c) Assume that the average transmitted energy per symbol is constrained to be Es = 1, find the
optimum values of di i = 2, 3 when d1 = 1.

Problem 9.12. Show that if Kb bits are transmitted on orthogonal waveforms with BPSK modulation
then the word error probability is given as

PW (E) = 1 −
(

1 − 1
2
erfc

(√
Eb

N0

))Kb

(9.82)

Using the characteristics of the binomial coefficients to arrange in (9.82) a sum like the union bound.
From this sum can you identify the most probable error event for an orthogonal modulation and how
bit errors many occur in the word. For example if Kb = 4 and �I = [0 0 1 0] find all most probably error
codewords.
Problem 9.13. Consider Kb=6 bits being transmitted with OFDM. Compute the output spectrum of
the transmitted signal with the closest possible carrier spacing, sketch the optimum demodulator and
estimate the resulting optimum word error probability performance for

a) 6 carrier frequencies each using BPSK modulation

b) 3 carrier frequencies each using Gray coded 4PSK modulation

c) 2 carrier frequencies each using 8PSK modulation.

Make a comparison between each of these transmission strategies in terms of performance and spectral
efficiency
Problem 9.14. The OFDM transmitted signal is a sum of complex sinusoids and in general will be
complex valued. In certain special cases the transmitted signal will be real valued only. When does this
occur? Identify all the situations when this happens for Kb=4 and BPSK modulation on each carrier.
Problem 9.15. Identify two other spreading waveforms of equal energy that are mutually orthogonal
for an OCDM system with Kb=3 besides

s1(t) =



1 0 ≤ t <
Tp

3

exp
[
j2π

3

]
Tp

3 ≤ t <
2Tp

3

exp
[
j4π

3

]
2Tp

3 ≤ t ≤ Tp

0 elsewhere

(9.83)

c©1996-2004 - Michael P. Fitz - The University of California Los Angeles



228 Managing the Complexity of Optimum Demodulation

A goal in finding these additional two waveforms is to make Dxz(f) as compact as possible.
Problem 9.16. Identify four spreading waveforms of length Tp that are equal energy and are mutually
orthogonal for an OCDM system with Kb=4, and that use less transmission bandwidth than the example
spreading waveforms shown in Fig. 9.12.
Problem 9.17. There is an alternate form for PWEP first introduced by Craig [Cra91] that proves to
be useful in many situations and this problem will lead the student through the derivation. Consider a
matched filter output Q for BPSK modulation when Dz = a(1) = −1 is transmitted. The probability
of error in this case is given as (see Section 9.1.2)

PB(E |I = 1) =
∫

R1

fNz(nz)dnz =
∫

1R1(nz)fNz(nz)dnz (9.84)

where R1 = {Nz : NI ≥ Eb}. Use the form Nz(t) = NA(t) exp [jNP (t)] to express the above integral in
polar coordinates and derive

PB(E |I = 1) =
1
π

∫ π
2

0
exp

[ −Eb

N0 cos2(np)

]
dnp (9.85)

Problem 9.18. The following is a pulse shape that is used in communication systems

u(t) =


√

2
Tu

sin
(

πt

Tu

)
0 ≤ t ≤ Tu

0 elsewhere.
(9.86)

Consider that this pulse is used in a binary linear stream modulation of the form

Xz(t) =
Kb∑
l=1

Dz(l)
√

Ebu(t − (l − 1)T ) (9.87)

where each bit value is equally likely and the received signal has the form Yz(t) = Xz(t) + W (t) with
W (t) is an AWGN with one-sided spectral density of N0.

a) Compute Vu(τ).

b) How fast can the symbol or bit rate, Wb = 1/T , be and still have the MLBD simplify to a binary
threshold test? Provide the form of the MLBD when BPSK modulation is used (i.e., a(0) = d0 = 1
and a(1) = d1 = −1).

c) What is the resulting performance of the optimal bit detector found in b).

d) Compute and plot Dxz(f).

At the maximum Wb for the waveform (9.87), a colleague of yours claims that you can double the
transmission rate of the system in a) and still have optimal bit demodulators that are simple threshold
tests. The claim is that this is achieved by sending a separate binary stream modulation in the Q-channel
that is offset in time from the original one by Tu/2. The new transmitted signal (called minimum shift
keying (MSK) by your colleague) has the form

X̃z(t) =
Kb∑
l=1

Dz1(l)
√

Ebu(t − (l − 1)T ) + jDz2(l)
√

Ebu

(
t − (l − 1)T − T

2

)
. (9.88)

e) Show that X̃z(t) can be put in a form as given in (9.31). Check the orthogonality conditions to
verify your colleague’s assertion.
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f) For the time interval T
2 ≤ t ≤ T find X̃A(t) and X̃P (t) as a function of Dz1(1) and Dz2(1).

g) Given the results in e) can the waveform in (9.88) be interpreted as an FSK waveform?

h) Compute Dxz(f) for MSK.

Problem 9.19. Consider a 4-ary modulation of the form Xz(t) = Dz

√
Ebu(t) corrupted by an additive

white Gaussian noise with one-sided spectral density of N0. Consider two possible signal sets:

i d
(1)
i d

(2)
i

0
√

2 A
√

3
1 j

√
2 jA

2 −
√

2 −A
√

3
3 −j

√
2 −jA

where A is a positive real constant.

a) Choose the value of A such that both signal sets have the same average Es.

b) Give the demodulator that minimizes the word error probability and define the decision regions
for each of the two possible signal sets.

c) Compute the union bound to PW (E) for each of the two signal sets.

d) Decide which signal set for a common Es will give better performance with the optimum demod-
ulator.

Problem 9.20. Show in OFDM that if fd = 1/Tp and Kb is odd that Xz(0) = Xz(Tp). Show that this
is not necessarily true for Kb even.
Problem 9.21. Show that if the orthogonality condition holds that the MLBD output and the MLWD
output are exactly the same.
Problem 9.22. Define a 2 × 2 matrix

H2 =
[

1 1
1 −1

]
(9.89)

and a recursion defined as

H2n =
[

H2n−1 H2n−1

H2n−1 −H2n−1

]
. (9.90)

These sets of matrices are known as Hadamard matrices. Show that if Kb = 2n then the Kb spreading
waveforms generated as

si(t) =
2n∑

j=1

[H2n ]ij u2n

(
t − (j − 1)

Tp

2n

)
i = 1, 2n (9.91)

where

u2n(t) =

{
1√
Tp

0 ≤ t ≤ Tp

2n

0 elsewhere
(9.92)

constituted a set of spreading for an OCDM system. Specifically sketch the waveforms and show
orthogonality for Kb = 2 and Kb = 8. For Kb = 4 this set of spreading waveforms is given in Fig. 9.12.
A proof by induction for the general case would be most complete.
Problem 9.23. In the wireless local network protocol denoted IEEE 802.11b the lowest rate modulation
is a binary modulation using the two waveforms given in Fig. 7.29.
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a) If the two waveforms in Fig. 7.29 are to be used in a binary stream modulation, how fast can the
symbol or bit rate, Wb = 1/T , be and still have the maximum likelihood bit demodulator simplify
to a binary threshold test for each bit? Hint: The answer is Wb > 1, 000, 000Hz.

b) Assume the two waveforms in Fig. 7.29 were to be used in an orthogonal code division multiplexed
system to send one bit. Find another spreading waveform, s2(t), for the case Kb = 2 defined on
[0, 1µs] with Es2 = Eb such that when BPSK modulation is used with s2(t) the maximum likelihood
bit demodulator simplifies to a binary threshold test for each bit.

Problem 9.24. 8PAM is a linear modulation used to transmit Kb = 3 bits of information that is
characterized with Ωd ∈ {±A,±3A,±5A,±7A}. Assume the received signal is corrupted by an additive
white Gaussian noise with one-sided spectral density of N0.

a) For the case where Eu = 1, find the value of A such that Es = 3Eb.

b) Define the decision regions for 8PAM that operate on the output of the pulse shape matched filter,
Q.

c) Find the probability of word error conditioned on Dz = A.

d) A closed form expression exists for the probability of word error. Find it.

e) Define a mapping from bits �I = [I(1) I(2) I(3)] to symbols that makes sense and use this mapping
and the matched filter output, Q to find the MAPBD for I(2).

Problem 9.25. 32QAM and 32Cross
Problem 9.26. Q2PSK
Problem 9.27. I-Q Modulation with different rates on each channel.
Problem 9.28. OCDM with another spreading waveform.
Problem 9.29. Orthogonality in the frequency domain.
Problem 9.30. Kb = 3 compare and contrast 8FSK and 3 streamed symbols of BFSK.
Problem 9.31. QES98 with new pulse shape.
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Chapter 10

Spectrally Efficient Data Transmission

10.1 Spectral Containment

In digital communications it is often desirable to get many users in a band of frequencies. Examples
include channels in broadcast or cable television and phone calls in mobile telephony. In this case it
is often undesirable for emissions from one user to not interfere with the transmission from another
user. In the modulations introduced in Chapter 9 the transmitted spectrum have significant out of
band power due to the sinc (fTp) characteristic in the spectrum. This sinc (fTP ) characteristic is due
to the using of a rectangular pulse in each of these modulations. This out of band power can produce
significant interference among users.

To prevent significant adjacent channel interference a spectral mask is often imposed on the trans-
mission. Fig. 10.1-a) shows a typical spectral mask that must be met by transmitter electronics. Within
the transmission bandwidth, BT , the spectrum is not regulated. Outside the transmission bandwidth
the output power is slowly tapered off until a large attenuation is achieved at the next adajacent chan-
nel. This mask is the spectral emissions mask for the narrowband radio services band as defined by the
Federal Communications Commission [Com04]. Forcing a transmitter to obey this type of emissions
mask allows more channels to operate with a better performance in a given frequency band. Meeting
this emission mask will require a more sophisticated signal design than has been investigated up to
this point in the text. For example Fig. 10.1-b) shows the mask in comparison to the spectrum of a
digital modulation that uses a rectangular pulse shape as was used in Chapter 9. Clearly a rectangular
pulse shape is not well motivated in this application due to the high sidelobes in frequency. These high
sidelobes will cause significant interference to adjacent channel users. This is especially true when a
near-far situation exists. Designing pulse shapes that meet a spectral mask (one for a mobile telephone)
was investigated in Project 7-1. Meeting this emission mask and maintaining the orthogonality that
enables low complexity demodulation as was introduced in Chapter 9 is the focus of this chapter.

Another situation that often arises is where the physical channel has significant spectral shaping
characteristics. The best example of this is digital communications on analog telephone lines. The
original analog telephone lines were designed to work with 4kHz baseband signals and to minimize the
effects of aliasing there is a sharp cutoff filter in each phone line. Consequently it is important to find
communication techniques that can accomodate this frequency selective characteristic of the channel.
For example Fig. 10.2 shows what might be a typical communication system model. If the channel is
known at the transmitter then this knowledge can be included as part of the signal design, i.e., the
design problem then focuses on specifying the form of Xz(t) or Xc(t) to achieve a desired form for Rz(t)
or Rc(t). Being able to design a communication system that can operate in that known environment is
another goal of this chapter.

c©1996-2004 - Michael P. Fitz - The University of California Los Angeles



0 0.5 1 1.5
-70

-60

-50

-40

-30

-20

-10

0

Normalized frequency, f/B
T

0 0.5 1 1.5
-70

-60

-50

-40

-30

-20

-10

0

Normalized frequency, f/B
T

∑Xz(t) Yz (t)
Rz( t)

h tz ( )

W tz ( )

232 Spectrally Efficient Data Transmission

a) The mask. b) The mask compared with an example
sinc (2f/BT )2 spectrum.

Figure 10.1: A typical spectral emission mask.

Figure 10.2: A frequency selective channel model.

10.2 Squared Cosine Pulse

The following Fourier transform pair is frequently used in bandwidth efficient communications

Definition 10.1 The squared cosine pulse family is characterized as

pc(t) =


1 |t| ≤ (1 − α)Tz

2
cos2

(
π

2αTz

(
|t| − (1 − α)Tz

2

))
(1 − α)Tz

2
≤ |t| ≤ (1 + α)Tz

2
0 elsewhere

(10.1)

where 0 ≤ α ≤ 1. The Fourier transform of the squared cosine pulse family is

Pc(f) =
cos (παfTz)
1 − (2αfTz)

2 Tzsinc (fTz) . (10.2)

Fig.10.3 shows a plot of the time function and the Fourier transform. When α = 0 then pc(t)
becomes the rectangular pulse of width Tz. When α > 0 then the Fourier transform dies off much
quicker than the Fourier transform of the rectangular pulse. This characteristic is useful for making
the transmissions more bandwidth efficient and meeting a spectral emissions mask. The squared cosine
pulse shape has two additional important characteristics that make it useful for bandwidth efficient
digital communications.

1. For |t| ≤ Tz the squared cosine pulse satisfies

pc(t) + pc(t − Tz) + pc(t + Tz) = 1. (10.3)
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a) pc(t) b) Pc(f)

Figure 10.3: The time and frequency characteristics of the squared cosine pulse.

2. Pc

(
n
Tz

)
= 0 for n an integer and n �= 0.

The first characteristic indicates that the area under pc(t) is constant for any value of α even though
the length of the pulse, (1 + α)Tz, is changing with α. This characteristic is due to the fact that
cos(x − π/2) = sin(x) and that cos2(x) + sin2(x) = 1. The second characteristic indicates the Fourier
transform goes to zero at the same values of frequency as Fourier transform of the rectangular pulse.
The zeros of the Fourier transform are due to the Tzsinc (fTz) term.

The squared cosine pulse family is often referred to as the raised cosine pulse in the literature. The
reason for this can be seen in the case of α = 1 where the pulse is given using a trigonometric identity
as

pc(t) =

 cos2
(

πt

2Tz

)
|t| ≤ Tz

0 elsewhere
=


1
2

+
1
2

cos
(

πt

Tz

)
|t| ≤ Tz

0 elsewhere
(10.4)

Why this text uses the notation squared cosine family should be apparent by the end of the chapter.
A second Fourier transform pair is also frequently used in bandwidth efficient communications

Definition 10.2 The cosine pulse family is characterized as

uc(t) =


1 |t| ≤ (1 − α)Tz

2
cos

(
π

2αTz

(
|t| − (1 − α)Tz

2

))
(1 − α)Tz

2
≤ |t| ≤ (1 + α)Tz

2
0 elsewhere

(10.5)

where 0 ≤ α ≤ 1. The Fourier transform of the cosine pulse family is

Uc(f) =
√

Tz(1 − α)sinc (fTz(1 − α))
1 − (4αfTz)

2 +
4
√

Tzα cos (πfTz(1 + α))

π
(
1 − (4αfTz)

2
) . (10.6)

This pulse is also often described in the literature as a square root raised cosine pulse. It should be
noted that neither of the two important characteristics of the squared cosine pulse family hold true for
the cosine pulse family.
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10.3 Spectral Shaping in OFDM

OFDM is a modulation that independently modulates data bits on different carrier frequencies. A
simple demodulator results if the modulation on each of the carrier frequencies are orthogonal. With
the rectangular pulse shape assumed in Chapter 9 the orthogonality condition between the signal for
carrier l and carrier k was shown to be

�
[
Dz(l)D∗

z(k)
Eb

Tp

∫ ∞

−∞
|ur(t)|2 exp [j4πfd(l − k)t] dt

]
= 0. (10.7)

The spectrum is also a direct function of the shaping pulse. The spectrum in the case of equally likely
bits independently modulated on each carrier becomes

DXz(f) =
Eb

Kb

Kb∑
l=1

|Ur (f − fd(2l − Kb − 1))|2 . (10.8)

The desired goal is to identify a shaping pulse, us(t), that both maintains the orthogonality condition of
(10.7) and gives better out of band spectral emission characteristics than the rectangular pulse shape.

The results of Section 10.2 can be used to identify spectral efficient transmission strategies for OFDM.
To generalize OFDM we can use an arbitrary pulse shape, us(t). This implies that the transmitted signal
has the form

Xz(t) =
Kb∑
l=1

Dz(l)

√
Eb

Tp
us(t) exp [j2πfd(2l − Kb − 1)t] (10.9)

and the orthogonality condition becomes

�
[
Dz(l)D∗

z(k)
Eb

Tp

∫ ∞

−∞
|u(t)|2 exp [j4πfd(l − k)t] dt

]
= 0. (10.10)

Defining p(t) = |us(t)|2 and restating the orthogonality condition as

� [Dz(l)D∗
z(k)P (2fd(k − l))] = 0, (10.11)

it is immediately obvious that orthogonality holds for an arbitrary pulse shape and an arbitrary con-
stellation only if

P (2fd(k − l)) = 0 ∀ l �= k. (10.12)

It is obvious considering the characteristics of the squared cosine pulse that a selection of p(t) =
pc(t) with Tz = 1/(2fd) will give the desired orthogonality. This implies that a bandwidth efficient
implementation of OFDM has the form

Xzs(t) =
Kb∑
l=1

Dz(l)

√
Eb

Tp
uc(t) exp [j2πfd(2l − Kb − 1)t] = uc(t)Xzu(t). (10.13)

where Xzu(t) is the original OFDM modulation without shaping. Using this form of spectral shaping
is convenient since it only has to be done on the transmitted signal after modulation. The smaller
the value of α the smaller the region in time over which the the OFDM signal needs to be shaped.
Fig. 10.4-a) show a plot of the output spectrum for OFDM for Kb=4 for various values of α. It should
be noted that the cosine pulse shape does not allow a stringent spectral mask to be met with a small
Kb, but with larger Kb the spectrum becomes quite compact. This can be observed in Fig. 10.4-b)
which shows a plot of the output spectrum for OFDM for Kb=64 for various values of α.
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a) Kb = 4. b) Kb = 64.

Figure 10.4: The average energy spectrum per bit of OFDM for various raised cosine time pules.

10.4 Spectral Shaping in Linear Stream Modulations

Linear stream modulation is the most prevalent form of digital communications. Recall linear stream
modulations have the form

Xz(t) =
Kb∑
l=1

Dz(l)
√

Ebu(t − (l − 1)T ) (10.14)

The orthogonality condition that needs to be satisfied such that simple demodulation is possible is given
as

� [Dz(l)D∗
z(k)Vu ((k − l)T )] = 0. (10.15)

The average energy spectrum per bit of linear stream modulation for the case of equally likely symmetric
constellations was shown in Chapter 9 to be

DXz(f) = Eb |U (f)|2 = EbGu(f) (10.16)

Putting together (10.15) and (10.16) shows that it is desired that a good pulse shape for linear stream
modulations both must have a compact spectrum and an autocorrelation function that goes to zeros at
integer multiples of the symbol time.

The square cosine function again has the desired characteristics but with time and frequency re-
versed. Using (10.2) we can set

Vu(τ) =
cos

(
πατ
T

)
1 −

(
2ατ
T

)2 sinc
( τ

T

)
(10.17)

where 0 ≤ α ≤ 1. The sinc
(

τ
T

)
term in (10.17) is what ensures that Nyquist’s criterion for zero ISI is

satisfied. If the autocorrelation function of the pulse is chosen as in (10.17) then the average energy
spectrum bit of the linear stream modulation is then given as

Dz(f) = EbGu(f) =


EbT |f | ≤ 1 − α

2T

EbT cos2
(

πT

2α

(
|f | − (1 − α)

2T

))
1 − α

2T
≤ |f | ≤ 1 + α

2T
0 elsewhere

(10.18)
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a) The spectral cosine pulse family b) A stream modulation with a spectral cosine
pulse and �I = [1100010011010111100010]

Figure 10.5: Spectrally efficient stream modulation using BPSK, α = 0.3, and Tu = 8T .

This spectrum is clearly bandlimited (i.e., BT ≈ 1+α
T ) and we denote the pulse/transform pair in (10.17)

and (10.18) as a spectral squared cosine family of pulse shapes. In direct analog to the discussion the
squared cosine pulse family this pulse pair as often denoted in the literature as a spectral raised cosine
pulse family. α is usually denoted the excess bandwidth factor as it determines how much the ideal
bandwidth expands from the minimum, BTmin = 1

T .
The actual pulse used in the linear modulation is a spectral cosine pulse family. The Fourier

transform of the pulse is given as

Usc(f) =


√

T |f | ≤ (1 − α)
2T√

T cos
(

πT

2α

(
|f | − (1 − α)

2T

))
(1 − α)

2T
≤ |f | ≤ (1 + α)

2T
0 elsewhere

(10.19)

The pulse itself is given as

usc(t) =
1 − α√

T

sinc
(

(1−α)t
T

)
1 −

(
4αt
T

)2 +
4α cos

(
π(1+α)t

T

)
π
√

T
(
1 −

(
4αt
T

)2
) . (10.20)

Fig. 10.5-a) shows plots of the spectral cosine pulse shape for various values of α. It should be noted
that these pulses have infinite time support but the pulses die off to zero at large arguments. The rate
of decay of the pulses away from the peak of the pulse in this family increase with α. This infinite time
support implies that approximations to these pulses must be used in practice. The simplest approach to
implementation is to window the pulse in time to produce a finite time support. Again we will denote
the truncated pulse length with Tu. The truncation implies that the orthogonality condition will be
violated for some or all symbol time offsets. With an appropriate choice of window function, the amount
of ISI produced can be made acceptably small. The design projects at the end of the chapter will explore
windowing of a spectral cosine pulse for use in stream modulations. A typical time waveform for linear
stream modulations is shown in Fig. 10.5-b).

Recall the demodulator for a linear stream modulation samples the output of a filter matched to
the pulse shape for each transmitted symbol. The demodulator structure is shown in Fig. 10.6. Recall
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Î k( )Y tz ( )

2 4 6 8 10 12 14 16 18 20
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Normalized time, t/T
-8 -6 -4 -2 0 2 4 6 8

-140

-120

-100

-80

-60

-40

-20

0

20

Normalized frequency, fT

10.4 Spectral Shaping in Linear Stream Modulations 237

Figure 10.6: The optimal demodulator for stream modulations using BPSK.

a) The matched filter output, b) The measured transmitted spectrum.

Figure 10.7: Spectrally efficient stream modulation using BPSK, α = 0.3, and Tu = 8T .

that the matched filter output has the form

Q(t) =
∫ ∞

−∞
Yz(λ)u∗(λ − t + Tu)dλ. (10.21)

The matched filter output when sampled at t = Tu + (k − 1)T will have the form

Q(k) = Dz(k)
√

Eb +
√

Eb

∑
l �=k

Dz(l)Vu(k − l) + Nz(k). (10.22)

It is clear that if Nyquist criterion holds for the pulse shape, u(t), then the data bits can be detected
without interference from other pulses. Fig. 10.7-a) shows the noiseless output of the matched filter
for a spectrally efficient pulse where Tu = 8T and Eb = 1. The vertical lines in Fig. 10.7-a) represent
the sample times and the horizontal lines represent the modulation symbol values. It is apparent from
this figure that even though 8 symbols are overlapped at anytime, designing the pulses to achieve the
orthogonality condition allows each BPSK modulation symbol to be detected without interference from
the other pulses. Using this shaping on the pulse also achieves the desired spectral efficiency as shown
in Fig 10.7-b). This figure is a measurement of the spectrum of the transmitted signal and demonstrates
the desired spectral containment.
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10.5 Testing Orthogonal Modulations

While orthogonal modulations are used in a wide variety of applications, it is not always possible to
keep the waveforms orthogonal at the receiver. The non-orthogonality of the received waveforms can
be produced by a wide variety of distortions that arise in practice. A partial list of the causes of the
loss in orthogonality is

1. A channel that is frequency selective,

2. Phase noise in the up and down converters in the radio system of a modem,

3. Nonlinear distortion in the radio system of the modem,

4. Complexity constraints on the modem implementation,

5. Noise in the sample timing location for the matched filter output in the modem,

In many situations this loss in orthogonality is significant enough to warrant a reformulation of the
demodulation algorithms. This will be pursued in Chapter 11 for the case of frequency selective chan-
nels. In many other cases the goal is to characterize and minimize the distortion that causes the
non-orthogonality. This section will introduce some common tools used by communication engineers to
characterize the non-orthogonality of received waveforms in a demodulator.

When orthogonality is lost at the demodulator this results in interference from other symbols. Recall
that OCDM, which is the most general case of orthogonal modulation, has a transmitted signal of the
form

Xz(t) =
√

Eb

Kb∑
l=1

Dz(l)sl(t). (10.23)

For orthogonal modulations when the waveforms for each bit have maintained their orthogonality that
the output of the matched filter for the kth bit is

Q(k) =
∫ Tp

0
Yz(t)s∗l (t)dt = Dz(k)

√
Eb + Nz(k). (10.24)

If distortion has happened in the communication system then the matched filter outputs will have the
form

Q(k) =
∫ Tp

0
Yz(t)s∗l (t)dt =

√
Eb

Kb∑
l=1

Dz(l)g(k, l) + Nz(k). (10.25)

Hence the distortion in the received waveform causes interference from other symbols in the matched
filter output of the desired symbol. Measuring and characterizing the amount of intersymbol interference
(ISI) is the goal of this section.

Recall that communication waveforms have three dimensions (I, Q and time) and most of the tools
in use in practice are methods to represent the three dimensions of a communication waveform in two
dimensions. Examples that we will explore here are

1. The scatter plot (I .vs. Q in the matched filter output),

2. The vector diagram for stream modulations,

3. The eye diagram (I .vs. time or Q .vs. time in the matched filter output) for stream modulation.

These three tools are used frequently in engineering practice.
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a) Near ideal orthogonality. b) Significant ISI.

Figure 10.8: Scatter plots for QPSK modulation.

10.5.1 The Scatter Plot

The scatter plot simply plots the I and Q points of the matched filter output. In the absence of noise
and ISI the scatter plot should just be a scaled constellation plot as in this case Q(k) =

√
EbDz(k). For

example the scatter plot of a QPSK modulation when the amount of non-orthogonality is small is shown
in Fig. 10.8-a). A scatter plot for a case where some significant distortion is present in the received signal
the is shown in Fig. 10.8-b). The ISI interference present in the matched filter output is manifested as
a spreading of each of the constellation points. While the distortion shown in Fig. 10.8-b) appears to
not be significant enough to cause errors in the absence of noise it should be apparent that the addition
of noise with this distortion will significantly degrade the error rate performance. The scatter plot is a
quick visual way for a communication engineer to get a handle on the amount of non-orthogonality in
a modulation.

An often used measure of distortion for communication engineers is the error vector magnitude.
The error vector for the matched filter output is defined to be Eq(k) = Q(k) −

√
EbDz(k) and a vector

diagram demonstrating this concept is shown in Fig.10.9-a). Communication engineers often quote the
statistic of error vector magnitude (EVM). EVM is the average error vector magnitude compared to
the largest normalized constellation point. Precisely EVM is defined as

EVM =
∑Kb

l=1 |Eq(l)|
Kb maxl

∣∣√EbDz(l)
∣∣ (10.26)

and is reported in percentage. Most communication systems that use orthogonal modulations strive to
achieve an EVM of less than 5%. Systems which use large constellations (64QAM or 256QAM) like
digital television often have EVM requirements less than 3%. Most high performance vector analyzer
type test equipment have automated EVM computations for common modulations used in accepted
telecommunications standards. For example Fig. 10.9-b) shows an example test suite for a radio using
one of the 64QAM modes of operation for the IEEE 802.11a standard. Recall as discussed earlier
802.11a is an OFDM based wireless modem and this figure shows a scatter plot for all subcarrier
matched filter outputs, the received signal spectrum, and computations on the error vector for each
subcarrier. This test suite is automatically produced by an Agilent vector signal analyzer and a great
deal of information can be derived from this plot about the performance of a communication system using
orthogonal modulation. For example a very useful tutorial article on how to use EVM to troubleshoot
an orthogonal modulation system is [Agi00].
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a) The error vector b) A test suite for an 802.11a

Figure 10.9: Testing using the error vector.

10.5.2 Stream Modulations

Since historically stream modulations have seen the most utility in practice several techniques have
evolved to test the performance of orthogonal stream modulations. The two most common tests in
stream modulation are the vector diagram plot and the eye diagram.

Vector Diagram

A generalization of the scatter plot is the vector diagram. The vector diagram was introduced in
Chapter 2 as a way to visualize the 3D characteristics of the complex envelope in a 2D graph. For
orthogonal stream modulation as with any IQ modulation the vector diagram can be used to get
information about the vector modulated signal. For example Fig. 10.10 shows the transmitted vector
diagram for a QPSK modulated stream modulation with a spectral cosine pulse with α = 0.3 and
Tu = 8T . A particular important vector diagram is the output of the matched filter to the transmitted
pulse shape. This vector diagram with near ideal orthogonality should go through the constellation
points at each sample time. Often in a vector diagram of the matched filter output, these sample
times are marked with a different marker to emphasize these sample times. For example for a QPSK
modulated stream modulation with a spectral cosine pulse with α = 0.3 and Tu = 8T with little loss
in orthogonality the vector diagram of the matched filter output is shown in Fig. 10.11-a). Note that
the matched filter output samples taken by themselves would be the scatter plots shown in Fig. 10.8.
Distortion of the stream modulation signal will produce significant ISI and a vector diagram for a case of
significant ISI is shown in Fig. 10.11-b). Vector diagrams for stream modulations give engineers insights
into the performance of practical implementations of orthogonal stream modulation.

The Eye Diagram

The eye diagram is a technque to view the time waveforms out of the matched filter. Again the
matched filter output is a three dimensional signal and the eye diagram is a method to visualize this
three dimensional signal in two dimensions. The eye diagram is a repetitive plot of the matched filter
output (either I or Q channel) over one symbol in time of the stream modulation. An example of the
eye diagram for the case of near ideal orthogonality is shown in Fig. 10.12-a). The original method of
producing an eye diagram goes back to the early days of digital communication when analog oscilloscopes
were the primary time domain analysis tool available to a communication engineer. The I or Q channel
of the matched filter output could be connected to the oscilloscope and the symbol clock could be
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Figure 10.10: Vector diagram for a transmitted signal with QPSK, α = 0.3 and Tu = 8T .

a) Near ideal orthogonality b) Significant ISI

Figure 10.11: Matched filter output vector diagrams for a spectral cosine pulse with α = 0.3 and
Tu = 8T . Sample times of the matched filter output denoted with a circle.
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a) Near ideal orthogonality b) Significant ISI

Figure 10.12: Matched filter output eye diagrams for a spectral cosine pulse with α = 0.3 and Tu = 8T .

used as the trigger and an eye diagram would then be visible on the display. The eye diagram shows
the possible transitions from one symbol to the next and how impacted the orthogonality is by any
distortion. An example of the eye diagram for the case of significant ISI is shown in Fig. 10.12-b). The
ISI causes the space between the worst case sample points of the matched filter outputs to move closer
to the decision threshold. In the case of BPSK modulation as shown in Fig. 10.12 the threshold will
be zero. This effect of the ISI moving the optimum sample point closer to the decision boundary is
often referred to as the “closing” of the eye. A communication system is often referred to as having a
closed eye if there are some ISI patterns which would cause a deterministic error to occur in the simple
threshold test demodulator of orthogonal demodulators. Most communications system analysis tools
have the capability to produce eye diagrams and vector plots since they prove useful to communication
engineers. For example Matlab has an eyediagram command. The Agilent vector analyzer can produce
eye diagrams for most standard stream modulations and an example of both an eye diagram and a vector
diagram for a 16QAM stream modulation is shown in Fig. 10.13. The tools of the eye diagram and the
vector plot produce a great deal of insight into the implementation of orthogonal stream modulations
and are often used by communication system engineers.

10.6 Conclusions

This chapter has looked at some practical aspects of digital communications using orthogonal modula-
tions. Techniques to shape the spectrum of orthogonal modualtions in response to requirements often
mandated in real implementations were overviewed. The concept of the cosine pulse that is popular in
practice was introduced. How this cosine pulse can be used in orthogonal modulations was briefly sum-
marized. Finally, a brief overview of tools used in the industry to characterize orthogonal modulations
was given. Understanding the concepts in this chapter will help the student get closer to understanding
how digital communications is implemented in modern systems.

10.7 Homework Problems

Problem 10.1. Prove

Vu(mT ) =
{

Eu m = 0
0 elsewhere

(10.27)
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Figure 10.13: Test results for an orthogonal stream modulation from an Agilent vector signal analyzer.
16QAM with α = 0.25.

if and only if

k=∞∑
k=−∞

Gu

(
f +

k

T

)
= TEu. (10.28)

Hint: Note the proof is based on Nyquist sampling theorem. This property indicates ways to design
other pulses besides the spectral cosine pulse family to satisfy the Nyquist criteria for zero ISI.
Problem 10.2. Prove the smallest bandwidth that can be achieved in linear stream modulation is
BT = 1/T where Dz(k) can have an arbitrary constellation. If Dz(k) is restricted to be real valued
show the bandwidth can be BT = 1/(2T ).
Problem 10.3. Prove that usc(t) = F−1 {Usc(f)}
Problem 10.4. The company you work for, Horizon Wireless, has purchased 1MHz of spectrum from
the federal government of Elbonia. The marketing group of Horizon Wireless in Elbonia has decided
that the way to make money in Elbonia is to divide the purchased spectrum into 20 equal size channels
(of 50kHz) and sell radios that use these 20 channels to the Elbonian government for use by their
diplomatic corp.

a) Give an example of a modulation that will achieve a 40kHz transmission rate in a spectrally
efficient and power efficient manner on one of these channels while sending packets of Kb = 256
bits and achieving a demodulation complexity that is reasonably close to O(256).

b) Give an example of a modulation that will achieve a 120kHz transmission rate in a spectrally
efficient and power efficient manner on one of these channels while sending packets of Kb = 768
bits and achieving a demodulation complexity that is reasonably close to O(256).

c) Assume the propagation loss in the channel is Lp = aR−2 where R is the range of communication
and a is a constant and the transmitted power remains the same for both transmission rates. If
your design in part a) can achieve a range of 1km with a low frame error rate, what range will
your design in b) achieve and give the same frame error rate performance. (assume the noise stays
constant).
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Figure 10.14: The energy spectrum of three possible pulses for linear stream modulation.

Problem 10.5. The energy spectrum of three pulse shapes that can be used in a linear stream
modulation is shown in Fig. 10.14. Recall linear stream modulation has the form

Xz,i(t) =
√

Eb

Kb∑
l=1

Dz(l)ui (t − (l − 1)T ) . (10.29)

where ui(t) corresponds to one of the three possible pulse shapes.

a) Find the amplitude Ai for i = 1, 2, 3 such that Eu = 1.

b) Prove that each of these three pulses can be used in a stream modulation and have simple bit
demodulation result. Hint: These pulses have the same characteristic as the squared cosine pulse
that makes the squared cosine pulse shape useful for stream modulation.

c) Find the form of u3(t).

d) Which pulse shape will provide the best spectral efficiency if the measure of bandwith is the 10dB
bandwidth, B10?

Problem 10.6. Your boss has tasked you with designing an OFDM cable modem to send packets of
Kb = 256 bits in less than 300µs. She wants you to use less than 1 MHz of spectrum and cause little
interference to transmissions from adjacent houses (each house is frequency multiplexed). The cable is
assumed to be a frequency flat device and the goal given by your boss is to have a simple demodulator.
Specify all the important parameters and pulse shapes.

10.8 Example Solutions

Not completed this edition

10.9 Mini-Projects

Goal: To give exposure

1. to a small scope engineering design problem in communications

2. to the dynamics of working with a team

3. to the importance of engineering communication skills (in this case oral presentations).
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Presentation: The forum will be similar to a design review at a company (only much shorter) The
presentation will be of 5 minutes in length with an overview of the given problem and solution. The
presentation will be followed by questions from the audience (your classmates and the professor). All
team members should be prepared to give the presentation.

10.9.1 Project 1

This project addresses the design of a pulse shape to be used with linear modulations that will meet the
spectral emissions mask given in Fig. 10.15 and be nearly optimally demodulated by a matched filter.
In other words the signal will have the form

Xz(t) =
Kb∑
k=1

Dz(k)u(t − (k − 1)T ) (10.30)

You are further constrained in that the pulse, u(t), must not extend for longer than Tu = 40 µs in
time. This spectral emissions mask is the one used for GSM/EDGE handsets. So this problem is one of
great practical interest. Design a pulse shape that will satisfy Nyquist criterion for an arbitrary linear
modulation.

For the remainder of the project it is assumed that the pulse shape designed above is used with
BPSK modulation. Any finite length pulse shape which achieves this spectral mask will have produced
some intersymbol interference (ISI) (i.e., Nyquist criterion cannot exactly be met). Hence the matched
filter demodulator given in Fig. 10.16 will not be exactly optimal but can be made to be very close to
optimal with a well designed pulse shape.

Figure 10.15: Spectral emissions mask for a GSM mobile.

a) Assume Dz(k)=1, compute the worse case degradation for an arbitrary pulse shape to the bit
error probability for the demodulator given in Fig. 10.16. Specifically consider the case of the
kth bit where k = Kb/2 where Kb is large and compute the effects of ISI. Identify the values of
Dz(j), j �= k which achieve this worse case degradation for an arbitrary pulse shape with BPSK
modulation.

b) Design a pulse shape and corresponding symbol rate such that the worse case (over all ISI patterns)
degradation to the effective SNR is less than 0.25dB and the spectral mask given in Fig. 10.15 is
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Figure 10.16: The baseband demodulator for binary pulse amplitude modulation.

met by the transmission. Grades will be assigned proportional to the achieved symbol rate (higher
the better!). Anyone who beats the posted solution will get a bonus of 10 points for the project!

c) Plot the transmitted complex envelope for the pulse shape that was designed in b). Plot the real
component of the matched filter output for a modulation sequence of [1 − 111 − 11 − 1 − 1 − 11]
for your design. Identify the symbol time sampling points.

Your grade will be penalized if a common solution to yours is found among your classmates solutions
in direct proportion to the number of identical solutions. This is to encourage each of you to work
independently. Any computer code (e.g., Matlab) should be turned in with the project
write-up.

10.9.2 Project 2

This project addresses the design of a pulse shape to be used with a linear modulations where the
constellation only takes real values that will meet the spectral emissions mask given in Fig. 10.15 and
be nearly optimally demodulated by a matched filter. The pulse shape designed for a real valued
constellation can be spectrally more efficient than the pulse design for the arbitrary constellation. Hint:
Use the �{Vu(τ)} to improve the spectral efficiency.

The signal will have the form

Xz(t) =
Kb∑
k=1

DI(k)u(t − (k − 1)T ) (10.31)

You are further constrained in that the pulse, u(t), must not extend for longer than 80µs in time. This
spectral emissions mask is the one used for GSM/EDGE handsets. So this problem is one of great
practical interest.

For the remainder of the project it is assumed that the pulse shape designed above is used with
BPSK modulation. Any finite length pulse shape which achieves this spectral mask will have produced
some intersymbol interference (ISI) (i.e., Nyquist criterion cannot exactly be met). Hence the matched
filter demodulator given in Fig. 10.16 will not be exactly optimal but can be made to be very close to
optimal with a well designed pulse shape.

a) Assume Dz(k)=1, compute the worse case degradation for an arbitrary pulse shape to the bit
error probability for the demodulator given in Fig. 10.16. Specifically consider the case of the
kth bit where k = Kb/2 where Kb is large and compute the effects of ISI. Identify the values of
Dz(j), j �= k which achieve this worse case degradation for an arbitrary pulse shape with BPSK
modulation.
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b) Design a pulse shape and corresponding symbol rate such that the worse case (over all ISI patterns)
degradation to the effective SNR is less than 0.25dB and the spectral mask given in Fig. 10.15 is
met by the transmission. Grades will be assigned proportional to the achieved symbol rate (higher
the better!). Anyone who beats the posted solution will get a bonus of 10 points for the project!

c) Plot the transmitted complex envelope for both pulse shapes. Plot the real component of the
matched filter output for a modulation sequence of [1 − 111 − 11 − 1 − 1 − 11] for your design.
Identify the symbol time sampling points.

Your grade will be penalized if a common solution to yours is found among your classmates solutions
in direct proportion to the number of identical solutions. This is to encourage each of you to work
independently. Any computer code (e.g., Matlab) should be turned in with the project
write-up.
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Advanced Digital Communication
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Chapter 11

Demodulation in Frequency Selective
Channels

11.1 Current Status

Up to this point in this text we have introduced two general methods to communicate Kb bits

1. General M -ary modulations

• The advantage of a general M -ary modulation is that it can achieve very good performance
and arbitrary spectral efficiency.

• The disadvantage of a general M -ary modulation is that without more structure the optimal
demodulator has complexity O(2Kb).

2. Orthogonal modulations (including stream modulations, OFDM, OCDM)

• The advantage of orthogonal modulation is that the optimum demodulator has complexity
O(Kb) and a desired spectral efficiency can be achieved with a proper design of the modulation
signals.

• The disadvantage is that the performance is limited to that achievable with a single symbol
transmission and the Nyquist criterion for zero intersymbol interference places restrictions
on the transmitted signals that often cannot be realized in practice.

The goals for the remainder of the text is to provide communication techniques that bridge some of the
areas in the tradeoffs in performance, complexity, and spectral efficiency between general modulations
and orthogonal modulations. Specifically the remainder of the text will focus on

• Loosening the orthogonality requirement with a goal of maintaining a demodulation complex-
ity that is O(Kb). Note orthogonality between transmitted bits at the demodulator cannot be
maintained in many important communication applications.

• Improving the performance or the spectral characteristics compared to orthogonal modulations
with a goal of maintaining a demodulation complexity that is O(Kb)

This chapter will focus on the first of these two concepts as often it will be necessary to communicate
over a frequency selective channel. A frequency selective channel is a linear time invariant filter whose
transfer function varies as a function of frequency. The frequency selective nature of the channel will
cause the output to be a “distorted” version of the input. These channels could cause a modulation
to lose orthgonality in the received waveforms. We will investigate a wide variety of techniques to
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Figure 11.1: The block diagram for a frequency selective channels.

communicate over frequency selective channels. The effects of the channel on the receive signal will
be detailed. The optimum demodulation structures will again be studied and performance quantified.
The goal will be to identify demodulation algorithms that have complexity O (Kb). Though in many
cases the desired linear complexity can be achieved, the complexity of the optimum demodulator in a
frequency selective channel is greater than in a frequency flat channel. Since the increase in complexity
is often significant it will prove useful to examine lower complexity options for demodulation. These
structures and the tradeoffs involved will be investigated for the variety of modulation schemes we have
detailed up to this point.

The case that will be considered in this chapter is where the frequency selective channel is known at
the receiver but unknown at the transmitter and/or the communication is one-to-many (broadcast)1.
In this case the transmitted signal cannot be designed to accomodate the frequency selectivity but
the receiver will process the signal in a way that accounts for the frequency selectivity. The frequency
selective transmission model is given in Fig. 11.1 and parameterized by a channel impulse response, hz(t)
and an AWGN, Wz(t). Clearly if the channel impulse response, hz(t) is known at the transmitter then
the transmitted signal can be designed in such a way that the resulting Rz(t) is any of the modulation
techniques that were previously discussed. Unfortunately often in practice the channel might vary
rapidly enough that feedback to the transmitter might not be effective or broadcast communications
is desired (one to many) so that each user sees a different channel. In these cases little control can
be maintained over the form of Rz(t) and there is a need to identify the optimum demodulator in the
presence of the channel distortion.

To formalize the discussion the goal will be to communicate Kb bits on a channel with impulse
response hz(t) that is known at the receiver but not known at the transmitter. For a channel to be
frequency selective, the channel must be time dispersive. For the clarity of discussion the following
definition is given

Definition 11.1 The delay spread of the frequency selective channel is the length of the support of the
channel impulse response.

In this chapter Th will denote the delay spread and the support of the transmitted signal will again be
denoted Tp. With little loss in generality for the remainder of the chapter it will be assumed that the
support of hz(t) is [0, Th]. The goal in this chapter is to understand how optimum receiver processing
must be modified to accomodate the frequency selectivity or equivalently the dispersive nature of the
channel.

1Some of the communication theory aspects when the channel is known at the transmitter will be explored in the
homework.
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a) α1 = 0.3 exp [j2π/3] and τ1 = 0.25Ts. b) α1 = 0.7 exp [jπ/3] and τ1 = 0.25Ts.

Figure 11.2: The frequency response for two channels of the form given in (11.2).

Example 11.1: Consider a channel with

hz(t) =
√

1 − |α1|2δ(t) + α1δ (t − τ1) (11.1)

where α1 is a complex constant and τ1 is a positive constant. The frequency response of such a channel
is given as

Hz(f) =
√

1 − |α1|2 + α1 exp [−j2πfτ1] . (11.2)

The frequency response of two channels of this form are shown in Fig. 11.2. Clearly the larger the
magnitude of α1 and the value of τ1 the more frequency selective the channel becomes. It is clear that
Th − τ1.

11.2 General M-ary Modulations

The first thing to note is that the general optimum M-ary demodulation scheme changes very little in
form with frequency selective channels compared to frequency flat channels. The only change that is
made to the MLWD is that the matched filters are matched to each of the potential received signals,
i.e.,

�̂I = arg max
i∈{0,... ,M−1}

Ti (11.3)

= arg max
i∈{0,... ,M−1}

�
[∫ Tp+Th

0
Yz(τ)r∗i (τ)dτ

]
− Ẽi

2

where ri(t) is the postulated received signal when �I = i, i.e.,

ri(t) = xi(t) ∗ hz(t) =
∫ Th

0
hz(τ)xi(t − τ)dτ (11.4)
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and the energy correction term is a function of the energy of each of the potential received signals, i.e.,

Ẽi =
∫ Tp+Th

0
|ri(t)|2 dt. (11.5)

The average received energy per bit is now given as

Eb =
1

KbM

M−1∑
i=0

Ẽi. (11.6)

It is important to note that the dispersive nature of the channel has made the actual received signal
longer in time (Tp+Th) and this increased length of the received signal must be included in the processing
in the optimum demodulator. Hence without further structure in the signal little changes in optimum
demodulation.

The performance of general M -ary signalling in frequency selective channels will again be a function
of the Euclidean distance spectrum. The Euclidean distance between signals is now defined relative to
the received signal, i.e.,

∆E(i, j) =
∫ Tp+Th

0
|ri(t) − rj(t)|2 dt (11.7)

So while the frequency selective channel does not change significantly the demodulator for general M -ary
signaling, the channel can significantly change performance.

This discussion of the general M-ary modulation in a frequency selective channel can be concluded
by noting that not much changes in this case. The major difference is that the matched filter is matched
to the potential outputs of the channel as opposed to the transmitted signal. Similarly the Euclidean
squared distance between possible signals is measured at the channel output. Consequently the real
problem of interest is how a frequency selective channel changes demodulation and the performance for
orthogonal modulations.

11.3 Frequency Selectivity and OCDM

In general OCDM in frequency selective channels has a more complex demodulator than presented in
Chapter 9. In fact, the optimum demodulation complexity grows from O(Kb) to O(2Kb). Since this is
an introductory course we cannot hope to cover all the details but the demodulation and performance
of OCDM in frequency selective channels is considered extensively in [Ver98]. A tutorial article that is
readable and comprehensive is [Mos96]. In this section we will concentrate on the transmitted signal
being a binary OCDM signal where

Xz(t) =
Kb∑
l=1

Dz(l)sl(t) (11.8)

with modulation symbols Dz(l) = a (I(l)) with a(•) being the constellation mapping and sl(t) being the
unit energy spreading waveform which has a support of length Tp. Again assume the channel response,
hz(t), is known at the receiver and dispersive, the data bits, I(l), l ∈ {1, . . . , Kb}, are equally likely
and independent, and for simplicity of discussion that BPSK modulation is used. The output signal
has the form

Yz(t) = Rz(t) + Wz(t) =
Kb∑
l=1

Dz(l)
∫ Th

0
hz(λ)sl(t − λ)dλ + W (t) (11.9)

=
Kb∑
l=1

Dz(l)s̃l(t) + Wz(t).
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where the effective spreading waveform for each bit is given as

s̃l(t) =
∫ Th

0
hz(λ)sl(t − λ)dλ. (11.10)

Examining (11.9) shows that the effect of a frequency selective channel on an OCDM received signal is
only to change the effective spreading waveform for each bit. The independence of the data bits imply
that in the frequency selective channel the average energy of the effective spreading waveforms is equal
to the received average energy per bit, Eb, i.e.,

Eb =
1

Kb

Kb∑
l=1

Es̃l
(11.11)

where

Es̃l
=

∫ Tp+Th

0
|s̃l(t)|2 dt. (11.12)

Example 11.2: Consider the OCDM waveforms that were considered in Fig. 9.12 where each spreading
waveform has unit energy and the channel given in Example 11.1with τ1 = Tp/4. Since

hz(t) = α0δ(t) + α1δ(t − τ1) (11.13)

where α0 =
√

1 − |α1|2, the equivalent spreading waveforms are

s̃l(t) = α0sl(t) + α1sl(t − τ1). (11.14)

Two of the equivalent spreading waveforms are plotted in Fig. 11.3 (note: l = 1 refers to the first
spreading waveform and l = 3 refers to the third spreading waveform). The time dispersive nature of
the channel has made the equivalent spreading waveform longer in time and has significantly changed
the time waveform. It should be clear that while the example waveforms are clearly orthogonal in a
frequency flat channel as considered in Chapter 9, the frequency selectivity nature of the channel has
eliminated the orthogonality between the waveforms generated by each spreading code. This lack of
orthogonality must be accounted for in the optimum demodulator.

11.3.1 MLWD for OCDM in Frequency Selective Channels

The optimum demodulator has the same matched filter and energy correction term that has been
prevalent in our discussion so far. Specifically for MLWD

�̂I = arg max
i∈{0,... ,M−1}

Ti (11.15)

= arg max
i∈{0,... ,M−1}

�
[∫ Tp+Th

0
Yz(t)r∗i (t)dt

]
− Ẽi

2

where ri(t) =
∑

di(l)s̃l(t) and Ẽi =
∫ Tp+Th

0 |ri(t)|2 dt. The matched filter to the kth effective spreading
waveform will be denoted Q̃(k) and has the form

Q̃(k) =
∫ Tp+Th

0
Yz(t)s̃∗k(t)dt. (11.16)
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a) Amplitude b) Phase

Figure 11.3: Two equivalent spreading waveforms, s̃1(t) and s̃3(t), from the OCDM example of Chap-
ter 9. ET = Tp, α1 = 0.7 exp [jπ/3] and τ1 = 0.25T .

Recall the energy correction term will have the form

Ẽi =
∫ Tp+Th

0

∣∣∣∣∣∣
Kb∑

l1=1

di(l)s̃l(t)

∣∣∣∣∣∣
2

dt

=
Kb∑

l1=1

Kb∑
l2=1

di(l1)d∗i (l2)
∫ Tp+Th

0
s̃l1(t)s̃

∗
l2(t)dt

=
Kb∑

l1=1

Kb∑
l2=1

di(l1)d∗i (l2)Vs̃(l1, l2). (11.17)

Here we denote the cross-correlation function between the possible effective waveforms with Vs̃(l1, l2),
i.e.,

Vs̃(l1, l2) =
∫ Tp+Th

0
s̃l1(t)s̃

∗
l2(t)dt. (11.18)

Hence the energy correction term is entirely a function of the postulated transmitted symbols, di(l) l ∈
{1, . . . , Kb} and the cross-correlation functions between the effective spreading waveforms. Using (11.16)
and (11.17) in (11.15) gives the MLWD as

�̂I = arg max
i∈{0,... ,M−1}

Kb∑
k=1

�
[
Q̃(k)d∗i (k)

]
− 1

2

Kb∑
l1=1

Kb∑
l2=1

di(l1)d∗i (l2)Vs̃(l1, l2) (11.19)

The effect of the frequency selective channel is to eliminate the orthogonality condition and mandate
that the optimum demodulator must have an exponential complexity in the number of bits transmitted.
All possible 2Kb possible matched filters outputs and energy correction terms must be computed to
produce the optimum decision. It should be noted that if a channel does not produce a large amount
of non-orthogonality the simple demodulator for the flat channel is often implemented in practice. The
low complexity implementation is well worth the small loss in performance that is produced. As the
amount of frequency selectivity grows the viability of using the simple demodulator for the flat fading
channel with a resulting small degradation decreases.
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The form for the output of the matched filter provides insight into why the exponential complexity
in the number of bits transmitted is necessary. If �I = j then Yz(t) =

∑
dj(l)s̃l(t) + Wz(t) and then

Q̃(k) =
Kb∑
l=1

dj(l)Vs̃(l, k) + Ñ(k), (11.20)

where

Ñ(k) =
∫ Tp+Th

0
Wz(t)s̃∗k(t)dt. (11.21)

Because hz(t) is dispersive, the orthogonality condition, Vs̃(l, k) = Es̃(l)δl−k, cannot be guaranteed.
Hence the terms in the summation,

∑
l �=k dj(l)Vs̃(l, k), can be viewed as the interference from other

bits, dj(l) l �= k, not corresponding to the spreading waveform k. This interference is often denoted
intersymbol interference (ISI) or multi-user interference2. Because of this interference the optimum
demodulator for a frequency selective channel is generally more complicated than the demodulator for
the non-selective channel.

Using vector and matrix notation allows a very simple form for the matched filter output. Defining
the vectors

�̃Q =

 Q̃(1)
...

Q̃(Kb)

 �D =

 Dz(1)
...

Dz(Kb)

 �̃N =

 Ñ(1)
...

Ñ(Kb)

 , (11.22)

the matched filter outputs are given as

�̃Q = EbG �D + �̃N. (11.23)

The matrix G is of size Kb × Kb where the elements are given as [G]mn = Vs̃(n, m)/Eb. It should be
noted that G is a Hermitian symmetric correlation matrix with trace (G) = Kb (see 11.11) and that
if hr(t) is not frequency selective then G = IKb

where IN is the identity matrix of size N . The noise
vector has a covariance matrix of (see Problem 11.2)

RÑ = E

[
�̃N �̃N

H
]

= EbN0G. (11.24)

An equivalent linear algebraic representation of the problem formulation is given in Fig. 11.4. In examing
the model in Fig. 11.4 it is obvious that OCDM detection must accomodate the variable gain given to
the symbol for each bit (non-equal values on the diagonal of G), the intersymbol interference between
symbols (nonzero off diagonal elements), and the colored noise corrupting the detection.

With this notation the optimum demodulator takes a simple form. The MLWD is

�̂I = arg max
i∈{0,... ,M−1}

�
[
�dH
i

�̃Q
]
− Eb

�dH
i G�di

2
. (11.25)

Here is can be seen that the energy correction term in OCDM is a quadratic form of the matrix G.
While the form for the optimum demodulator in frequency selective fading is compact there is still a
need to search for the maximum ML metric over M = 2Kb possible hypotheses.

2In some multiple access systems each bit is assigned to a separate user in OCDM [Ver98].
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Figure 11.4: The linear algebraic model of OCDM demodulation in a frequency selective channel.

Example 11.3: Consider the channel model in Example 11.1 and the signals set considered in Example
11.2. Since

s̃l(t) = α0sl(t) + α1sl(t − τ1) (11.26)

the cross correlation between the effective spreading waveforms is

Vs̃(l1, l2) = ET δl1−l2 + α0α
∗
1Vsl1

sl2
(τ1) + α∗

0α1Vsl1
sl2

(−τ1) (11.27)

where Vsl1
sl2

(τ1) is cross correlation function of the original spreading waveforms evaluated at a time
offset of τ1. When ET = Tp, α1 = 0.7 exp [jπ/3] and τ1 = 0.25Tp the matrix in the energy correction
term is given as

G =


1 + 0.7498 cos

(
π
3

)
−j0.2499 sin

(
π
3

)
−j0.2499 sin

(
π
3

)
−0.2499 cos

(
π
3

)
j0.2499 sin

(
π
3

)
1 + 0.2499 cos

(
π
3

)
0.2499 cos

(
π
3

)
−j0.7498 sin

(
π
3

)
j0.2499 sin

(
π
3

)
0.2499 cos

(
π
3

)
1 − 0.7498 cos

(
π
3

)
j0.2499 sin

(
π
3

)
−0.2499 cos

(
π
3

)
j0.7498 sin

(
π
3

)
−j0.2499 sin

(
π
3

)
1 − 0.2499 cos

(
π
3

)
 .

For example the vector diagram of the noiseless matched filter outputs are plotted in Fig. 11.5. The
non-orthogonality of the effective spreading waveforms is evident in the intersymbol interference that is
apparent in each matched filter output.

The performance analysis of OCDM in a frequency selective channel follows the same procedure as a
general M-ary modulation. The union bound can be formed by enumerating all the pair-wise Euclidean
distances. For OCDM with a frequency selective channel this can be enumerated with

∆E(i, j) =
∫ Tp+Th

0
|ri(t) − rj(t)|2 dt =

∫ Tp+Th

0

∣∣∣∣∣∣
Kb∑

l1=1

di(l)s̃l(t) −
Kb∑

l1=1

dj(l)s̃l(t)

∣∣∣∣∣∣
2

dt

=
∫ Tp+Th

0

∣∣∣∣∣∣
Kb∑

l1=1

[di(l) − dj(l)] s̃l(t)

∣∣∣∣∣∣
2

dt. (11.28)

Noting the similarity of (11.28) to the energy correction term in (11.17) this Euclidean distance can be
simplified down to

∆E(i, j) =
Kb∑

l1=1

Kb∑
l2=1

(di(l1) − dj(l1)) (di(l2) − dj(l2))
∗ Vs̃(l1, l2) (11.29)

= Eb

(
�di − �dj

)H
G

(
�di − �dj

)
c©1996-2004 - Michael P. Fitz - The University of California Los Angeles



-1 0 1
-1.5

-1

-0.5

0

0.5

1

1.5

Bit Number 1

QI(k)
-1 0 1

-1.5

-1

-0.5

0

0.5

1

1.5

Bit Number 2

QI(k)

-1 0 1
-1.5

-1

-0.5

0

0.5

1

1.5

Bit Number 3

Q
I
(k)

-1 0 1
-1.5

-1

-0.5

0

0.5

1

1.5

Bit Number 4

Q
I
(k)

11.3 Frequency Selectivity and OCDM 259

Figure 11.5: The vector diagram for the matched filter outputs for the channel considered in Example
11.3.

Consequently it is apparent from (11.29) that the only two things that determine the performance of
the MLWD of OCDM in frequency selective fading are the pair–wise symbol differences and the auto
and cross correlations of the distorted spreading waveforms.
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Figure 11.6: The union bound to the probability of word error for a frequency selective channel of
Example 11.4:

Example 11.4: All the Euclidean distances for the OCDM modulation given in Example 11.3 are
enumerated in a table

∆E(i, j)
�I = i

�I = j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 5.5 4.5 10.0 2.5 8.0 8.0 13.5 3.5 8.0 8.0 12.5 6.0 10.5 11.5 16.0

1 5.5 0 10.0 4.5 8.0 2.5 13.5 8.0 10.0 3.5 14.5 8.0 12.5 6.0 18.0 11.5

2 4.5 10.0 0 5.5 6.0 11.5 2.5 8.0 8.0 12.5 3.5 8.0 9.5 14.0 6.0 10.5

3 10.0 4.5 5.5 0 11.5 6.0 8.0 2.5 14.5 8.0 10.0 3.5 16.0 9.5 12.5 6.0

4 2.5 8.0 6.0 11.5 0 5.5 4.5 10.0 6.0 10.5 9.5 14.0 3.5 8.0 8.0 12.5

5 8.0 2.5 11.5 6.0 5.5 0 10.0 4.5 12.5 6.0 16.0 9.5 10.0 3.5 14.5 8.0

6 8.0 13.5 2.5 8.0 4.5 10.0 0 5.5 11.5 16.0 6.0 10.5 8.0 12.5 3.5 8.0

7 13.5 8.0 8.0 2.5 10.0 4.5 5.5 0 18.0 11.5 12.5 6.0 14.5 8.0 10.0 3.5

8 3.5 10. 8. 14.5 6. 12.5 11.5 18. 0 5.5 4.5 10. 2.5 8.0 8. 13.5

9 8.0 3.5 12.5 8. 10.5 6. 16.0 11.5 5.5 0 10. 4.5 8.0 2.5 13.5 8.0

10 8.0 14.5 3.5 10. 9.5 16. 6.0 12.5 4.5 10. 0 5.5 6.0 11.5 2.5 8.0

11 12.5 8. 8. 3.5 14. 9.5 10.5 6. 10. 4.5 5.5 0 11.5 6.0 8.0 2.5

12 6. 12.5 9.5 16. 3.5 10. 8.0 14.5 2.5 8. 6. 11.5 0 5.5 4.5 10.0

13 10.5 6. 14. 9.5 8. 3.5 12.5 8. 8. 2.5 11.5 6. 5.5 0 10.0 4.5

14 11.5 18. 6. 12.5 8. 14.5 3.5 10. 8. 13.5 2.5 8. 4.5 10.0 0 5.5

15 16. 11.5 10.5 6. 12.5 8.0 8.0 3.5 13.5 8. 8. 2.5 10. 4.5 5.5 0

For this particular example the minimum Euclidean distance results when there is a difference only in
the symbol that is modulated on lowest energy effective spreading waveform (s̃3(t)). The union bound
to the word error probability in the frequency selective channel and the word error probability for
the frequency flat channel are plotted in Fig. 11.6. This particular frequency selective channel causes
about 1.5dB degradation in the performance of OCDM and the optimum demodulator complexity grows
significantly to accomodate this frequency selectivity.
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11.3.2 Suboptimal OCDM Demodulation

Suboptimal demodulators are often used in engineering practice. Two reasons typically drive engineers
to consider suboptimum demodulators. First, when Kb is large the complexity of (11.25) can become
prohibitive for implementation due to the exponential complexity in Kb. The second situation is that the
amount of nonorthogonality is relatively mild. Very good performance with mild nonorthogonality can
be achieved without implementing a full MLWD or MLBD. Hence, communication engineers searched
for alternate demodulation structures that were not exponentially complex and yet provided good
performance. The field of multi-user detection is a rich and mature one. This text only hopes to
introduce the concepts while the interested reader is referred to more comprehensive treatments (e.g.,
[Ver98])

Decorrelating Detector

The first idea that was proposed was a linear transformation, WH on �̃Q known as the decorrelating
detector [Shn67, Ver98]. This detector ignores noise and tries to restore the orthogonality condition by
setting WH = G−1 which results in

�̂D = WH �̃Q = G−1 �̃Q = Eb
�D + G−1 �̃N = Eb

�D + �Nd. (11.30)

Each bit decision is then made with a simple threshold test on each component of �̂D as is done in
orthogonal modulation, i.e.,

�
[
D̂(k)

] Î(k)=0
>
<

Î(k)=1

0. (11.31)

It should be noted that G−1 might not necessarily be well defined so care must be taken to evaluate
whether G is singular. This detector has a complexity that is O(K2

b ) so there is a significant complexity
savings compared to the complexity of the optimal demodulator O(2Kb). Since the decorrelator output
has a noise covariance of (see Problem 11.3 )

RÑd
= E

[
�Nd

�NH
d

]
= EbN0G−1, (11.32)

the probability of error for each bit and the average probability of error is given as

PB(E, k) =
1
2
erfc

(√
Eb

N0wk,k

)
PB(E) =

1
Kb

Kb∑
k=1

PB(E, k) (11.33)

where wk,k =
[
WH

]
k,k

=
[
G−1

]
k,k

. It is possible to show that the decorrelator never improves the
average probability of bit error though decisions for some bit indexes might have a higher fidelity than
on the frequency flat channel (e.g., wk,k ≤ 1, see Problem 11.3). The word error probability of the decor-
relator is more difficult to calculate due to the correlated noise corrupting each of the Kb threshold tests.
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Figure 11.7: The performance of the decorrelating detector for the channel given in Example 11.3.

Example 11.5: For the system considered in Example 11.3 the decorrelating detector is (to 3 significant
digits)

WH = G−1 (11.34)

=


0.8 0 j0.346 0.2
0 2 −1 j1.730

−j0.346 −1 2.4 −j1.384
0.2 −j1.730 j1.384 2.8

 .

The performance for the decorrelating detector is shown in Fig. 11.7. The first bit has performance
better than that obtained in a frequency flat channel but the fourth bit has a performance much worse
(approximately 4.5dB worse). The average performance is dominated by the worst case.

The advantages of the decorrelating detector are a relatively low complexity, no need to know the SNR,
a return to orthogonality between data bits, and a tractable performance analysis. The disadvantages of
the decorrelating detector are noise enhancement in certain situations which can produce performance
far from a MLWD and the complexity of the detector is O(K2

b ) and not linear in the number of bits
transmitted.

MMSE Linear Detector

Another linear detector has the same structure as the decorrelating detector but can give better per-
formance. The general linear detector has the form

�̂D = WH �̃Q = WHEbG
�̃D + WH �̃N (11.35)

In the decorrelating detector the ISI is completely eliminated but the effects on the noise of this ISI
removal is ignored. The problem can be reformulated to minimize the combined effects residual ISI and
the filtered noise. Defining the estimation error as

�E = Eb
�D − �̂D = Eb

(
IKb

− WHG
) �̃D + WH . (11.36)
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The first term of the estimation error is due to the residual ISI after estimation and the second term
is due to the additive noise. The goal in choosing a linear estimator is to find the matrix, W such
that �̂D = WH �̃Q and that RE = E

[
�E �EH

]
is minimized. This is classical linear minimum mean square

error (MMSE) estimation [Poo88, Sch91]. A brief review of MMSE estimation is given in Appendix B.
In order to use this tool the data has to be modeled as a random vector. The statistical model most
consistent with the development in this book is that each data symbol is independent and with each
constellation element equally likely to be transmitted. In addition it is assumed that the data symbols
are all independent of the noise time series. This model reduces down to RD = E

[
�D �DH

]
= IKb

and

E

[
�D �̃N

H
]

= 0Kb
. The MMSE filter is achieved when the observations are orthogonal to the error, i.e.,

E
[
�̃Q �EH

]
= 0. Solving for W based on the orthogonality condition gives

WHE

[
�̃Q�̃Q

H
]

= E

[
Eb

�D�̃Q
H

]
(11.37)

Using the assumed data models we have

E

[
�̃Q�̃Q

H
]

= E2
b GGH + EbN0G (11.38)

and

E

[
Eb

�D�̃Q
H

]
= E2

b G
H . (11.39)

Consequently the orthogonality condition reduces down to

WH
(
E2

b GGH + EbN0G
)

= E2
b G

H . (11.40)

Noting that GH = G gives the MMSE filter as

WH =
(
G +

N0

Eb
IKb

)−1

. (11.41)

Each bit decision is then made with a simple threshold test on each component of �̂D as in the decorre-
lator, i.e.,

�
[
D̂(k)

] Î(k)=0
>
<

Î(k)=1

0. (11.42)

This filter and detector is often referred to as the MMSE detector [Ver98, XSR90, MH94]. This detector
has the same complexity as the decorrelator. The probability of error is not as easily analyzed as with
the decorrelating detector since the error in D̂(k) is a combination of filtered Gaussian noise (easy to
analyze) and the residual ISI (dependent on the transmitted data). The procedure to analyze a simple
case is considered in Problem 11.4. It should also be noted that if N0 → 0 then the MMSE detector
converges to the decorrelating detector.

The advantage of the MMSE detector is a significant performance gain versus the decorrelating
detector at the same complexity. The disadvantages of the MMSE detector are that the SNR must be
known, noise enhancement still occurs, and the complexity of the detector is O(K2

b ) and not linear in
the number of bits transmitted.
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Figure 11.8: The performance of the MMSE detector for Example 11.3.

Example 11.6: Consider the system given in Example 11.3 where Eb/N0 = 10dB. The MMSE linear
detector is given as

WH =
(
G +

N0

Eb
IKb

)−1

(11.43)

=


0.7305 j0.03852 j0.2482 0.1231

−j0.0385 1.4609 −0.5669 j1.0939
−j0.2482 −0.5669 1.7919 −j0.8072
0.1231 −j1.0939 j0.8072 1.9492

 .

The overall response for the signal will be due to the matrix

WHG =


0.9269 −j0.0039 −j0.0248 −0.0123
j0.0039 0.8539 0.0567 −j0.1094
j0.0248 0.0567 0.8208 j0.0807
−0.012 j0.1094 −j0.0807 0.8051

 . (11.44)

Consequently the MMSE linear detector produces ISI (WHG �= IKb
), but it does it in such a way so

that the sum of the ISI power and noise power is minimized. It should also be noted that the MMSE
detector is not a conditionally unbiased estimator (i.e., E

(
D̂(i) |D(i) = d

)
�= Ebd. For the estimator

to be conditionally unbiased the diagonal elements of WHG would have to be unity. The performance
for the MMSE detector is shown in Fig. 11.8. At low SNR the MMSE detector has as much as a 2dB
gain compared to the decorrelating detector. The gain slowly decreases as the SNR increases.

Successive Interference Canceller

The simple linear structures of the decorrelating and the MMSE detectors often does not give good
enough performance in certain channels. This occurs when the interference is such that a number of the
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bits cannot be reliably detected. The fortunate thing is that usually some of the bits can be reliably
detected and interference can be removed from the received signal. A simple addition to either of
the abovementioned detectors (decorrelator and MMSE) is a component wise detection process with a
decision directed interference cancellation operation.

The successive interference cancelling strategy is such that the row of the WH matrix that provides
the best performance is identified. That row of WH is applied to �̃Q and a hard decision is made. For
instance assume that the kth

1 row gives the best performance then the following bit detector is formed

�
[
D̂(k1)

]
= �

[
�W (k1)

�̃Q
] Î(k1)=0

>
<

Î(k1)=1

0. (11.45)

Since G is known and

Q̃(k) = Eb

Kb∑
l=1

D(l)gk,l + Ñ(k) = Eb

Kb∑
l �=k1

D(l)gk,l + EbD(k1)gk,k1 + Ñ(k) k �= k1, (11.46)

this decision can reduce the interference by forming

Q̃(1)(k) = Q̃(k) − Ebgk,k1a
(
Î(k1)

)
k �= k1. (11.47)

Assuming that I(k1) = Î(k1) (perfect decisions), one can note that after forming Q̃(1)(k) k �= k1 the

signal model for the vector �̃Q(1) (size Kb − 1 × 1) is exactly the same as for Q̃ except with one less
dimension. Specifically G(1) is G with the kth

1 row and column removed. The MMSE (or decorrelator)
detector is recomputed for the smaller dimensoional problem and the detection process is repeated.
This successive application of a linear detector and interference subtraction is continued until a decision
is made on all the bits. This demodulator is known as a successive interference canceller (SIC) and
Fig. 11.9 shows the block diagram of the SIC. Several variants of this general structure exist but with
the same general idea [Ver98]. Also decision errors can cause significant degradation to the performance
of such an interference canceller so in practice this algorithm should be used only when the most reliable
bit/user can be detected with high fidelity in a linear decoder.

The SIC demodulator has a complexity about the same as the linear detectors. The linear detector
at each stage, k ∈ {1, . . . , Kb}, has a complexity of O(Kb−k+1). The interference removal/subtraction
has a complexity of O(k − 1). Together the combination of filtering and interference supression will
again result in a complexity that is O(K2

b ). This is another case of intelligent engineering resulting in
improved performance without an increase in complexity.

The advantages of the SIC detector are a significant performance gain versus linear detectors. The
disadvantages of the SIC detector are that the complexity of the detector is O(K2

b ) and not O(Kb)
as desired. Also decision errors fed back in the cancellation process can cause significant performance
degradations in the bit error probability.
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Example 11.7: Consider the system given in Example 11.4 where the linear stage in the SIC is chosen
to be a decorrelator. Since w1,1 = 0.8 the first bit can be detected with the highest fidelity,

D̂(1) = �W (1)H �̃Q (11.48)

where �W (1)H is the first row of the decorrelating detector at little increase in complexity. It should be
noted that the performance for this first detected bit is exactly the same as the decorrelator detector.
The SIC assumes that the decision, Î(1) is correct and subtracts out the contribution of this bit, i.e.,

Q̃(1)(k) = Q̃(k + 1) − Ebgk+1,1a
(
Î(1)

)
k ∈ {1, 2, 3} . (11.49)

The new signal model is

�̃Q
(1)

=

 1.125 0.125 −j0.649
0.125 0.625 j0.216
j0.649 −j0.216 0.875

 D(2)
D(3)
D(4)

 + �̃N
(1)

(11.50)

A new decorrelating detector can be formed and the best decision (D̂(2)) selected for feedback to
produce further model reduction. Again assuming correct decisions the model after two stages is

�̃Q
(2)

=
[

0.625 j0.216
−j0.216 0.875

] [
D(3)
D(4)

]
+ �̃N

(2)

. (11.51)

A new decorrelating detector can be formed and the best decision (D̂(4)) selected for feedback to
produce further model reduction. Again assuming correct decisions the model for the final stage is

�̃Q
(3)

=
[

0.625
] [

D(3)
]
+ �̃N

(3)

. (11.52)

Under the assumption of perfect decision feedback the first detected bit will have the same performance
as the linear decorrelator and the subsequent three bits will be detected with a higher fidelity than the
linear decorrelator. The performance for the decorrelator SIC detector is shown in Fig. 11.10. This
detector has almost 2dB gain versus the stand alone decorrelator. It should be noted that Fig. 11.10
has plots of the decisions being fedback and the true data used for the feedback. It should be noted
that the perfect feedback case is most often denoted genie aided detection in the communication theory
literature hence the labels “SIC Genie”. It is interesting to note that the frame/word error rate of the
SIC is not impacted by errors fedback in the interference cancellation (for obvious reasons). Even the
bit error rate is only minorly impacted as in this example the decisions are taken in performance ranked
order, i.e., the best decorrelator decision is taken first and the worst decorrelator decision is taken last.

11.4 Frequency Selectivity and OFDM

In general OFDM in frequency selective channels will also have a more complex demodulator than
presented in Chapter 9 but certain modifications can be made to permit simple suboptimal bit-by-bit
demodulation. In this section we will concentrate on the the transmitted signal being a binary OFDM
signal where

Xz(t) =
Kb∑
l=1

Dz(l)u(t) exp [j2πfd(2l − Kb − 1)t] =
Kb∑
l=1

Dz(l)u(t) exp [j2πflt] (11.53)
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Figure 11.9: The block diagram of the successive interference canceller.

Figure 11.10: The performance of the SIC detector for Example 11.7.
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with modulation symbols Dz(l) = a (I(l)) with a(•) being the constellation mapping and u(t) being the
unit energy pulse shape which has a support of length Tp. Again assume the channel response, hz(t), is
known at the receiver and dispersive. The output signal has the form

Yz(t) = Rz(t) + Wz(t) =
Kb∑
l=1

Dz(l)
∫ Th

0
hz(λ)u(t − λ) exp [j2πfl(t − λ)] dλ + Wz(t). (11.54)

By factoring the exponential term into a function of t and a function of λ, this channel output is given
as

Yz(t) =
Kb∑
l=1

Dz(l) exp [j2πflt]
∫ Th

0
hz(λ)u(t − λ) exp [−j2πflλ] dλ + Wz(t).

=
Kb∑
l=1

Dz(l) exp [j2πflt] ũ(t, l) + Wz(t) =
Kb∑
l=1

Dz(l)s̃l(t) + Wz(t). (11.55)

where s̃l(t) is the effective pulse waveform and ũ(t, l) is the effective subcarrier pulse shape for each bit.
The effective pulse shape for each subcarrier is given as

ũ(t, l) =
∫ Th

0
hz(λ)u(t − λ) exp [−j2πflλ] dλ (11.56)

and the effective spreading waveform is

s̃l(t) = ũ(t, l) exp [j2πflt] . (11.57)

Examining (11.55) shows that the effect of a frequency selective channel on an OFDM transmitted signal
is only to change the effective pulse shape for each of the subcarriers in exactly the same way as OCDM.

Example 11.8: Consider an OFDM signal with Kb = 4 and fdTp = 0.5 with BPSK modulation that is
used in the channel introduced in Example 11.1. A sample path of the received amplitude of the OFDM
signal in the frequency selective channel is shown in Fig. 11.11-a). Clearly the received signal is longer
than Tp due to the dispersive nature of the frequency selective channel. The vector diagram of the four
matched filter outputs is shown in Fig. 11.11-b) in the absence of noise. This figure clearly shows the loss
in orthogonality of the OFDM waveform due to the frequency selectivity. The intersymbol interference
is large enough for the first bit matched filter that error free bit decision cannot be made even in the
absence of noise. Note by referring to Figure 11.2, that this worst performing bit is associated with the
subcarrier whose frequency has the lowest channel gain.

It should be apparent from the results in Chapter 9 that as long as the orthogonality condition exists
between carriers, i.e.,

Vũ(l, k) =
∫ Tp+Th

0
exp [j2π(fl − fk)t] ũ(t, l)ũ∗(t, k)dt = 0 (11.58)

then simple OFDM demodulation is possible. If hz(t) is allowed to take a general form then it is very
difficult to ensure that this orthogonality condition is satisfied. As OFDM is a special case of OCDM
the general discussion of optimum demodulators and simplified demodulators holds directly. In practice
though none of those techniques are typically used as there is a very simple modification of OFDM
transmitted waveforms that permits a very simple suboptimum demodulator on frequency selective
channels.
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a) Received envelope of a sample path of
OFDM in a frequency selective channel.

b) Matched filter output vector diagrams.

Figure 11.11: The received OFDM signal in a frequency selective channel. α = 0.7 exp
[

jπ
3

]
, τ1 = 0.25Tp.

Figure 11.12: A long subcarrier pulse into a linear time–invariant system.

11.4.1 Simplified Demodulator for OFDM

A simplified but suboptimum demodulator is available for OFDM signals on frequency selective channels
by augmenting the transmitted signal slightly. Insight into this suboptimum demodulator is obtained
by assuming that u(t) = 1∀t. This very long pulse can be viewed as having each subcarrier being an
infinite length complex sinusoid. The effective pulse for the lth subcarrier then becomes

ũ(t, l) =
∫ Th

0
hz(λ) exp [−j2πflλ] dλ exp [j2πflt] = Hz(fl) exp [j2πflt] . (11.59)

Note that Hz(fl) is the channel transfer function evaluated at fl and that it is a constant with respect
to time. The intuition into this is easily gained by looking at Fig. 11.12. A linear time invariant system
with a complex sinusoidal input will produce a complex sinusoid at the output and the complex gain on
this sinusoid will be the transfer function of the linear system evaluated at the frequency of the complex
sinusoid. Hence if we have a long pulse the only change in the OFDM pulse (except for the up and down
transients) for a particular subcarrier will be a multiplicative distortion due to the frequency response
of the channel at the subcarrier frequency.

With this assumption of a constant pulse, the received signal will be much like the OFDM signal in
a frequency flat channel. The received signal is given as

Yz(t) =
Kb∑
l=1

Dz(l)Hz(fl) exp [j2πflt] + Wz(t). (11.60)
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Consequently the form in (11.60) is exactly the same as the original OFDM modulation with Dz(l)
replaced by Dz(l)Hz(fl). If a time interval, Td is selected such that the subcarriers are orthogonal, i.e.,∫ Td

0
exp [j2π(fl − fk)t] dt = 0 k �= l (11.61)

then simple bit demodulation is possible. This time interval Td and the frequency separation of the
subcarriers is chosen exactly as in the frequency flat channel. It should be noted that a spacing of
fdTd = 0.25 cannot be used with a real modulation (e.g., BPSK) on a frequency selective channel.
This will become apparent as the details of the demodulator are revealed. This simple demodulator for
BPSK modulation then has the form

�
[
H∗

z (fk)
∫ Td

0
Yz(t) exp [−j2πfkt] dt

]
= �

[
Q̄(k)

]
= � [H∗

z (fk)Q(k)]
Î(k)=0

>
<

Î(k)=1

0. (11.62)

Note that we use the notation Q(k) since this is the same matched filter as was used in the frequency
flat channel in Chapter 9.

Why this condition results in a simplified demodulation form is shown by expanding out matched
filter (to the transmitted signal) as

Q̄(k) = H∗
z (fk)Q(k) = H∗

z (fk)
∫ Td

0
Yz(t) exp [−j2πfkt] dt

= H∗
z (fk)

Kb∑
l=1

Dz(l)H∗
z (fl)

∫ Td

0
exp [j2π(fl − fk)t] dt + N̄(k)

= |Hz(fk)|2 Dz(k)Td + N̄(k). (11.63)

When the pulse shape is constant and an integration interval is chosen where the subcarriers are or-
thogonal, all the Intercarrier Interference (ICI) is removed from each subcarrier output. It should be
noted that a spacing of fdTd = 0.25 results in

0 = �
[∫ Td

0
exp [j2π(fl − fk)t] dt

]
(11.64)

but for operation on an arbitrary frequency selective channel the necessary condition is

0 + j0 =
∫ Td

0
exp [j2π(fl − fk)t] dt (11.65)

Consequently the only difference between the OFDM demodulator introduced in Chapter 9 and the one
for the frequency selective channel is the derotation by the channel gain. The overall block diagram is
shown in Fig. 11.13 and should be compared to Fig. 9.10.

Since Q̄(k) has the form in (11.63), a vector can be formed with analogy to the OCDM case where
the output samples have the form

�̄Q = ĒbG �D + �̄N = Ēbdiag [�g] �D + �̄N (11.66)

where

Ēb =
Td

Kb

Kb∑
k=1

|Hz(fk)|2 g(k) =
|Hz(fk)|2 Td

Ēb
. (11.67)
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Figure 11.13: The simplified demodulator for OFDM in a frequency selective channel.

The diagonal nature of the G shows that the orthogonality of the subcarriers has been restored. Because
of this orthogonality, except for the derotation by the channel gain this reduced complexity demodulator
on the frequency selective channel has exactly the same form as the optimum demodulator for OFDM
in a frequency non-selective channel.

The question remains of how the effective pulse shape, ũ(t, l), can be made a constant over a time
interval [0, Td]. Returning to the definition of ũ(t, l), it can be seen that since

ũ(t, l) =
∫ Th

0
hz(λ)u(t − λ) exp [−j2πflλ] dλ. (11.68)

For example if u(t) is a rectangular pulse of length Tp then

ũ(t, l) =
∫ min(t,Th)

max(0,t−Tp)
hz (λ) exp [−j2πflλ] dλ. (11.69)

By examining (11.69) it is apparent that ũ(t, l) will not be a function of time over the interval [0, Td]
only if the limits of integration are not a function of time. The limits of integration are not a function
of time only if u(t) is constant over the interval [−Th, Td]. If this condition holds then the the effective
pulse becomes

ũ(t, l) =
∫ Th

0
hz (λ) exp [−j2πflλ] dλ = Hz (fl) t ∈ [0, Td] . (11.70)

In essence the OFDM pulse must be extended by Th in length. As is shown in Fig. 11.14 the first Th

part of the output defining the effective pulse will transient due to the impulse response of the channel.
Once all of the impulse response is covered in the convolution integral the effective pulse becomes the
transfer function of the channel evaluated at the subcarrier frequency. When the pulse is removed from
the input then the output will have a transient response back to zero.

Consequently if u(t) is made constant over the interval [−Th, Td] then the suboptimal demodulation
in (11.62) can be implemented and there will be no ICI. An example transmitted waveform that achieves
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Figure 11.14: The effective pulse in a frequency selective channel.

this characteristic is

Xz(t) =
Kb∑
l=1

Dz(l) exp [j2πflt] − Th ≤ t ≤ Td. (11.71)

i.e.,

u(t) =
{

1 −Th ≤ t ≤ Td

0 elsewhere
(11.72)

So simply by extending the rectangular pulse used in OFDM by at least the length of the delay spread
of the channel the orthogonality condition can be retained over the interval t ∈ [0, Td] for any frequency
selective channel. In practice the cyclic prefix length is chosen to be bigger than the longest delay spread
that is normally encountered in the operation of the communication system, i.e., Tp = Td + Th(max).

Example 11.9: Consider again an OFDM signal with Kb = 4 and fdTd = 0.5 with BPSK modulation
that is used in the channel introduced in Example 11.1 where τ1 = Td/4 = Th. The effective pulse
shapes for the case when the pulses are rectangular and of length Td are plotted in Fig. 11.15. The
output pulses from the channel show a transient effect until all the impulse response of the channel is
covered by the input pulse (t = Th). After this point the effective pulse becomes constant until the
transmitted pulse goes away (t = Td) at which point another transient in the effective pulse is noticable.
For this channel Th = 0.25Td and the cyclic prefix will increase the standard OFDM transmitted signal
in length by 25% (i.e., Tp = Td + Th). A sample path of the received amplitude of the OFDM signal
in the frequency selective channel is shown in Fig. 11.16-a). Clearly the received signal is longer than
Td (Tp + Th = Td + 2Th) due to the dispersive nature of the frequency selective channel and the added
cyclic prefix. The vector diagrams of the four matched filter outputs are shown in Fig. 11.16-b) in
the absence of noise. The channel gains at each of the subcarriers are Hz(−1.5/Tp) = 0.18e−j78◦ ,
Hz(−0.5/Tp) = 0.86ej51◦ , Hz(0.5/Tp) = 1.4ej7◦ , and Hz(1.5/Tp) = 1.1e−j37◦ and the constellations are
exactly as predicted by theory.

The performance of the simplified demodulator for OFDM in a frequency selective channel is easily
computed due to the achieved orthogonality between the subcarriers. Since the matched filter output
has the form

Q(k) = Hz(fk)TdDz(k) + Nz(k) (11.73)

where Nz(k) is a white process with var (Nz(k)) = TdN0. Assuming BPSK modulation, the optimum
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Figure 11.15: The output pulses for each OFDM subcarrier.

a) Received envelope of a sample path of
OFDM in a frequency selective channel.

b) Matched filter output vector diagrams.

Figure 11.16: The received OFDM signal in a frequency selective channel with a cyclic prefix. α =
0.7 exp

[
jπ
3

]
, τ1 = 0.25Td.
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threshold test will be

�
[
Q̄(k)

] Î(k)=0
>
<

Î(k)=1

0. (11.74)

Noting that var
(
N̄(k)

)
= |Hz(fk)|2TdN0, it is clear that the probability of error for the kth subcarrier

is

PB(E, k) =
1
2
erfc

(
|Hz(fk)|

√
Td

N0

)
=

1
2
erfc

√
g(k)Ēb

N0

 . (11.75)

Likewise due to the orthogonality between the noise, the word error probability is

PW (E) = 1 −
Kb∏
k=1

(1 − PB(E, k)) . (11.76)

Examining (11.75) and (11.76), it is obvious that the performance of the simplified demodulator is
dominated by the subcarrier with the lowest |Hz(fk)|.

Note the only difference between the original OFDM transmitted waveform introduced in Chapter 9
and the one presented in (11.71) is that the transmission time has been extended by Th seconds. Since
mathematically it makes sense to think about putting this on the frontend of the OFDM symbol (i.e.,
the time support has changed from [0, Td] to [−Th, Td]) this addition to the OFDM signal is most often
denoted a cyclic prefix. Clearly the demodulation algorithm proposed in (11.62), while simple and
eliminating ICI from each subcarrier decision metric, is suboptimal. The suboptimality results from not
considering the whole received signal in the processing. The cyclic prefix is also a redundant transmis-
sion that conveys no information. Adding a cyclic prefix and using the simple demodulator results in
both a loss in bandwidth efficiency and performance but in many applications the gain in demodulator
simplicity in a frequency selective channel more than makes up for these losses. It should be noted
that the complexity of this simple decoder for OFDM is O(Kb) which is even less than the simplified
demodulators presented for general OCDM. The homework will explore both the loss in performance
and the loss in bandwidth efficiency of this demodulation technique for OFDM in frequency selective
channels.

Example 11.10: The wireless local area network (WLAN) standard denoted IEEE 802.11a uses OFDM
modulation for indoor communications. The indoor wireless channel is a frequency selective channel
due to the multipath nature typical of unguided radio propagation. The 802.11a standard is set with
Td = 3.2µs, Th = 0.8µs, and fd = 156.25kHz. This design allows a path length difference between the
significant multipaths of 240m before orthogonality is again lost between the subcarriers. Since WLANs
are normally operated within a building 240m =c× Th is usually much greater than the coverage area.

11.5 Conclusion

This chapter examined the structure and performance of digital communications in the presence of a
frequency selective channel. The first point was that general M -ary modulations essentially had a de-
modulation structure that was relatively unchanged in a frequency selective channel. The only difference
was that the matched filter needed to be matched to the received signal (the transmitted signal filtered
by the channel). The performance of the general M -ary is again a function of the received Euclidean
distance spectrum. Hence the major focus of the chapter was on orthogonal modulations. OCDM was
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Modulation Type
OCDM OFDM

Optimum Demodulation O
(
2Kb

)
O

(
2Kb

)
Suboptimal Demodulation O

(
K2

b

)
O (Kb)

Table 11.1: A complexity comparison of the various orthogonal modulations on frequency selective
fading channels.

examined as this is the most general form of modulation and the MLWD was derived. The loss of or-
thogonality due to the frequency selective channel implies that a general M-ary demodulator is needed
which has a complexity O(2Kb). This complexity is often considered too high for many implementations
so several forms of reduced complexity demodulators were considered. These suboptimum demodulators
had a complexity that were O

(
K2

b

)
. These demodulators offer a variety of tradeoffs between perfor-

mance and complexity. The special case of OFDM was considered and it was shown that a very simple
suboptimum demodulator can be built for use in the frequency selective channel. This demodulator is
exactly the same as the OFDM demodulator in a frequency flat channel and has a complexity O (Kb).
The case of stream modulations will be considered in the next chapter in detail. The complexity for
the various demodulation options available with the orthogonal modulations considered in this chapter
is summarized in Table 12.1.

11.6 Homework Problems

Problem 11.1. Consider 4-ary FSK as considered in Chapter 8 that is to be communicated over the
two channels considered in Example 11-1 with Ts = Tp. Assume the frequency separation is that of the
optimum separation in a frequency flat channel (see Problem 8.10).

a) Detail out the optimum demodulator for each channel.

b) Compute the union bound to the probability of word error for each of the channels and plot for
Eb/N0 = 0 − 10dB.

Problem 11.2. Assume that Kb = 2 bits of information is to be sent with a linear modulation with
a QPSK constellation and a pulse shape u(t) having a support of Tu. This transmission is to be on a
frequency selective channel with

Hz(f) =
√

0.51 + 0.7 exp
[−jπfTu

2
+

jπ

3

]
. (11.77)

a) Find the optimum demodulator.

b) Find the word error probability of the optimum demodulator.

c) Find one pulse shape, u(t), that would have a better word error probability performance than the
rectangular pulse shape

ur(t) =


1√
Tp

0 ≤ t ≤ Tp

0 elsewhere
(11.78)

without increasing the 3dB transmission bandwidth by more than 50%.
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Problem 11.3. This problem explores the correlation of the noise in the demodulation of OCDM in a
frequency selective channel. Recall that the matched filter outputs have the form

�̃Q = EbG �D + �̃N. (11.79)

For any random vector, �X, the correlation matrix is defined as RX = E
[

�X �XH
]
.

a) Show RÑ = EbGN0.

b) Show that the correlation matrix of the noise out of the decorrelating detector is RNd
= EbG−1N0.

c) Assume BPSK is used on each spreading waveform find the probability of error for the kth bit.

d) Prove that the average probability of error is higher for a decorrelating detector in a frequency
selective channel than for the optimum detector in a frequency flat channel at high SNR. Hint:
Jensen’s Inequality.

e) Give an example when the probability of error will have an error floor (a probability of error that
does not decrease exponentially with SNR)

Problem 11.4. This problem explores the correlation of the noise in the MMSE demodulator of OCDM
in a frequency selective channel. Recall that the matched filter outputs have the form

�̃Q = EbG �D + �̃N. (11.80)

For any random vector, �X, the correlation matrix is defined as RX = E
[

�X �XH
]
.

a) Find RÑ .

b) Find RNm , the correlation matrix of the noise out of the MMSE detector where

�̂D = WH �̃Q = WHG �D + �Nm. (11.81)

c) Consider Example 11.6 and assume BPSK is used on each spreading waveform with Eb/N0 = 10dB.
Find the probability of error of the MMSE detector for the first bit. Note this will require averaging
over the 8 possible bit patterns that could be generated by I(k), k ∈ {2, 3, 4}.

Problem 11.5. Assume OFDM is used with a cyclic prefix and

hz(t) =
1√
2
δ(t) +

1√
2

exp [jθ] δ (t − Tp/4) , (11.82)

and the OFDM scheme has Kb = 4, fd = 1
2Tp

, and uses BPSK. Assume the demodulator is implemented
using the simple scheme in Section 11.4.1

a) Compute the channel frequency response, Hz(f).

b) Compute exact output for each of the four frequency matched filters.

c) Identify the simplified algorithm for making bit decisions.

d) Compute the probability of bit error for each subcarrier. Choose the value of θ such that optimizes
the error performance of the second tone.

c©1996-2004 - Michael P. Fitz - The University of California Los Angeles



11.6 Homework Problems 277

Problem 11.6. There are certain situations where transmitting a cyclic prefix with OFDM would
be bandwidth inefficient (e.g., short packets in channels with long delay spreads) and this problem
considers the optimal demodulator in this case. Assume

hz(t) =
1√
2
δ(t) +

1√
2
δ (t − Tp/4) , (11.83)

and the OFDM scheme has Kb = 4, fd = 1
2Tp

, and uses BPSK.

a) Compute the channel frequency response, Hz(f).

b) Compute Vũ(1, 1) and Vũ(2, 1)

c) Find the optimum word decision when �̃QI = [0.9 − 0.3 0.1 0.7]. Note since the modulation is
only on the I-channel the quadrature component of the matched filter output does not effect the
decision.

Problem 11.7. This problem is concerned with the transmission of one bit of information, I, by BPSK
modulation with a pulse shape of u(t). Specifically x0(t) = u(t) and x1(t) = −u(t) during the time
interval [0, Tu]. The transmitted signal is passed through a frequency selective channel with an impulse
response given as

hz(t) =
mp∑
k=1

hkδ(t − τk). (11.84)

where the complex numbers hk and the real numbers τk and mp are known constants. The output of
this channel is subjected to a complex additive white Gaussian noise with a one-sided spectral density
of N0.

a) What is the transfer function of the channel, Hz(f).

b) The received observation when I = m can be modeled as yz(t) = rm(t) + Wz(t) where Wz(t) is a
complex additive white noise. Find the form for r0(t) and r1(t).

c) The optimum demodulator for the case is shown in Fig. 11.17 and has been denoted the RAKE
demodulator due the fact the block diagram has a form much like a common garden rake. In this
block diagram specify the operations labeled with ????.

d) What is the bit error probability performance of this system? Simplify the result as much as you
can.

Problem 11.8. The company you work for, Lurid Technologies, produces a modem that transmits
Kb = 3 bits using OFDM and BPSK on each subcarrier. The transmitted signal has the form

Xz(t) =


3∑

l=1

Dz(l) exp [j2πflt] 0 ≤ t ≤ 10−3

0 elsewhere

(11.85)

The demodulator structure for the modem is given in Fig. 11.18 where Tp = 10−3.
A new client would like to use this modem to communicate over a frequency selective channel

corrupted by an AWGN of one sided spectral density N0. Your company has spent a significant amount
of money to build an integrated circuit that computes the integrals in Fig. 11.18 for Tp = 10−3 and
would like to reuse the circuit in the new design.
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Figure 11.17: The RAKE demodulator.
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Figure 11.18: The OFDM demodulator structure.

a) A testing of the channel discovered that Th = 10−4 and a channel impulse response given as hz(t).
Give this simplest way to change the transmitted signal and/or the decision processing to achieve
the desired communication.

b) For the system specified in a) using BPSK modulation and for Hz(f1) = 1, Hz(f2) = 0.1 + j0.1,
and Hz(f3) = j0.5 detail out the decision processing.

c) For the channel given in b) find the probability of error for each bit as a function of Ēb/N0. What
is the word error probability?

d) Assume that you know the channel before transmitting and that you are limited to using MPSK
modulation with amplitude |Dz(k)| =

√
log2(M) on each subcarrier of an OFDM system, would

there be a way to transmit three bits that would achieve a better word error probability than to
put one bit on each subcarrier with BPSK modulation? If so give one example and provide the
word error probability of the resulting system.

Problem 11.9. This problem is concerned with the transmission of Kb = 4 bits of information, �I,
by orthogonal code division multiplexing using BPSK on each spreading waveform. Assume that the
transmitted spreading waveforms, sl(t), are given in Fig. 11.19. The channel is frequency selective and
the impulse response is given as

hz(t) = 0.707δ(t) + 0.707δ(t − Tp/4) (11.86)

a) The effective spreading waveform at the receiver is given as

s̃l(t) =
∫ Tp/4

0
sl(t − λ)hz(λ)dλ. (11.87)

Find s̃l(t) for l ∈ {1, . . . , 4}.

c©1996-2004 - Michael P. Fitz - The University of California Los Angeles



T
p

Tp

Tp

Tp

s1 t( )

s2 t( )

s3 t( )

s4 t( )

E

T
b

p

E

T
b

p

−
E

T
b

p

280 Demodulation in Frequency Selective Channels

Figure 11.19: Spreading waveforms, sl(t) for OCDM and Kb = 4.

b) What is Eb?.

c) Show s̃1(t) still remains orthogonal to s̃2(t) on this channel.

d) Define Q̃(k) as the output of the matched filter to the kth effective spreading waveform and show
that Q̃(k) k ∈ {1, . . . , 4} are sufficient statistics for maximum likelihood word demodulation.

e) Defining the vectors

�̃Q =

 Q̃(1)
...

Q̃(Kb)

 �D =

 D(1)
...

D(Kb)

 �̃N =

 Ñ(1)
...

Ñ(Kb)

 , (11.88)

the matched filter outputs are given as

�̃Q = EbG �D + �̃N. (11.89)

Identify the general form for elements of the matrix G, i.e., find [G]i,j

f) In the case of a frequency flat channel the following demodulator is optimal

� [Q(k)]
Î(k)=0

>
<

Î(k)=1

0 (11.90)

where Q(k) is the matched filter output for the kth spreading waveform. If Q̃(k) is used in this
same demodulator. What will be the probability of error for k = 1.

Problem 11.10. This problem is concerned with the transmission of Kb = 4 bits of information, �I,
by orthogonal code division multiplexing using BPSK on each spreading waveform. Assume that the
transmitted spreading waveforms, sl(t), are given in Fig. 11.19. The channel is frequency selective and
the impulse response is given as

hz(t) = 0.707δ(t) + 0.707δ(t − Tp/4) (11.91)

a) Identify s̃l(t) for each l ∈ {1, . . . , 4}.
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b) Defining the vectors

�̃Q =

 Q̃(1)
...

Q̃(Kb)

 �D =

 D(1)
...

D(Kb)

 �̃N =

 Ñ(1)
...

Ñ(Kb)

 , (11.92)

the matched filter outputs are given as

�̃Q = EbG �D + �̃N. (11.93)

Identify the general form for elements of the matrix G, i.e., find [G]i,j .

c) Show that the MLWD for this problem can be computed with a complexity that is O(8) versus
O(16) as would be generally the case for a frequency selective channel.

d) Find the union bound for the MLWD.

e) Detail out the MLBD for I(1).

Problem 11.11. Consider the problem formulation in Problem 11.19. Assume that you only have to
transmit 2 bits. This 2 bit transmission is done by selecting two of the four spreading waveforms from
Problem 11.19 and still using BPSK modulation.

a) Assume that you will implement a MLWD. Identify the Euclidean distance spectrum for an arbi-
trary 2 of the 4 possible received waveforms as a function of the elements of G.

b) Select the two waveforms that will give the largest minimum Euclidean distance

c) Assume that you will implement a decorrelator. Identify the decorrelator structure for an arbitrary
2 of the 4 possible received waveforms as a function of the elements of G.

d) Select the two waveforms such that the average probability of bit error for the decorrelator is
minimized.

Problem 11.12. In comparing word error demodulation performance of two systems, sucessive interfer-
ence cancellation with perfect feedback of the true modulation symbol and with feedback of modulation
symbols decisions, select one of the following three statements as true.

1. True modulation symbol feedback performs better.

2. Both systems perform the same.

3. Modulation symbol decision feedback performs better.

Full justification of the choice must be provided.
Problem 11.13. You are asked to design an OFDM system by your boss at ModemsRus that uses
independent BPSK modulation on each subcarrier operating on a frequency selective channel. She told
you that for complexity purposes you should constrain the design to have a cyclic prefix and a simple
bit demodulator. The channel is such that Th = 4µs. The goal set for you by your boss is to achieve
Wb = Kb/Tp = 10Mbps and ηB = 90 %. Assume that the transmission bandwidth is measured via the
3dB bandwidth and that rectangular pulse shapes are used on each subcarrier in the OFDM modulation.
Specify all the important system parameters, e.g., fd, Td, and Kb.
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Problem 11.14. Show that

arg max
i=0,... ,M−1

�
[
�dH
i

�̃Q
]
− Eb

�dH
i G�di

2
= arg min

i=0,... ,M−1

[
�̃Q − EbG�di

]H

G−1
[
�̃Q − EbG�di

]
. (11.94)

This shows that the optimal demodulator is essentially a generalized minimum distance decoder in the
presences of a colored noise.
Problem 11.15. Show that for OCDM when an MMSE detector is used that

RE = E2
b

(
IKb

− GH

(
GGH +

N0

Eb
G

)−1

G

)
. (11.95)

Problem 11.16. Your boss has tasked you with designing an OFDM cable modem to send packets of
Kb = 256 bits in less than 300µs. She wants you to use less than 1 MHz of spectrum and cause little
interference to transmissions from adjacent houses (each house is frequency multiplexed). It turns out
that when cable lines are shared in apartment buildings the channel becomes frequency selective. The
goal given by your boss is to have a simple demodulator. Specify all the important parameters and
pulse shapes.
Problem 11.17. Include decomposible errors and union bound next time.

11.7 Projects

Not included this edition.
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Chapter 12

Frequency Selectivity and Stream
Modulations

12.1 Current Status

Up to this point in this text we have introduced two general methods to communicate Kb bits

1. General M -ary modulations

• The advantage of a general M -ary modulation is that it can achieve very good performance
and arbitrary spectral efficiency.

• The disadvantage of a general M -ary modulation is that without more structure the optimal
demodulator has complexity O(2Kb).

2. Orthogonal modulations (including stream modulations, OFDM, OCDM)

• The advantage of orthogonal modulation is that the optimum demodulator has complexity
O(Kb) and a desired spectral efficiency can be achieved with a proper design of the modulation
signals.

• The last chapter showed how if suboptimal demodulators are considered the loss of orthogo-
nality can be compensated by structures that have complexity O(Kb) for OFDM signals and
O(K2

b ) for the most general signals (OCDM).

This chapter will focus on stream modulation in frequency selective channels. In particular this chapter
will show

• Optimal stream demodulation on a frequency selective channel has a complexity that is O(Kb).

• There are simple suboptimal demodulation structures that are practical to implement in a wide
variety of communication applications.

The distortion of a frequency selective channel forces optimum bit demodulation for stream modu-
lations away from the simple form that was presented in Chapter 9. In particular this chapter examines
a class of communication problems where binary linear stream modulation is used but Nyquist criterion
for zero ISI cannot be satisfied (the orthogonality condition). This subject is the focus of a separate
chapter because stream modulation has traditionally been most frequently used in applications. In this
formulation the transmitted signal is a binary linear stream modulation

Xz(t) =
Kb∑
l=1

Dz(l)u(t − (l − 1)T ) (12.1)
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Figure 12.1: The recursive front-end processor for stream modulations on frequency selective channels.

where Dz(l) = a (I(l)) with a(•) being the constellation mapping and u(t) being the unit energy pulse
shape with support of length Tu and I(k) are modeled as independent and identically distributed random
variables. Recall for binary linear stream modulations Tp = (Kb − 1)T + Tu. As before the MLWD has
the form

�̂I = arg max
i∈{0,... ,M−1}

�
[∫ Tp+Th

0
Yz(t)r∗i (t)dt

]
− Ẽi

2
(12.2)

and the text will examine ways of implementing this demodulator efficiently. Again stream modulation
is a special case of OCDM so the optimum and suboptimum demodulation discussion could carry
through exactly as in Section 11.3. Since the data is being carried on time offset pulses, the optimum
and suboptimum demodulation structures can be reinterpreted as filters and recursive processors in the
time domain. Consequently this section will examine the signal models and demodulators presented in
Section 11.3 in more detail to get this insight.

The output signal has the form

Yz(t) = Rz(t) + Wz(t) =
Kb∑
l=1

Dz(l)ũ(t − (l − 1)T ) + Wz(t) (12.3)

where ũ(t) =
∫ Th

0 hz(λ)u(t − λ)dλ. ũ(t) is denoted the effective pulse shape in the frequency selective
channel. It can easily be shown that with the assumption of the independent data bits that Eb = Eũ.
In the same manner as above the effective pulse shape matched filter sampled outputs are the sufficient
statistics, i.e.,

Q̃(k) =
∫ Tp+Th

0
Yz(t)ũ∗(t − (k − 1)T )dt. k ∈ {1, . . . , Kb} . (12.4)

These Kb samples are sufficient statistics since a matched filter to any received waveform can be derived
from these samples, i.e.,∫ Tp+Th

0
Yz(τ)r∗i (τ)dτ =

Kb∑
l=1

D∗
z(l)

∫ Tp+Th

0
Yz(t)ũ∗(t − (l − 1)T )dt =

Kb∑
l=1

D∗
z(l)Q̃(l). (12.5)

Finally these sufficient statistics can be generated in a time recursive fashion using one filter. Fig. 12.1
shows this time recursive front-end processor. One reason for the historically dominance stream modu-
lation in practice is because the matched filter processing of stream modulation can be done sequentially
in time.

It is instructive to examine the form of these matched filter outputs to the effective pulse shape to
understand how frequency selective channels affect stream modulations. Substituting (12.3) into (12.4)
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shows the matched filter output has the form

Q̃(k) =
Kb∑
l=1

Dz(l)Vũ((k − l)T ) + Ñ(k)

= Eb

Kb∑
l=1

Dz(l)gk,l + Ñ(k) (12.6)

where Ñ(k) is an additive non-white1 Gaussian noise and Vũ(mT ) is the autocorrelation function of the
effective pulse shape. Again resorting to the vector notation of Section 12.3 the matched filter outputs
are given as

�̃Q = EbG �D + �̃N. (12.7)

Because hz(t) is dispersive, Nyquist criterion, Vũ(mT ) = Eũδm, cannot be guaranteed. Since [G]k,l =
gk,l = Vũ((k − l)T )/Eũ the matrix G is Hermitian symmetric and Toeplitz [LT85]. Consequently the
rows of G are mostly different only in a horizontal shift. Also because of the energy normalization,
gk,k = 1 k ∈ {1, . . . , Kb}.

1The correlation of the noise is explored in the homework.
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Example 12.1: Consider a linear stream modulated signal with Kb = 4 with BPSK modulation and

u(t) =


√

1
Tu

0 ≤ t ≤ Tu

0 elsewhere
(12.8)

where Tu = Tp/4 = T that is used in the channel introduced in Example 12.1. The effective pulse for
the stream modulation is given as

ũ(t) = α0u(t) + α1u(t − τ1) (12.9)

The correlation function that determines the energy correction term is given as

Vũ(τ) =
∫ ∞

−∞
ũ(t)ũ∗(t − τ)dt

= Vu(τ) + α0α
∗
1Vu(τ + τ1) + α1α

∗
0Vu(τ − τ1) (12.10)

where

Vu(τ) =

 1 − |τ |
Tu

|τ | ≤ Tu

0 elsewhere.
(12.11)

Again assuming that α1 = 0.7 exp [jπ/3] and τ1 = 0.25Tp = Tu = T the matrix in the energy correction
term is given as

G =


1 α∗

0α1 0 0
α0α

∗
1 1 α∗

0α1 0
0 α0α

∗
1 1 α∗

0α1

0 0 α0α
∗
1 1

 (12.12)

=


1 0.4999 exp [jπ/3] 0 0

0.4999 exp [−jπ/3] 1 0.4999 exp [jπ/3] 0
0 0.4999 exp [−jπ/3] 1 0.4999 exp [jπ/3]
0 0 0.4999 exp [−jπ/3] 1



The energy correction term for the MLWD using (12.3) is

Ẽi =
∫ Tp+Th

0
|ri(t)|2 dt =

Kb∑
l1=1

Kb∑
l2=1

di(l1)d∗i (l2)
∫ Tp+Th

0
ũ(t − (l1 − 1)T )ũ∗(t − (l2 − 1)T )dt

=
Kb∑

l1=1

Kb∑
l2=1

di(l1)d∗i (l2)Vũ ((l2 − l1)T ) (12.13)

In a way similar to the development for OCDM the energy correction term for stream modulations can
be expressed in matrix notation as

Ẽi = Eb
�dH
i G�di. (12.14)

Typically when a stream modulation is used in practice both the length of the pulse for transmission,
Tu, and the multipath impulse response length, Th, are much shorter than the transmission time, Tp.
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Figure 12.2: The form of G for Kb = 9 and Nu = 2. The potentially non-zero elements are shaded

This fact implies that the ISI extends only over a fairly short interval since

Vũ(τ) = 0 |τ | > Tu + Th. (12.15)

Consequently G will be a matrix having a band diagonal property. Banded diagonal implies that a
matrix only takes non-zero values in a finite region around the diagonal of the matrix. The symbol
support of ũ(t) determines how many off diagonal elements will occur in each row.

Definition 12.1 The symbol support, Nu, of the ũ(t) is the largest integer such that Tu + Th > NuT .

Now precisely G will have Nu off diagonal elements. Fig. 12.2 graphically shows the case for Kb = 9
and Nu = 2

Example 12.2: Consider the situation presented in Example 12.1 where Tu = Th = T . Here Tu + Th =
2Tu > T but Tu + Th = 2Tu = 2T so that Nu = 1.

12.2 MLWD for Stream Modulations

Since the matched filter outputs, Q̃(k), are computed sequentially in time using the same filter, it
would be useful to formulate a method of computing the MLWD recursively in time. A technique that
accomplishes this was identified by Ungerboeck [Ung74]. To derive this recursive MLSD recall the form
for the MLWD is

�̂I = arg max
i∈{0,... ,M−1}

Ti (12.16)

= arg max
i∈{0,... ,M−1}

Kb∑
k=1

�
[
d∗i (k)Q̃(k)

]
− Eb

2

Kb∑
l1=1

Kb∑
l2=1

di(l1)d∗i (l2)gl2l1

= arg max
i∈{0,... ,M−1}

�
[
�dH
i

�̃Q
]
− Eb

�dH
i G�di

2
(12.17)
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where di(l) is the data symbol at the lth symbol time when �I = i. It should be noted that the
matched filter term in (12.16) is already in a form that can be computed in a time recursive fashion.
Consequently the effort needs to be focused on computing the energy correction term in a time recursive
fashion. Ungerboeck came to a realization that the energy correction term for each postulated sequence
is a form that is a sum of terms di(l1)d∗i (l2)gl2l1 . Each of these terms is nonzero only when gl2l1 is
nonzero. Hence the energy correction term for each postulated transmitted word only has to sum over
the shaded components of G as shown in Fig. 12.2. While this simplifies the computation of the ML
metric it does not address the exponential complexity of computing the ML metric for each possible
transmitted data word.

Example 12.3: This example continues Example 12.1 which has Kb = 4, Tu = Tp/4, α1 = 0.7 exp [jπ/3],
and BPSK modulation with Eb = 1. Recall that this text uses d0(k) = 1 and d1(k) = −1 for BPSK
modulation. This example produces a G matrix of the form

G =


1 0.4999 exp [jπ/3] 0 0

0.4999 exp [−jπ/3] 1 0.4999 exp [jπ/3] 0
0 0.4999 exp [−jπ/3] 1 0.4999 exp [jπ/3]
0 0 0.4999 exp [−jπ/3] 1


For the example considered here the observations are

�̃q = [q̃(1) q̃(2) q̃(3) q̃(4)]T = [1.5 − j0.5 0.3 + j0.7 1.2 + j0.1 − 0.9 + j0.1] (12.18)

and the goals is to efficiently form the MLWD decision given as

Ti = arg max
i∈{0,... ,M−1}

�
[
�dH
i
�̃q
]
− Eb

2
�dH
i G�di. (12.19)

This optimum demodulator can be viewed as computing the maximum likelihood metric on a binary
tree of depth Kb. An example of such a tree for Kb=4 is shown in Fig. 12.3. The form of the tree
has a great deal of symmetry. For example the top half and the bottom half of the tree are exactly
the same, with the only difference being the first bit. This symmetry can be exploited in forming the
MLWD metric. Ungerboeck proposed an algorithm that had a recursion at each time instant which
partitioned the Kb bits into four distinct sets as shown in Fig. 12.4. The “past” bits in the algorithm
have had conditional decision made on them based on the past observations and the possible future
bits. There is a current bit that will be processed along with the current observation to produce a sub-
sequent conditional decision. There are the Nu “future” bits needed to make the subsequent conditional
decision. Finally there are the “future” bits not needed in making the conditional decision. The finite
memory of the ISI and the symmetry in the tree structure were the characteristics that Ungerboeck
exploited to find a demodulation structure that had a complexity O

(
Nu2Nu+1Kb

)
. It should be noted

that if Kb � Nu then the complexity is essentially again only growing linearly with the number of bits
transmitted, as desired. The Ungerboeck algorithm has a two step recursion

1. Forward step

2. Survivor selection

and the remainder of this section will provide the details of this algorithm.
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Figure 12.3: The binary tree for enumerating all possible words in an M -ary demodulator. Kb=4.

Figure 12.4: The partitioning of the data frame for each step of the MLWD as proposed by Ungerboeck.
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12.2.1 Forward Step–Time 1

Since there are no “past” bits at the first step, Ungerboeck’s form for the MLWD can be derived by
reformulating the MLWD in (12.16) by separating out the maximization over I(1) = m1 and �I(−)(1) =
n(1). Suppose there is a split of the ML metric such that Ti = T

(−)
n(1)(1) + T

(+)
m1,n(1)(1) then

�̂I = arg max
i∈{0,... ,M−1}

Ti = arg max
m1=0,1

n(1)=0,M/2−1

T{m1,n(1)}(1) (12.20)

= arg
{

max
n(1)=0,M/2−1

(
T

(−)
n(1)(1) + max

m1=0,1
T

(+)
m1,n(1)(1)

)}
.

Consequently if we can isolate everything in the ML metric that is a function of the first bit we can make
a conditional decision on the first bit once the first matched filter output is observed. Manipulating
(12.16) and using the finite memory of ũ(t) gives

�̂I = arg

{
max

n(1)=0,M/2−1

(
Kb∑
k=2

�
[
d∗n(1)(k)Q̃(k)

]
− Eb

2

Kb∑
l1=2

Kb∑
l2=2

dn(1)(l1)d∗n(1)(l2)gl1,l2+ (12.21)

max
m1=0,1

{
�

[
d∗m1

(1)Q̃(1)
]
− Eb

2

(
|dm1(1)|2 +

Nu+1∑
k1=2

dn(1)(k1)d∗m1
(1)gk1,1 +

Nu+1∑
k2=2

dm1(1)d∗n(1)(k2)g1,k2

)})}

From (12.21) it is apparent that

T
(+)
m1n(1)(1) = �

[
d∗m1

(1)Q̃(1)
]
− Eb

2

(
|dm1(1)|2 +

Nu+1∑
k1=2

dn(1)(k1)d∗m1
(1)gk1,1 +

Nu+1∑
k2=2

dm1(1)d∗n(1)(k2)g1,k2

)
.

(12.22)

T
(+)
m1,n(1)(1) is not a function of all the Kb − 1 future possible bits but only Nu future bits, �INu(1) =

[I(2) I(3) . . . I(Nu +1)]. Notationally we will enumerate the possible values that these Nu bits can take
with n1 = 0, 2Nu − 1 and �I(−)(1) = n(1) =

{
n1, n

(−)
1

}
.

Example 12.4: Consider when Kb = 4 then the notation would be

I(1) I(2) I(3) I(4) m1 n(1) n1 n
(−)
1

0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 1
0 0 1 0 0 2 0 2
0 0 1 1 0 3 0 3
0 1 0 0 0 4 1 0
0 1 0 1 0 5 1 1
0 1 1 0 0 6 1 2
0 1 1 1 0 7 1 3
1 0 0 0 1 0 0 0
1 0 0 1 1 1 0 1
1 0 1 0 1 2 0 2
1 0 1 1 1 3 0 3
1 1 0 0 1 4 1 0
1 1 0 1 1 5 1 1
1 1 1 0 1 6 1 2
1 1 1 1 1 7 1 3
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Figure 12.5: The enumeration of the first Nu + 1 bits.

The components of the energy correction term that T
(+)
m1,n1(1) corresponds to are shown in Fig. 12.6 with

a different shading. These terms are all the possible terms in the double summation that are a function
of di(1). Since the ISI support in a stream modulation is Nu to enumerate all the values that these
components of the energy correction term represent require all of the possible values of the first Nu + 1
modulation symbols to be enumerated. Consequently the first step in a MLWD is to compute T

(+)
m1,n1(1)

for all possible bit values corresponding to m1 = 0, 1, n1 = 0, 2Nu − 1. It should be noted that m1

enumerates the value of the first bit, while n1 enumerates the value of the next Nu bits. A graphic that
represents how the notation enumerates the bits is shown in Fig. 12.5. Consequently the partial metric
is given as

T (+)
m1n1

(1) = �
[
d∗m1

(1)Q̃(1)
]

(12.23)

−Eb

2

|dm1(1)|2 +
Nu+1∑
k1=2

dn1(k1)d∗m1
(1)gk1,1 +

Nu+1∑
k2=2

dm1(1)d∗n1
(k2)g1,k2

 .

These 2Nu+1 values of T
(+)
m1,n1(1) will be denoted the forward metrics of the Ungerboeck form of

the MLWD at the first step. At the first time, these metrics can be thought of as being computed
by pushing forward along all branches into the tree that represents the data word (see Fig. 12.3) to
a depth of Nu + 1. Considering the form of (12.23), the complexity of this forward step is O(Nu2Nu+1).

Example 12.5: Continuing with Example 12.3 the forward step at time 1 can be detailed. Note that
since Nu = 1, that m1 enumerates the possible values for the first bit and n1 enumerates that possible
values of the second bit. The partial ML metric for the possible values of n1 and m1 are given as

T (+)
m1n1

(1) = �
[
d∗m1

(1)q̃(1)
]
− Eb

2
[
1 + dn1(2)d∗m1

(1)g12 + dm1(1)d∗n1
(2)g21

]
(12.24)

Consequently the four metrics that result in the forward step are

T
(+)
00 (1) = � [q̃(1)] − Eb

2
[1 + g21 + g12] = 0.75005

T
(+)
10 (1) = � [−q̃(1)] − Eb

2
[1 − g21 − g12] = −1.75005 (12.25)

T
(+)
01 (1) = � [q̃(1)] − Eb

2
[1 − g21 − g12] = 1.24995

T
(+)
11 (1) = � [−q̃(1)] − Eb

2
[1 + g21 + g12] = −2.24995.

Since Nu = 1 the first two bits are considered in computing the partial ML metric and a total of four
sequences must be computed on the forward step.
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Figure 12.6: The form of G for Kb = 9 and Nu = 2. The lightly shaded elements of G are in Tm1,n(1)
and the dark shaded elements of G are in T

(−)
n (1).

12.2.2 Survivor Selection–Time 1

It is possible to prune the number of paths considered after the forward step. Since T
(−)
n(1)(1) is not a

function of m1 it will be common for all sequences that have a common index n(1) that enumerates the
future bits, [I(2) . . . I(Kb)]. Since the forward step has pushed Nu + 1 branches into the tree, there will
be 2Nu pairs of these 2Nu+1 paths having a common T

(−)
n(1). For example the sequence �I = [0000 . . . 0]

will produce the same value of T
(−)
n(1) as would the sequence �I = [1000 . . . 0]. In fact all of these pairs

of possible data words that have a common T
(−)
n(1) can be shown to be extensions of two specific paths

created in the forward step. For instance for Nu=2 all the paths in the tree of Fig. 12.3 produced in
the forward step labeled with the same letter have a common future, [I(2) . . . I(Kb)]. Since the forward
paths in the tree are enumerated with {m1, n(1)} the paths with a common future will be paths with
a common n1. This common future implies that to find the ML data word we do not need to keep all
of the paths for future processing. For instance if T

(+)
0,0 (1) > T

(+)
1,0 (1) then it will never be possible for a

sequence of the form �I = [100 . . . ] to have a larger ML metric than a sequence of the form �I = [000 . . . ]
because of the common future T

(−)
n(1). The forward step creates 2Nu+1 branches in the tree that defines

the transmitted data word and a metric associated with each of those branches. It is possible to prune
back to 2Nu branches that could possibly become the ML demodulated sequence (make a conditional
decision on I(1)). Again a graphic that demonstates this idea of making a conditional decision based on
the future bits is shown in Fig. 12.7. For each enumeration of n1 the values of T

(+)
0,n1

(1) and T
(+)
1,n1

(1) can
be compared. Only the larger of these two partial metrics needs to be saved since no path associated
with the smaller of these two metrics can become the MLWD output. Mathematically the surviving
conditional metric and the conditional first bit decision is given as

T̃n1(1) = max
m1=0,1

T (+)
m1,n1

(1) În1(1) = arg max
m1=0,1

T (+)
m1,n1

(1). (12.26)

The survivor selection step identifies and saves the maximum T
(+)
m1,n1(1) and the path that is still a

possible ML demodulated sequence for each n1. To define an algorithm we have denoted the largest
metric as T̃n1(1) and the associated conditional decision as �̂In1(1). This “surviving” metric and path
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Figure 12.7: Survivor selection stage for time 1.

that achieves this metric are saved for further processing. This completes the first stage of the Unger-
boeck MLWD.

Example 12.6: For Example 12.3, the first survivor selection stage can be detailed. Note that T
(+)
0,0 (1)

and T
(+)
1,0 (1) will have all the possible futures sequences in common and hence a common value of

T
(−)
n(1)(1). Consequently when Î(2) = 0 the best estimate of I(1) is Î(1) = 0 since

T
(+)
0,0 (1) = 0.75005 > T

(+)
1,0 (1) = −1.75005. (12.27)

The selected survivor metric for the next stage is

T̃0(1) = T
(+)
0,0 (1) = 0.75005 �̂I0(1) = [0] . (12.28)

Similarly since

T
(+)
0,1 (1) = 1.24995 > T

(+)
1,1 (1) = −2.24995 (12.29)

the second survivor metric for the next stage is

T̃1(1) = T
(+)
0,1 (1) = 1.24995 �̂I1(1) = [0] . (12.30)

In this example the decision on the first bit was identical for both of the possibilities of the second bit.
This is not true in general. The Ungerboeck equalizer in the survivor seclection has made a conditional
decision on the first bit. Consequently two of the four partial ML metrics that have been computed
can be discarded with the knowledge that they will not result in the largest likelihood metric. The two
surviving partial metrics are saved and will be used in future processing. A graphic that represents the
binary tree and the paths searched is given in Fig. 12.8 where the “X” represents the eliminated paths.

12.2.3 Forward Step – General

The goal now is to generalize the algorithm to an arbitrary time, k = 2, Kb−Nu. The general algorithm
block diagram is given in Fig. 12.9. The discussion in the sequel will focus on k = 2 but the extensions
to other k should be apparent. At this point we have 2Nu paths of depth Nu + 1 in the tree2 that are

2For arbitrary k we still will have 2Nu paths but now with a depth of Nu + k − 1.
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Figure 12.8: Step 1 of the Ungerboeck recursion for Nu = 1 and Example 12.13.

still possible ML demodulated sequences. These paths correspond to the most likely sequence for each
possible value of [I(2) I(3) . . . I(Nu +1)] ([I(k) I(k+1) . . . I(k+Nu−1)] for general k). Associated with
each of these paths we have the largest accumulated partial ML metric for this set of bits and the past
bit decisions corresponding to the most likely sequence associated with this set of bits. The goal now
is to extend this process one time iteration and to do this we note that �I(−)(1) = n(1) =

{
n1, n

(−)
1

}
=

{m2, n(2)} and n1 = {m2, ñ1}. This notation for the partitioning of the bits is graphically illustrated
in Fig. 12.10 for the case of the second time step.

Figure 12.9: The Ungerboeck MLWD recursion.

c©1996-2004 - Michael P. Fitz - The University of California Los Angeles



I 2( ) ••• I Nu +( )1

n16 7444444 8444444

 m2

123

  ñ1
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Figure 12.10: The notation for the partitioning of the bits in the second time step.

Example 12.7: Consider when Nu = 2 then the notation would be

n1 I(2) I(3) m2 ñ1

0 0 0 0 0
1 0 1 0 1
2 1 0 1 0
3 1 1 1 1

The MLWD can be rewritten by separating out the terms that are a function of I(2), i.e.,

�̂I = arg max
i∈{0,... ,M−1}

Ti = arg max
n(1)∈{0,... ,M/2−1}

(
T

(−)
n(1)(1) + max

m1=0,1
Tm1,n1(1)

)
= arg max

m2=0,1
n(2)∈{0,... ,M/4−1}

T
(−)
m2,n(2)(1) + T̃m2,ñ1(1) (12.31)

= arg max
n(2)∈{0,... ,M/4−1}

(
T

(−)
n(2)(2) + max

m2=0,1

(
Tm2,n(2)(2) + T̃m2,ñ1(1)

))
= arg max

n(2)∈{0,... ,M/4−1}

(
T

(−)
n(2)(2) + max

m2=0,1
T

(+)
m2,n(2)(2)

)
where we have defined

T
(+)
m2,n(2)(2) = Tm2,n(2)(2) + T̃m2,ñ1(1) = Tm2,n2(2) + T̃m2,ñ1(1). (12.32)

The second step forward pushes the enumerated paths in the tree one branch further (up to I(2 + Nu))
hence the term Tm2,n(2)(2) does not have to be computed for all [I(2) I(3) . . . I(Kb)] but only for all
[I(2) I(3) . . . I(Nu + 2)]. We will again enumerate all the sequences in [I(2) I(3) . . . I(Nu + 2)] with
m2 = 0, 1, n2 = 0, 2Nu − 1. It should be again noted that m2 enumerates the value of the second bit,
while n2 enumerates the value of the next Nu bits. Consequently by computing the values of T

(+)
m2,n(2)(2),

or equivalently again T
(+)
m2,n2(2) due to the finite length of the ISI, the MLWD metric can be found. This

enumeration of all possible bit sequences in this time step 2 update is illustrated in Fig. 12.11. The
partial metrics computed the previous stage are only a function of I(2) through I(Nu +1) (enumerated
by m2 and ñ1). The new terms that need to be added to the partial metric are a function of I(2)
through I(Nu + 2) (enumerated by m2 and n2). Consequently the forward step recursion in Fig. 12.9
is completely determined by computing the function Tm2,n2(2) and adding it to the appropriate metric
from the previous stage as in (12.32).

The term Tm2,n2(2) is often denoted the branch metric. Again it is apparent that the new terms
needed in T

(+)
m2,n(2)(2) compared to what were computed the first iteration of the algorithm are all the
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Figure 12.11: The time step 2 update of the MLWD.

terms involving Dz(2) or equivalently I(2) that were not included in T̃n1(1) and these are given as

Tm2,n2(2) = �
[
d∗m2

(2)Q̃(2)
]
− Eb

2

Nu+1∑
k1=1

dn2(k1 + 1)d∗m1
(2)gk1+1,2 +

Nu+1∑
k2=2

dm2(2)d∗n2
(k2 + 1)g2,k2+1

 .

(12.33)

The terms in Tm2,n2(2) are the terms containing the second matched filter output and the energy
correction terms represented by the checkered pattern in Fig. 12.12. Consequently we have again grown
the size of the number of considered sequences to 2Nu+1 and again the complexity of this forward step
is O(Nu2Nu+1). This completes the forward step as shown in Fig. 12.9 as T

(+)
m2,n2(2) now contains all

the terms of the ML metric that are related to I(1) and I(2). It should be noted that m2 enumerates
the value of the second bit, while n2 enumerates the value of the next Nu bits. The survivor selection
can again make conditional decisions to shrink down the number of possible words that might be the
maximum likelihood word.

It is worth it to detail out the forward step algorithm for the case for a general k for clarity of
discussion. The partial accumulated metric for nk becomes

T (+)
mk,nk

(k) = Tmk,nk
(k) + T̃mk,ñk−1

(k − 1). (12.34)

This forward step only requires the computation of the branch metric, Tmk,nk
(k) and the adding of this

branch metric to the appropriate survivor partial metric from the previous stage, T̃mk,ñk−1
(k−1). Again

we now have 2Nu+1 surviving metrics corresponding to the possible values of mk and nk and a surviving
word of the form �̂I(k) = [mk

�̂I ñk−1
(k − 1)]. These surviving partial metrics and surviving possible ML

sequences are passed to the survivor selection portion of the algorithm.
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Example 12.8: For Example 12.3, the second forward stage is detailed in this example. Since Nu = 1 in
this example, n1 only enumerates the value of the second bit and there is no ñ1. Recall the surviving
metrics from the first stage are

T̃0(1) = 0.75005 �̂I0(1) = [0]

T̃1(1) = 1.24995 �̂I1(1) = [0]. (12.35)

In a similar development as Example 12.14 we have

Tm2,n2(2) = �
[
d∗m2

(2)q̃(2)
]
− Eb

2
[
1 + dn2(3)d∗m2

(2)g23 + dm2(2)d∗n2
(3)g32

]
. (12.36)

Due to the Hermitian symmetric and Toeplitz nature G, the four branch metrics for the second update
are

T0,0(2) = � [q̃(2)] − Eb

2
[1 + g21 + g12] = −0.44995

T1,0(2) = � [−q̃(2)] − Eb

2
[1 − g21 − g12] = −0.55005

T0,1(2) = � [q̃(2)] − Eb

2
[1 − g21 − g12] = 0.04995

T1,1(2) = � [−q̃(2)] − Eb

2
[1 + g21 + g12] = −1.04995.

Adding these updates to the partial metrics saved from the previous stages provides new total partial
metrics for stage two, i.e.,

T
(+)
0,0 (2) = T0,0(2) + T̃0(1) = 0.3001

T
(+)
1,0 (2) = T1,0(2) + T̃1(1) = 0.6999

T
(+)
0,1 (2) = T0,1(2) + T̃0(1) = 0.8

T
(+)
1,1 (2) = T1,1(2) + T̃1(1) = 0.2.

We now have four partial metrics corresponding to the most likely data sequences. All values of I(2)
and I(3) are considered and conditional decisions have been made on I(1) in computing these partial
metrics. Note the algorithm has effectively returned to the same situation as was reached in (12.25).

12.2.4 Survivor Selection – General

It is again possible to prune the number of paths considered after the forward step. The forward
step now has created 2Nu+1 metrics corresponding to the branches in the tree, [I(2) I(3) . . . I(2 + Nu)]
([I(k) I(k + 1) . . . I(k + Nu)] for general k) and past conditional decisions associated with each of those
branches. It is possible to prune back to 2Nu branches that could possibly become the ML demodulated
sequence by again realizing that [0 I(3) . . . I(Nu + 2)] and [1 I(3) . . . I(Nu + 2)] have a common future
and values of T

(−)
n (2). The partial accumulated metric for n2 becomes

T̃n2(2) = max
m2=0,1

(
Tm2,n2(2) + T̃m2,ñ1(1)

)
= max

(
T

(+)
0,n2

(2), T (+)
1,n2

(2)
)

. (12.37)

c©1996-2004 - Michael P. Fitz - The University of California Los Angeles



1 Kb

Kb

1

2

2

298 Frequency Selectivity and Stream Modulations

Figure 12.12: The form of G at k = 2 where the cross–hatched shaded elements of G are in T̃n1 and
the checkerboard shaded elements are in Tm2,n(2)(2) and the dark shaded elements of G are in T

(−)
n (2).

For instance, when Nu = 2,

T̃0(2) = max
(
T0,0(2) + T̃0(1), T1,0(2) + T̃1(1)

)
. (12.38)

Similarly the conditional decisions can be made on the second bit by defining

În2(2) = arg max
m2=0,1

Tm2,n2(2) + T̃m2,ñ1(1) (12.39)

so that �̂In2(2) = [ÎÎn2 (2),ñ1
(1) În2(2)]. This selection corresponds to picking the largest partial ML

metric conditioned on the last Kb − 2 bits of the transmitted word. The accumulated two conditionally
decoded bits are the ones that won in both the first and second stage of the survivor selection. This
“surviving” metric and path that achieves this metric are consequently saved for further processing.
This completes the survivor selection and the recursion of the Ungerboeck MLWD.

Example 12.9: For Example 12.3, the second survivor selection stage is detailed in this example. Pro-
ceeding as in the first survivor selection stage, the surviving two metrics are

T̃0(2) = max
{

T
(+)
0,0 (2), T (+)

1,0 (2)
}

= 0.6999 T̃1(2) = max
{

T
(+)
0,1 (2), T (+)

1,1 (2)
}

= 0.8. (12.40)

The surviving two sequences are

�̂I0 = [0 1] �̂I1 = [0 0] (12.41)

Note in this step the two surviving sequences are different. A graphic that represents the binary tree
and the paths searched is given in Fig. 12.13 where the “X” represents the eliminated paths.

It is worth it to detail out the survivor selection algorithm for the case for a general k for clarity of
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Figure 12.13: Step 2 of the Ungerboeck recursion for Nu = 1 and Example 12.13.
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discussion. The partial accumulated metric for n2 becomes

T̃nk
(k) = max

mk=0,1

(
Tmk,nk

(k) + T̃mk,ñk−1
(k − 1)

)
= max

mk=0,1
T (+)

mk,nk
(k) = max

{
T

(+)
0,nk

(k), T (+)
1,nk

(k)
}

.

(12.42)

The conditional decisions can be made on the second bit by defining

Înk
(k) = arg max

mk=0,1
Tmk,nk

(k) + T̃mk,ñk−1)
(k − 1) = arg max

mk=0,1
T (+)

mk,nk
(k) (12.43)

This can be combined with the previous conditional decisions as

�̂Ink
(k) = [�̂I Înk

(k),ñk−1
(k − 1) Înk

(k)] (12.44)

This conditional decision is added to the previous decisions that have provided the largest partial MLWD
metric up until this point in the recursion. Again we now have 2Nu surviving metrics and surviving
sequences that can be passed on to the next stage of the recursive algorithm.

The Ungerboeck MLWD has a recursion that exhibits an “add, compare, select” (ACS) structure.
The add corresponds to the addition of the previous stage surviving partial metrics with the updates
corresponding to the new bit. This “add” stage is detailed in (12.32). The “compare” stage makes the
conditional decision on which partial metric is largest and is detailed in (12.42). The “select” stage is
given in (12.43) and selects and adds to the surviving bit sequence (see (12.44)). This ACS architecture
is very important in digital communications and is often included in digital processors as a fundamental
operation.

Example 12.10: For Example 12.3, the third and final recursion is detailed in this example. The four
branch metrics for the third update are

T0,0(3) = 0.45005 T1,0(3) = −1.45005
T0,1(3) = 0.94995 T1,1(3) = −1.94995

Adding these updates to the partial metrics saved from the previous stages provides new total partial
metrics for stage two, i.e.,

T
(+)
0,0 (3) = T0,0(3) + T̃0(2) = 1.14995

T
(+)
1,0 (3) = T1,0(3) + T̃1(2) = −0.65005

T
(+)
0,1 (3) = T0,1(3) + T̃0(2) = 1.64985

T
(+)
1,1 (3) = T1,1(3) + T̃1(2) = −1.14995.

The survivor selection step results in surviving metrics of

T̃0(3) = 1.14995 T̃1(3) = 1.64985. (12.45)

and surviving sequences of

�̂I0 = [0 1 0] �̂I1 = [0 1 0]. (12.46)
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12.2.5 Termination

After the last forward step (corresponding to k = Kb − Nu) the entire tree has been enumerated and
the remainder of the ML metrics must be computed to find the ML word decision. At this point there
remains 2Nu words that could possibly be the ML decision. For simplicity of notation we enumerate
these 2Nu words with nt and the remaining components of the ML metric that have not been computed
are given as

Tnt(Kb − Nu) =
Kb∑

k=Kb−Nu+1

�
[
d∗nt

(k)Q̃(k)
]
− Eb

2

Kb∑
l1=Kb−Nu+1

Kb∑
l2=Kb−Nu+1

dnt(l1)d
∗
nt

(l2)gl1,l2 . (12.47)

The values of Tnt(Kb − Nu) should be computed and added to T̃nt to get the ML metric for each of
the remaining sequences. Identifying the word corresponding to the maximum ML metric is the most
likely transmitted word. It should be noted that the termination computations can be accomplished
in a more efficient manner than the enumeration discussed here. The termination can be accomplished
in Nu stages that eliminates half of the words at each stage. This will be investigated in the homework.

Example 12.11: For Example 12.3, the termination is detailed in this example. Since Nu = 1 the only
term left in the ML metric computation is

Tm4(4) = � [dm4q(4)] − Eb

2
(12.48)

and this becomes the final branch metric. At this point there are only two word left that could be the
ML word, [0 1 0 0] and [0 1 0 1]. The final ML metrics for these two words are

T[0 1 0 0] = T̃0(3) + T0(4) = 1.14995 − 1.4 = −0.025005

T[0 1 0 1] = T̃1(3) + T1(4) = 1.64985 + 0.4 = 2.04985. (12.49)

Consequently the ML word decision is

�̂I = [0 1 0 1]. (12.50)

There were four steps in the MLWD algorithm, one for each of the Kb bits. Each step added a matched
filter output. The energy correction term has 10 components in the summation as represented by the
shaded regions in Fig. 12.14. Each step adds the terms as numbered in Fig. 12.14. A graphic that
represents the binary tree and the paths searched is given in Fig. 12.15 where the “X” represents the
eliminated paths.

12.2.6 Ungerboeck MLWD Summary

The MLWD algorithm for binary linear stream modulations in a frequency selective channel has a
computationally efficient implementation. In computing the ML metric contributions at time k, a
forward step is performed where 2Nu+1 paths in the tree defining the data word will be enumerated
and a partial ML metric will be computed for each path. The complexity of this forward step is
O(Nu2Nu+1). After forming these partial ML metrics, conditional decisions can be made on the oldest
bit of the bits considered. This conditional decision reduces the number of possible words that can be
the ML word back to 2Nu . This process of a forward step and a survivor selection continues until Nu

symbols before the end of the frame where a termination process is initiated to find the ML word. The
overall complexity of this algorithm is O(KbNu2Nu+1) and when Kb � Nu this has the desired form
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Figure 12.14: A graphic representing the energy correction term.

Figure 12.15: The full Ungerboeck computation for Nu = 1 and Example 12.13.
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of having a complexity that is linear in the number of bit to be transmitted. The ACS structure of
the Ungerboeck MLWD for stream modulations in frequency selective channels is important enough to
have been implemented as a fundamental operation in digital processors.

12.2.7 MLWD Performance

The performance of a MLWD for stream modulation can again be assessed by looking at the union
bound. This union bound is a function of the Euclidean distance spectrum. Due to the form of G
there is significant structure and symmetry in the Euclidean distance spectrum that can be exploited
in the distance computation. This chapter will not detail out the performance of MLWD for stream
modulations as the following chapter will provide a more unified treatment of MLWD for a wider variety
of situations and the performance will be explored using this more unified treatment.

12.3 Equalization

In practice there is often a desire to reduce the complexity of demodulation in frequency selective
channels. Recall optimum demodulation for a binary stream modulation has a complexity that is
O

(
Kb2Nu+1

)
. If the effective channel length is long, i.e., Nu � 1, then often complexity become pro-

hibitive for low cost applications. Alternatively, if an M -ary modulation is employed on a frequency
selective channel then the complexity becomes O

(
KbM

Nu+1
)
. Consequently bandwidth efficient com-

munication on frequency selective channels often has an optimum demodulator with a very high com-
plexity. The engineering tradeoffs in cost often require sub-optimum solutions to be explored. In this
section we will explore alternatives that have seen utility in practice for linear stream modulations. The
architectures that are discussed here are directly analogous to the demodulator architectures that have
been explored for OCDM on frequency selective channels as highlighted in Section 11.3.2.

Since in stream modulations the bit index is equivalent to a time index, it is useful to think about
the processing as filtering operations. Recall the matched filter output is given as

Q̃(k) =
Kb∑
l=1

Dz(l)Vũ((k − l)T ) + Ñ(k)

= Eb

Kb∑
l=1

Dz(l)g(k − l) + Ñ(k) = Eb

Nu∑
l=−Nu

Dz(k − l)g(l) + Ñ(k) (12.51)

where

Ñ(k) =
∫ Tp+Th

0
Wz(t)ũ∗(t − (k − 1)T )dt (12.52)

and g(l) corresponds to elements of each row of the G matrix l positions from the diagonal. It is worth
noting that given the formulation in this chapter that g(l) = Vũ(lT )/Vũ(0) is the normalized autocor-
relation function of the effective pulse shape so that g(0) = 1. Consequently by examining (12.51)
it is apparent that Q̃(k) can be viewed as being the result of putting a time series Dz(k) through a
known discrete time finite impulse response filter and observing the output in the presence of a col-
ored noise. Denote the impulse response representing this filter as g(k) and the transfer function as
G

(
ej2πf

)
=

∑
k g(k)e−j2πfk. Equalization is typically viewed as a signal processing technique that pro-

vides reliable decisions in the presence of this frequency selective channel. Fig. 12.16 shows the model
for equalization in frequency selective channels.
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Figure 12.16: The discrete time model for stream modulation in a frequency selective channel.

Figure 12.17: Discrete time equivalent channel transfer function.

Example 12.12: Consider the BPSK stream modulation and the channel given in Example 12.1, where
α1 = 0.7 exp [jπ/3] and τ1 = T . The form of the channel given in (12.12) shows that

g(−1) = 0.4999 exp [−jπ/3] g(0) = 1 g(1) = 0.4999 exp [jπ/3] . (12.53)

Consequently

G
(
ej2πf

)
= 0.4999 exp [j(2πf − π/3)] + 1 + 0.4999 exp [−j(2πf − π/3)] (12.54)

= 0.51 (1 + 0.9802 exp [j(2πf − π/3)]) (1 + 0.9802 exp [−j(2πf − π/3)]) .

The magnitude of the discrete time equivalent channel for the two channels plotted in Fig. 11.2 is
plotted in Fig. 12.17 (channel 1 is α1 = 0.3 exp [j2π/3] and τ1 = T and channel 2 is α1 = 0.7 exp [jπ/3]
and τ1 = T ). One of the discrete time channels shown in Fig. 12.17 has a deep notch in the frequency
domain while the other is less frequency selective.
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Figure 12.18: The linear equalizer for stream modulation.

12.3.1 Zero Forcing Equalizer

The first equalizers that were proposed were linear equalizers (discrete time linear filters) operating on
the matched filter outputs. The form of the linear equalizer is shown in Fig. 12.18. A linear equalizer’s
transfer function will be denoted with W

(
ej2πf

)
. The obvious first choice in equalizers would be one

that restores Nyquist criterion for zero ISI [Luc65] i.e.,

W
(
ej2πf

)
=

1
G (ej2πf )

. (12.55)

This equalizer is usually denoted the zero forcing (ZF) equalizer as it forces the intersymbol interference
to zero. Since G

(
ej2πf

)
is finite impulse response the ZF solution, W

(
ej2πf

)
, is an infinite impulse

response filter but the impulse response decays at an exponential rate. Consequently the ZF equalizer
can be well approximated with an finite impulse response. The traditional rule of thumb is that the
linear zero forcing equalizer should be 3-5 times the length of the intersymbol interference, Nu. This
implies that if Kb � Nu then the complexity of the linear equalizer is O (Kb) as desired.

This equalizer for stream modulation is directly analogous to the decorrelating detector introduce
in Section 11.3.2. Envision Kb large, with k selected in the middle of the transmitted frame. Since for
stream modulation each row of the G matrix is a shifted version of g(l) or the impulse response of the
equivalent filter for the stream modulation, the inverse filter impulse response corresponds to the values
in kth column of G−1. Again the utility of stream modulation is that symbols are modulated in time
and hence the processing of the linear filter can use the same filter in a recursive fashion.

The resultant output of the zero forcing equalizer is

D̂(k) = EbDz(k) + Nzf (k). (12.56)

Consequently the final step in the demodulation is to compute a threshold test on the output of the
equalizer, i.e.,

�
[
D̂(k)

] Î(k)=0
>
<

Î(k)=1

0. (12.57)

Given this threshold test, the performance of the zero forcing equalizer for BPSK is trivially given as

PB(E) =
1
2
erfc

 Eb√
2σ2

zf

 (12.58)

where 2σ2
zf = var (Nzf (k)). Defining the power spectrum of a stationary time series as SN

(
ej2πf

)
=∑

l RN (k)e−j2πfk where RN (k) = E [N(m)N∗(m − k)] [OW97] and using traditional linear systems
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theory we have

var (Nzf (k)) =
∫ 0.5

−0.5
SNzf

(
ej2πf

)
df =

∫ 0.5

−0.5
SÑ

(
ej2πf

) ∣∣∣W (
ej2πf

)∣∣∣2 df. (12.59)

Noting that SÑ

(
ej2πf

)
= N0EbG

(
ej2πf

)
(see Problem 12.2) gives

var (Nzf (k)) = N0Eb

∫ 0.5

−0.5
W ∗

(
ej2πf

)
df = N0Ebw(0). (12.60)

Consequently

PB(E) =
1
2
erfc

(√
Eb

N0w(0)

)
(12.61)

Since w(0) ≥ 1 (see Problem 12.12) the performance of a zero forcing equalizer in a frequency selective
channel is always degraded compared to optimum matched filter demodulation in the frequency flat
channel. Any channel with a deep spectral null in G

(
ej2πf

)
will produce w(0) � 1 and a performance

significantly degraded compared to the frequency flat case.

Example 12.13: Consider the discrete time channel given in Example 12.12, where α1 = 0.7 exp [jπ/3]
and τ1 = T . The zero-forcing equalizer has the form

W
(
ej2πf

)
=

1
G (ej2πf )

=
1

0.51 (1 + 0.9802 exp [j(2πf − π/3)]) (1 + 0.9802 exp [−j(2πf − π/3)])
. (12.62)

Partial fraction expansion gives

W
(
ej2πf

)
=

49.98
(1 + 0.9802 exp [j(2πf − π/3)])

− 49.98 × 0.9802 exp [−j(2πf − π/3)]
(1 + 0.9802 exp [−j(2πf − π/3)])

. (12.63)

Recall that

1
1 − x

=
∞∑
l=0

xl (12.64)

so that

W
(
ej2πf

)
= 49.98

∞∑
l=0

(−0.9802 exp [j(2πf − π/3)])l + 49.98
∞∑
l=1

(−0.9802 exp [−j(2πf − π/3)])l .

The loss in performance due to noise enhancement in this example is almost 17dB due to the deep
spectral null in the discrete time equivalent channel. The magnitude of the zero forcing equalizer
for the discrete time equivalent channels plotted in Fig. 12.17 are plotted in Fig. 12.19 (channel 1 is
α1 = 0.3 exp [j2π/3] and τ1 = T and channel 2 is α1 = 0.7 exp [jπ/3] and τ1 = T ). The channel inversion
characteristic of the zero forcing equalizer is quite obvious from Fig. 12.19.

In conclusion, the concept of the ZF equalizer is simple as a linear filter is used to restore the orthogo-
nality of the modulation and remove completely ISI. The demodulation complexity with a ZF equalizer
is O(Kb) and the demodulator does not need to know the SNR to be implemented. Two negative as-
pects to the implementation are that theoretically the ZF equalizer is an infinite impulse response filter
and that if a deep null exists in the equivalent filter spectrum then a significant noise enhancement will
occur by restoring the orthogonality condition.
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a) Channel 1 b) Channel 2

Figure 12.19: The zero forcing equalizer transfer function.

12.3.2 Linear MMSE Equalizer

As with the OCDM demodulators introduced in Section 11.3.2, a linear MMSE equalizer can be proposed
as an alternative to the ZF equalizer. The MMSE equalizer has the same structure as the zero forcing
equalizer and will produce better performance. The problem can be reformulated to minimize the
combined effects of residual ISI and the filtered noise. Defining the estimation error as

E(k) = EbDz(k) − D̂(k) (12.65)

then the goal is to find the filter, W
(
ej2πf

)
such that D̂(k) = Eb

∑
l w(l)Q̃(k − l) and that E

[
|E(k)|2

]
is minimized. A brief review of MMSE estimation and filtering is given in Appendix B. The linear
MMSE filter is

W
(
ej2πf

)
= Eb

SDQ̃

(
ej2πf

)
SQ̃ (ej2πf )

. (12.66)

To get a more intuitive solution we again model the data symbols as a zero mean, unit variance white
time series that is independent of the noise. This model for the data symbols and noise produces

RDQ̃(m) = E
[
Dz(k)Q̃∗(k − m)

]
= Ebg

∗(−m) = Ebg(m) (12.67)

and

RQ̃(m) = E
[
Q̃(k)Q̃∗(k − m)

]
= E2

b

∑
l

g(l)g∗(l − m) + RÑ (m)

= E2
b

∑
l

g(l)g∗(l − m) + N0Ebg(m). (12.68)

Taking the Fourier transform and noting that G
(
ej2πf

)
is real gives

SDQ̃

(
ej2πf

)
= EbG

(
ej2πf

)
SQ̃

(
ej2πf

)
= E2

b G2
(
ej2πf

)
+ N0EbG

(
ej2πf

)
(12.69)

which results in the MMSE linear equalizer having the form

W
(
ej2πf

)
=

Eb

EbG (ej2πf ) + N0
(12.70)
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It should be noted that as N0 → 0 then the MMSE linear equalizer converges to the zero forcing
equalizer, i.e.,

W
(
ej2πf

)
→ 1

G (ej2πf )
. (12.71)

The performance analysis with the MMSE linear equalizer is not as simple as the zero forcing
equalizer. The output of the MMSE equalizer has the form

D̂(k) = Eb

∑
g̃(l)Dz(k − l) + NME(k) (12.72)

where g̃ is due to the convolution of g(l) with w(l). Consequently the performance analysis must take
into account the ISI and the Gaussian noise. Characterizing the noise is much like was done in the zero
forcing algorithm, while characterizing the ISI is in general tedious. An MMSE linear equalizer provides
better performance than the zero forcing equalizer but a deep spectral null in G

(
ej2πf

)
will still result

in significant degradation. A disadvantage of the MMSE linear equalizer compared to the ZF equalizer
is that the SNR must be known to compute the MMSE equalizer filter taps.

Example 12.14: Consider again the channel given in Example 12.12, where α1 = 0.7 exp [jπ/3] and
τ1 = T . The MMSE equalizer has the form

W
(
ej2πf

)
=

1
G (ej2πf ) + N0

Eb

(12.73)

=
1

0.51 (1 + 0.9802 exp [j(2πf − π/3)]) (1 + 0.9802 exp [−j(2πf − π/3)]) + N0
Eb

.

For example for Eb/N0 = 10dB the resultant filter is given as

W
(
ej2πf

)
=

2.18
(1 + 0.6414 exp [j(2πf − π/3)])

− 2.18 × 0.6414 exp [−j(2πf − π/3)]
(1 + 0.6414 exp [−j(2πf − π/3)])

. (12.74)

Recalling again that

1
1 − x

=
∞∑
l=0

xl (12.75)

gives

W
(
ej2πf

)
= 2.18

∞∑
l=0

(−0.6414 exp [j(2πf − π/3)])l + 2.18
∞∑
l=1

(−0.6414 exp [−j(2πf − π/3)])l .

It should be noted that since this filter is not trying to perfectly cancel all the ISI so the output of
the equalizer will still have ISI that will corrupt the decision but the noise power will be less than the
zero forcing equalizer output. The magnitude response of the MMSE equalizer for the discrete time
equivalent channels plotted in Fig. 12.17 are plotted in Fig. 12.20 (channel 1 is α1 = 0.3 exp [j2π/3] and
τ1 = T and channel 2 is α1 = 0.7 exp [jπ/3] and τ1 = T ). The tradeoff between channel inversion and
noise suppression of the MMSE equalizer is quite obvious from Fig. 12.20 as the gain at the frequencies
where the channel has nulls is less pronounced than with the the zero forcing equalizer.
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a) Channel 1 b) Channel 2

Figure 12.20: The MMSE equalizer transfer function. Eb/N0 = 10 dB.

12.3.3 Decision Feedback Equalizer

The goal of this section is to present an analogous filtering structure for stream modulations in a
frequency selective channel as the SIC for OCDM. It is desired to find a time recursive processor
that consists of a linear filter with a decision directed interference removal and data reduction. The
structure is denoted a decision feedback equalizer (DFE) [Aus67]. Since the goal in reduced complexity
demodulation of stream modulations is to identify a time recursive demodulator, the linear filter should
be targeted at detecting the earliest undemodulated bit. Detection and filtering of a time series by
observations associated with the future of the observation process is known as anti-causal filtering
or detection. For the discussion in this text we will concentrate on anti-causal MMSE filtering (see
Appendix B) but a similar zero forcing like demodulator is possible.

The anti-causal MMSE filtering discussed here is a method to demodulate Dz(k) based on the
observations Q̃(k + l), l ≥ 0 assuming that Dz(i), i < k is perfectly known. The detection process in a
DFE will start with k = 1 with no known symbols and recursively work through each k ∈ {1, . . . , Kb}
with progressively more known symbols. For the sake of simplifying the notation let’s denote the future
observations with Q̃(k + l) = Q̄(l), l ≥ 0 and l indicates how far the observation is in the future. Note
since Q̃(k) is a stationary random process the second order moments of Q̃ and Q̄ will be identical. As
shown in Appendix B the anti-causal linear filter that minimizes the mean square error has the form

WA

(
ej2πf

)
= W1

(
ej2πf

) [
W2

(
ej2πf

)]
−

(12.76)

where W1

(
ej2πf

)
is an anti-causal whitening filter and

[
W2

(
ej2πf

)]
− is the remainder of the optimum

unconstrained MMSE linear filter that is truncated to be anti-causal. Recall that using the idea of a
spectral factorization gives the anti-causal whitening filter as

W1

(
ej2πf

)
=

1
√

γq̃F
−
Q̃

(ej2πf )
(12.77)

where is the anti-causal filter F−
Q̃

(
ej2πf

)
obtained in the spectral factorization. Recall (see (12.69)) that

the power spectrum that needs to be factored is given as

SQ̃

(
ej2πf

)
= E2

b G2
(
ej2πf

)
+ N0EbG

(
ej2πf

)
= EbG

(
ej2πf

) (
EbG

(
ej2πf

)
+ N0

)
(12.78)
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Note that both S1

(
ej2πf

)
= EbG

(
ej2πf

)
and S2

(
ej2πf

)
= EbG

(
ej2πf

)
+ N0 are valid power spectra3.

Consequently S1

(
ej2πf

)
and S2

(
ej2πf

)
each have a spectral factorization so that

SQ̃

(
ej2πf

)
= γ1F

−
1

(
ej2πf

)
F+

1

(
ej2πf

)
γ2F

−
2

(
ej2πf

)
F+

2

(
ej2πf

)
(12.79)

Using (12.79) it is apparent that

W1

(
ej2πf

)
=

1
√

γ1F
−
1 (ej2πf )

√
γ2F

−
2 (ej2πf )

. (12.80)

Here we see that the whitening filter is a product of two whitening filters for two different power spectra.
The second filter abstraction in the MMSE anti-causal linear filter has a similar simple form. Recall

from Appendix B that

W2

(
ej2πf

)
=

EbSDQ̃

(
ej2πf

)
√

γq̃F
+
Q̃

(ej2πf )
=

EbSDQ̃

(
ej2πf

)
√

γ1F
+
1 (ej2πf )

√
γ2F

+
2 (ej2πf )

(12.81)

Using (12.69), (12.81) can be re-expressed as

W2

(
ej2πf

)
=

E2
b G

(
ej2πf

)
√

γq̃F
+
Q̃

(ej2πf )
=

Ebγ1F
−
1

(
ej2πf

)
F+

1

(
ej2πf

)
√

γ1F
+
1 (ej2πf )

√
γ2F

+
2 (ej2πf )

=
√

γ1F
−
1

(
ej2πf

)
√

γ2F
+
2 (ej2πf )

(12.82)

Since
(
F+

2

(
ej2πf

))−1 is also a causal monic filter, the truncated anti-causal filter reduces to

[
W2

(
ej2πf

)]
−

=
Eb

√
γ1F

−
1

(
ej2πf

)
√

γ2
. (12.83)

Consequently after a significant manipulation the optimum linear anti-causal filter has a fairly simple
solution. Combining (12.80) and (12.83) in (12.76) gives

WA

(
ej2πf

)
=

Eb

γ2F
−
2 (ej2πf )

. (12.84)

This simple solution produces a linear filter that can be identified based on spectral factorization of
S2

(
ej2πf

)
= EbG

(
ej2πf

)
+N0. The output of this linear filter is input into a decision device to produce

a decision, i.e.,

�
[
D̂(k)

] Î(k)=0
>
<

Î(k)=1

0. (12.85)

After obtaining this decision, the value of Q̃(k) can be discarded and this decision can be remodulated
and subtracted from all future observations

Q̄(1)(l) = Q̄(l + 1) − a
(
Î(k)

)
g(l + 1) 0 ≤ Nu − 1. (12.86)

Q̄(1)(l) = Q̄(l + 1) Nu ≤ l ≤ Kb − k (12.87)

The important thing to note is that Q̄(1)(l) and Q̄(l) have the exact same mathematical models hence
a recursion for a DFE has been achieved.

3Recall that Ebg(l) = Vũ(lT ).
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Î k( )

g( )1g Nl( )

Q N Q k Nl l−( ) = +( )1 �

Q Nl −( )2 Q 1( ) Q 0( )

12.3 Equalization 311

Figure 12.21: A block diagram of the DFE where interference is removed prior to the linear filter. The
filter is initialized with Q̄(l − 1) = Q̃(l) for l ∈ {1, . . . , Nl}

Example 12.15: Consider again the channel given in Example 12.12, where α1 = 0.7 exp [jπ/3] and
τ1 = T . The signal plus noise spectrum, S2

(
ej2πf

)
, is given as

S2

(
ej2πf

)
= EbG

(
ej2πf

)
+ N0 (12.88)

= γ2F
−
2

(
ej2πf

)
F+

2

(
ej2πf

)
= Ebγm (1 + α∗

m exp [j2πf ]) (1 + αm exp [−j2πf ]) .

It should be noted here that this channel only has one symbol worth of ISI. The feedforward anti-causal
linear filter in this case in this channel is given as

WA

(
ej2πf

)
=

1
γm (1 + α∗

m exp [j2πf ])
. (12.89)

For Eb/N0 = 10dB this gives

WA

(
ej2πf

)
= 1.28

∞∑
i=0

(−0.6414 exp [j(2πf − π/3)])i . (12.90)

The magnitude responses of the anti-causal MMSE equalizer for the discrete time equivalent channels
plotted in Fig. 12.17 are plotted in Fig. 12.22 (channel 1 is α1 = 0.3 exp [j2π/3] and τ1 = T and channel
2 is α1 = 0.7 exp [jπ/3] and τ1 = T ). This impulse response implies the estimator has the form

D̂(k) = 1.28Q̄(0) − 0.821 exp [−jπ/3)] Q̄(1) + 0.5266 exp [−j2π/3)] Q̄(2) + . . . (12.91)

For the first symbol this filter output is characterized by

D̂(1) = 1.28Q̃(1) − 0.821 exp [−jπ/3)] Q̃(2) + 0.5266 exp [−j2π/3)] Q̃(3) + . . .

The decision are produced by a threshold test on �
[
D̂(k)

]
. Because of only one symbol of ISI, the

interference subtraction takes the form

Q̄(1)(0) = Q̄(1) − a
(
Î(k)

)
g(1) = Q̃(k + 1) − a

(
Î(k)

)
g(1) (12.92)

Q̄(1)(l) = Q̄(l + 1) = Q̃(k + l + 1) l ≥ 1. (12.93)
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a) Channel 1 b) Channel 2

Figure 12.22: The anti-causal MMSE equalizer transfer function.

While the discussion here was formulated assuming that all future observations can be used in the
MMSE linear filter, usually in practice a finite length filter is implemented. Denoting this filter length as
Nl a block diagram of the DFE is shown in Fig. 12.21. Note that often Nl > Nu so that the interference
cancellation that has to be implemented does not need to extend back to the beginning of the anti-causal
filter. The DFE often provides significant performance improvement compared to a linear equalizer and
that is because the decision feedback has removed all the causal ISI from the observations. Again it
should be noted that this development assumed that all previous decisions are correct. This is not
true in practice and the bit error probability performance of a DFE can be seriously degraded due to
erroneous decisions being fedback.

The complexity of the DFE is O ((Nl + Nu)Kb). The anti-causal filter has a complexity of O (Nl).
In practice the feedforward filter is typically chosen such that Nl < 10Nu where the exact value of Nu is
chosen based on the kinds of channels that will be experienced in the application. The decision feedback
(interference removal) has a complexity of O (Nu). Each of these operations has to be done for each
decoded bit resulting in the complexity being O ((Nl + Nu)Kb). Again if Kb � Nu then the complexity
of the DFE is O (Kb) as desired.

A traditional method of implementing the DFE is not as shown in Fig. 12.21. This traditional
method [Pro89] of implementing the DFE subtracts the ISI due to the demodulated bits at the output
of the linear filter (as opposed to before the linear filter in Fig. 12.21). The block diagram of the
traditional implementation of the DFE is shown in Fig. 12.23. The feedback filter should be such that
the causal part of

EbG
(
ej2πf

)
WA

(
ej2πf

)
=

γ1F
−
1

(
ej2πf

)
F+

1

(
ej2πf

)
γ2F

−
2 (ej2πf )

(12.94)

is cancelled. Using S2

(
ej2πf

)
= S1

(
ej2πf

)
+ N0 gives

EbG
(
ej2πf

)
WA

(
ej2πf

)
=

γ2F
−
2

(
ej2πf

)
F+

2

(
ej2πf

)
γ2F

−
2 (ej2πf )

− N0

γ2F
−
2 (ej2πf )

= F+
2

(
ej2πf

)
− N0

γ2F
−
2 (ej2πf )

. (12.95)

It is clear in examining (12.95) that all the effects of the past bits can be removed by setting

B
(
ej2πf

)
= F+

2

(
ej2πf

)
− 1. (12.96)
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Figure 12.23: A block diagram of the DFE where interference is removed after the linear filter.

Modulation Type
OCDM OFDM Stream

Optimum Demodulation O
(
2Kb

)
O

(
2Kb

)
O

(
KbNu2Nu+1

)
Suboptimal Demodulation O

(
K2

b

)
O (Kb) O (KbNu)

Table 12.1: A complexity comparison of the various orthogonal modulations on frequency selective
fading channels.

The two implementations given in Fig. 12.21 and Fig. 12.23 have the same complexity and give the
same outputs. This text has highlighted the form of the DFE given in Fig. 12.21 as it is more consistent
with the SIC that was introduced for OCDM in a frequency selective channel. In addition the form of
the equalizer in Fig. 12.21 has some advantages when the impulse response of the channel is sparse and
this sparseness is used to achieve complexity reduction [FGF99].

12.4 Conclusion

This chapter examined stream modulations in frequency selective channels. It is shown that the op-
timum demodulator, as proposed by Ungerboeck, can be reformulated in a recursive processor that
has a complexity of O

(
KbNu2Nu+1

)
. This complexity is so still too large for implementation so the

suboptimum demodulators for OCDM were re-interpreted as time recursive processors and filters for
stream modulations. These suboptimum demodulators have a complexity O (KbNu). The complexity
options available with the variety of orthogonal modulations is summarized in Table 12.1.

12.5 Homework Problems

Problem 12.1. For a binary stream modulation on a frequency selective channel assume that the
effective pulse shape is characterized with

Vũ(nT ) =


Eb n = 0
0.5Eb n = ±1
0 elsewhere.

(12.97)

Assume the corrupting noise is an AWGN with a one-sided spectral density of N0. A MLWD is used to
demodulate the data.
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I(l) = nl T̃nl
(l) �̂Inl

(l)
0 5 �I1

1 2 �I2

Table 12.2: The Ungerboeck algorithm metrics at time l.

a) Give the MLWD in it’s most general form for stream modulation.

b) The Ungerboeck implementation of the MLWD is a function of a parameter Nu. What is Nu in
this case?

c) At a particular point in time, 2 ≤ l ≤ Kb − 1, the Ungerboeck equalizer for this channel has
a demodulation state characterized as in Table 12.2. Assume Eb = 1 and Q̃(l + 1) = 0.3 find

T̃nl+1
(l + 1) and �̂Inl+1

(l + 1)

Problem 12.2. Consider stream modulation on a frequency selective channel. Prove that since effective
pulse shaped matched filter has the form Q̃(k) = S̃(k)+ Ñ(k) where S̃(k) is due to the filtering of Rz(t)
and Ñ(k) is due to the filtering of W (t), then

RÑ (m) = E
[
Ñ(k)Ñ∗(k − m)

]
= N0Vũ(mT ) = N0g(m) (12.98)

and that

SÑ

(
ej2πf

)
= N0G

(
ej2πf

)
(12.99)

Problem 12.3. Consider BPSK stream modulation on a frequency selective channel with the following
channel

Vũ(nT ) = 1 n = 0
= 0.4 n ± 1
= 0. elsewhere. (12.100)

with BPSK modulation.

a) Consider Kb = 4 and find G.

b) When �̃qI = [q̃I(1) · · · q̃I(4)] = [0.9 − 0.3 1.1 1.2] find Î(k), k ∈ {1, . . . , 4} using Ungerboeck’s
MLWD. Clearly delineate each step in the recursion and the resulting partial ML metrics and
surviving sequences computed and saved. Note since the modulation is only on the I-channel the
quadrature component of the matched filter output does not effect the decision.

Problem 12.4. Consider BPSK stream modulation on a frequency selective channel with the following
channel

Vũ(nT ) = 1 n = 0
= 0.4 n ± 1
= 0. elsewhere. (12.101)

with BPSK modulation.

a) Assume Kb is large and compute the zero forcing equalizer solution, W
(
ej2πf

)
and w(k).
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b) Assume Kb is large and compute the resulting bit error probability when using the zero forcing
equalizer.

c) Consider Kb = 4 and find G.

d) When �̃qI = [q̃I(1) · · · q̃I(4)] = [0.9 − 0.3 1.1 1.2] find D̂z(k), k ∈ {1, . . . , 4} using a zero forcing
or decorrelating linear demodulator. Note since the modulation is only on the I-channel the
quadrature component of the matched filter output does not effect the decision.

e) When Kb = 21 show that the middle row of G−1 approximates w(k).

Problem 12.5. Consider BPSK stream modulation on a frequency selective channel with the following
channel

Vũ(nT ) = 1 n = 0
= 0.4 n ± 1
= 0. elsewhere. (12.102)

with BPSK modulation. Assume that Eb/N0 = 10dB.

a) Assume Kb is large and compute the MMSE equalizer solution, W
(
ej2πf

)
and w(k).

b) Consider Kb = 4 and find G and the MMSE linear detector.

c) When �̃qI = [q̃I(1) · · · q̃I(4)] = [0.9 − 0.3 1.1 1.2] find D̂z(k), k ∈ {1, . . . , 4} using a MMSE linear
demodulator. Note since the modulation is only on the I-channel the quadrature component of
the matched filter output does not effect the decision.

d) When Kb = 21 show that the middle row of the MMSE equalizer approximates w(k).

Problem 12.6. Consider BPSK stream modulation on a frequency selective channel with the following
channel

Vũ(nT ) = 1 n = 0
= 0.4 n ± 1
= 0. elsewhere. (12.103)

with BPSK modulation. Assume that Eb/N0 = 10dB.

a) Assume Kb is large and compute the anti-causal MMSE equalizer solution, W
(
ej2πf

)
and w(k).

b) Consider Kb = 4 and find G and the MMSE linear detector.

c) When �̃qI = [q̃I(1) · · · q̃I(4)] = [0.9 − 0.3 1.1 1.2] find D̂z(k), k ∈ {1, . . . , 4} using a MMSE linear
demodulator. Note since the modulation is only on the I-channel the quadrature component of
the matched filter output does not effect the decision.

d) When Kb = 21 show that the first row of the MMSE equalizer approximates w(k).

Problem 12.7. Recall that

w(0) =
∫ 0.5

−0.5

1
G (ej2πf )

df (12.104)
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and ∫ 0.5

−0.5
G

(
ej2πf

)
df = 1. (12.105)

Use Schwarz’s inequality to prove that w(0) ≥ 1. This result implies that the ZF equalizer in a frequency
selective channel always has worse performance than what would be achieved in a frequency flat channel.
Problem 12.8. If Q̃(k) = S̃(k) + Ñ(k) where S̃(k) is due to the filtering of the signal, Rz(t) by a filter
matched to ũ(t) and Ñ(k) is due to the filtering of the input noise, Wz(t) by a filter matched to ũ(t)
then show

RÑ (m) = N0Vũ(−mT ) = N0Ebg(−m). (12.106)

Problem 12.9. Recall the channel given in Example 12.1 with α1 = 0.3 exp[j2π/3] and τ1 = 0.25T .
Assume a BPSK stream modulation is being used with

u(t) =


√

1
Tu

0 ≤ t ≤ Tu

0 elsewhere
(12.107)

where Tu = Tp/4 = T . Assume that Eb/N0 = 10dB.

a) Compute the zero forcing linear equalizer impulse response.

b) Compute the MMSE linear equalizer impulse response.

c) Compute the anti-causal linear MMSE equalizer impulse response.

Problem 12.10. For a binary stream modulation on a frequency selective channel, assume that the
effective pulse shape is characterized with

Vũ(nT ) =


Eb n = 0
0.8Eb n = ±1
0.2Eb n = ±2
0 elsewhere.

(12.108)

Assume the corrupting noise is an AWGN with a one-sided spectral density of N0.

a) If Kb = 5 give the form for the matrix G.

b) Give the form for G
(
ej2πf

)
.

c) Assume a MLWD is used to demodulate the data. At a particular point in time, 2 ≤ l ≤ Kb − 1,
the Ungerboeck equalizer for this channel has a demodulation state characterized as in Table 12.3.
Assume Eb = 1 and Q̃(l + 1) = 0.3 find T̃nl+1

(l + 1) and �̂Inl+1
(l + 1)
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I(l) = nl T̃nl
(l) �̂Inl

(l)
0 5 �I1

1 2 �I2

2 1 �I3

3 3 �I4

Table 12.3: The Ungerboeck algorithm metrics at time l.
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Chapter 13

Orthogonal Modulations with Memory

13.1 Canonical Problems

Up to this point in this text we have introduced two general methods to communicate Kb bits on both
frequency flat channels and frequency selective channels.

1. General M -ary modulations

• The advantage of a general M -ary modulation is that it can achieve very good performance
and arbitrary spectral efficiency.

• The disadvantage of a general M -ary modulation is that without more structure the optimal
demodulator has complexity O(2Kb).

2. Orthogonal memoryless modulations (including stream modulations, OFDM, OCDM)

• The advantage of orthogonal modulation is that the optimum demodulator has complexity
O(Kb) and a desired spectral efficiency can be achieved with a proper design of the modulation
signals.

• The disadvantage is that the performance is limited to that achievable with a single symbol
transmission.

• Frequency selective channels cause orthogonality to be lost. A variety of algorithms were in-
troduced to address optimal and sub-optimal demodulation of memoryless orthogonal modu-
lations in frequency selective channels. Performance on frequency selective channels is always
lower bounded by the performance on frequency flat channels.

The goals for the remainder of the text will be to explore the remaining areas of tradeoff in performance,
complexity, and spectral efficiency, i.e.,

• Improving over the performance or spectral characteristics of orthogonal modulations with a goal
of maintaining a demodulation complexity that is O(Kb).

Shannon has given us an upper bound on the performance that can be achieved for a given spectral
efficiency (see Fig. 6.4) and there are a variety of ways to approach that performance with a demodulation
complexity that is O(Kb). The concept of orthogonal modulations with memory are what have allowed
communication theory to approach the bounds provided by Claude Shannon in his ground breaking
work on information theory [Sha48]. This chapter will be a brief introduction into the topic and an
examination of the implications of adding memory to the performance and the spectral characteristics.
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13.2 Orthogonal Modulations with Memory

This section addresses a class of communications problems where a linear orthogonal modulation is
implemented with the modulation symbols having memory. The memory is normally included in the
modulation to either improve the performance or change the spectral characteristics of memoryless linear
orthogonal modulation. This type of modulation is referred to as modulation with memory (MWM)
and incorporates most error control coding schemes [Wic95, LC04, BDMS91]. Our goal in this text
is not to explore how to design these MWM but to understand the communication theory behind the
performance, spectral efficiency, and the demodulation complexity. Design of MWM is often addressed
in a course on error control coding. Suffice it to say here that a MWM adds memory to the modulation
process with a goal of either changing the spectral characteristics of the transmitted signal or improving
the resulting squared Euclidean distance spectrum.

This chapter first considers the special case of an orthogonal modulation with memory (OMWM)
where one bit is sent with each symbol. For simplicity of discussion this section will again assume that
the bits to be transmitted are equally likely and independent. The generalizations for correlated bits
is possible but the added notational complexity is not worth the gain in generality. The resulting data
symbols can then be transmitted using a linear orthogonal modulation. The data modulation symbols,
D̃z(l), are due to the stream of information bits, I(l), l = 1, Kb. The tilde notation will be used to
differentiate between modulations that have memory (tilde) and memoryless modulations (not tilde).
For continuity with the previous discussions on orthogonal modulations this initial discussion considers
exclusively modulations where the transmission bit rate is R = 1 bit per symbol. To keep a consistent

normalization the mapping, D̃z(l) = a (J(l)), is selected such that E

[∣∣∣D̃z(l)
∣∣∣2] = 1. A more general

formulation for linear stream modulations is considered later in this chapter.
A linear orthogonal modulation with memory as considered in this section consists of a finite state

machine operating at the symbol rate where the output of the finite state machine is used as an input
to an Ms-ary linear modulator. Fig. 13.1 shows the block diagram for a linear orthogonal modulation
with memory. At each symbol time a new bit, I(l) is input into the system and this produces a new
constellation label, J(l), and a new modulation state, σ(l + 1). Let Ns denotes the number of states in
the modulation and the nonlinear equations governing the finite state machine are given as

σ(l + 1) = g1 (σ(l), I(l)) (13.1)
J(l) = g2 (σ(l), I(l)) . (13.2)

For notational purposes denote the set of all possible state values as Ωσ. In general it is often desirable
to have νc extra symbols transmitted to return the modulation to a common final state at the end of
the transmission frame. The total length of the frame for the orthogonal modulation is denoted Nf ,
hence, in this case when R = 1 bit/symbol Nf = Kb + νc, where νc is a code dependent constant.
This return to a final common state is most often known as termination in the literature of MWM
[Wic95, LC04, BDMS91]. Note that the effective rate is Reff = Kb

Kb+νc
< 1 but if a large number of bits

are transmitted then the loss in efficiency by including the termination becomes small.
A couple comments about OMWM are appropriate at this point. An OMWM can only provide a

performance improvement or a change in spectral characteristics compared to a memoryless modulation
if there is some redundancy to be exploited. An orthogonal modulation with memory has 2Kb possible
bit sequences as an input. The modulation symbols being mapped onto the orthogonal modulation
have MKb+νc

s possible realizations. Hence if there is to be redundancy that the OMWM can exploit
for large Kb then Ms > 2. The improved performance or spectral efficiency is achieved by picking the
best 2Kb possible transmitted symbol sequences out of the MKb+νc

s total possible transmitted symbol
sequences. Secondly, the more states a OMWM has the more memory it contains. In general, more
memory allows a designer to make better choices in the transmitted symbol sequences but at a cost of a
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Figure 13.1: The block diagram for a modulation with memory with a transmission rate of one bit per
symbol.

higher complexity demodulation. The optimum demodulation structure will be addressed next chapter.
Finally, an OMWM is often represented with a directed graph [Wes01]. The vertices of the directed
graph represent the state of the modulation at a particular time and the edges of the directed graph
represent the allowable transitions between states. In the communications literature the directed graph
is often referred to as a trellis. Because of this trellis representation OMWM are often referred to as
trellis codes. This trellis representation of an OMWM is explored in the example considered in the next
section.

13.2.1 MLWD for Orthogonal Modulations with Memory

Recall OMWM can be characterized with a finite state machine defined with

σ(l + 1) = g1 (σ(l), I(l)) (13.3)
J(l) = g2 (σ(l), I(l)) . (13.4)

The equivalent modulation symbol is D̃z(l) = a (J(l)) with a(•) being the constellation mapping. Here
we examine only the optimum word demodulation (MLWD) but the generalization to other optimum
demodulators are possible, (e.g., MLBD). Other demodulators be explored in the sequel. The optimum
word demodulator is still the MLWD for an orthogonal modulation except now the memory of the
modulation must be accounted for computing the maximum likelihood metric. Due to the orthogonal
modulation the MLWD has

�̂I = arg max
i=0,M−1

Ti

= arg max
i=0,M−1

√
Eb

Nf∑
k=1

�
[
d̃∗i (k)Q(k)

]
− Eb

2

Nf∑
k=1

∣∣∣d̃i(k)
∣∣∣2

= arg min
i=0,M−1

Nf∑
k=1

∣∣∣Q(k) −
√

Ebd̃i(k)
∣∣∣2 (13.5)

where Q(k) is the matched filter ouptut sample for an OMWM. Consequently the MLWD can be thought
of as the possible transmitted modulation symbols (constrained by the modulation with memory) that
is closest in Euclidean distance to the matched filter outputs that are observed (Q(k)) over the entire
frame (k = 1, Nf ). This minimum squared Euclidean distance decoder provides a nice analogy to the
demodulation of memoryless modulations.

c©1996-2004 - Michael P. Fitz - The University of California Los Angeles



322 Orthogonal Modulations with Memory

σ(l + 1) = g1 (I(l), σ(l)) J(l) = g2 (I(l), σ(l)) D̃z(l) = a(J(l))
I(l) I(l) J(l) D̃z(l)

State, σ(l) 0 1 State, σ(l) 0 1 0 −3/
√

5
1 1 2 1 0 2 1 −1/

√
5

2 3 4 2 3 1 2 1/
√

5
3 1 2 3 2 0 3 3/

√
5

4 3 4 4 1 3

Table 13.1: The finite state machine description of an example trellis code.

As with a general M -ary modulation the performance of the MLWD for an OMWM is determined
by the squared Euclidean distance spectrum. Due to the use of an orthogonal modulation the squared
Euclidean distance between any two words is given as

∫ ∞

−∞
|xi(t) − xj(t)|2 dt = Eb

Nf∑
l=1

∣∣∣d̃i(l) − d̃j(l)
∣∣∣2 . (13.6)

Consequently the important characteristics in terms of performance of an OMWM is the squared Eu-
clidean distance between the code sequences.

13.2.2 An Example OMWM Providing Better Performance

Consider a OMWM consisting of a four state trellis code (Ns=4) using 4PAM modulation (Ms=4) as
proposed by Ho, Cavers and Varaldi [HCV93]. It should be noted here that this OMWM is a simple
construction using a general combined modulation and coding technique proposed by Ungerboeck in
[Ung82]. This example OMWM illustrates some important properties that will become apparent in the
sequel. The modulation updates are given in Table 14.4. Here we have Ωσ = {1, 2, 3, 4}. Note that the
modulation is normalized to have an average energy of unity. The trellis for this modulation is shown
in Fig. 14.13. As mentioned before, the vertices of the trellis diagram represents the states at each time
interval (hence for this code there are Ns = 4 vertices at each point in time) and the edges are the
possible transitions (note for instance σ(l) = 1 can only transition to σ(l + 1) = 1 and σ(l + 1) = 2).
There are a total of 2Ns = 8 edges in this example. The edge labels indicate the input that causes
the transition and the modulation symbol that is output for that input and state. For instance, when
σ(l) = 1 and I(l) = 0 the output symbol is D̃z(l) = −3/

√
5. This particular code requires at most

two transitions to allow the modulation to transition from any state to any other state so this code has
νc = 2. For instance, if σ(l) = 2 then to get to σ(l + 2) = 1 one would have to transition to σ(l + 1) = 3
first. Alternatively if σ(l) = 1 then we could immediately transition to σ(l + 1) = 1.

Nf trellis sections can be combined together to get a complete description of an OMWM. For
instance for Kb = 4, Fig. 14.2 shows a trellis description for a modulation that has σ(1) = 1 and
returns to σ(7) = 1. One can verify that there are 2Kb paths through this trellis. To understand the
performance of this particular OMWM all of the 16 × 15/2 = 120 terms in the squared Euclidean
distance spectrum should be computed. Consider two of the paths in the trellis corresponding the
words �I = 0 = [0 0 0 0] and �I = 1 = [1 0 0 0]. These two words will produce modulation sequences of
�̃
d0 = [−3

√
5 − 3

√
5 − 3

√
5 − 3

√
5 − 3

√
5 − 3

√
5] and �̃

d1 = [1
√

5 3
√

5 1
√

5 − 3
√

5 − 3
√

5 − 3
√

5].
This results in a squared Euclidean distance of

∆E(1, 0) = Eu(4
√

5)2 + Eu(6
√

5)2 + Eu(4
√

5)2 = 68Eu/5. (13.7)
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Figure 13.2: The trellis diagram of the Ho, Cavers, and Varaldi trellis code.

Hence at least these two paths produce a squared Euclidean distance better than the best memoryless
modulation of the same rate, i.e., BPSK has ∆E(i, j) = 4Eu. The entire distance spectrum of this
modulation is explored in the homework problems (see Problem 13.1) and the union bound to the
probability of word is plotted in Fig. 13.4.

13.2.3 Discussion

This section introduced one example modulation to transmit one bit of information per orthogonal
dimension. As a final point it is worth comparing the spectral efficiency performance of this example
modulations with the upper bounds provided by information theory (see Section 6.3). As before we
will denote reliable communication as being an error rate of 10−5. This OMWM achieves reliable
communications at Eb/N0=7.8dB. The performance of this modulation versus the Shannon capacity is
plotted in Fig. 13.5 and compared to the best orthogonal memoryless modulation with the same rate
(R = 1). It should be noted that by considering a very simple modulation with memory (4 states)
we have moved over 2dB closer to the achievable reliability predicted by Shannon. Using more states
and a proper design of the modulation can improve the performance further. In fact the performance
can be made arbitrarily close to the Shannon bound by increasing the complexity of the OMWM.
The remaining items to be explored are the spectral characteristics of OMWM, a generalization of
OMWM to an arbitrary rate, and the demodulation algorithm form and complexity. Note if we can
find a demodulator that has a complexity that is O(Kb) then we have succeeded in obtaining the
desired characteristics (i.e., improved performance compared to memoryless orthogonal modulation
while maintaining a complexity O(Kb)). The next chapter will examine the MLWD for an OMWM and
show how to obtain the desired complexity. The remainder of this chapter will show that there is an
equivalence between a memoryless stream modulation on a frequency selective channel and an OMWM,
explore the spectral characteristics of stream modulation and generalize OMWM to an arbitrary rate.
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Figure 13.3: The trellis diagram of the Ho, Cavers Varaldi trellis code. Kb = 4.

Figure 13.4: The union bound of the example OMWM and frame error rate of Kb = 4 memoryless
orthogonally modulated bits using BPSK.
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Figure 13.5: A comparison of performance of the example OMWM and Shannon’s upper bound.

13.3 Spectral Characteristics of Stream OMWM

Orthogonal modulations with memory can both be used to achieve better performance or a modified
transmitted spectrum compared to memoryless modulation. In general it is assumed in communications
engineering that the information bits, I(k), will be an independent (white), identically distributed
sequence. In a stream modulation putting this white sequence into a OMWM will produce a modulation
sequence that has memory. The memory in the modulation will produce a correlated time series
J(l), l = 1, Nc and this correlation will change the average transmitted signal energy spectrum per bit,
Dxz(f). This section will explore this effect and how to characterize the transmitted energy spectrum
from the modulation description.

13.3.1 An Example OMWM with a Modified Spectrum

This section consider an example of Alternate Mark Inversion (AMI) modulation. AMI modulation is an
OMWM that is defined in Table 13.2. AMI codes and related codes are used in many telecommunications
applications (e.g., T1 lines on coaxial cables) for reasons that will be apparent in the sequel. Consider
a transmission with Kb = 4 (Nf = 5). This transmission has a trellis diagram shown in Fig. 13.6. In
examining each of the paths of the trellis it is apparent that

Nf∑
l=1

d̃i(l) = 0. (13.8)

This implies that if AMI modulation is used in a stream modulation then each transmission will not have
a DC offset and that there will be a notch in the spectrum at f = 0. Precisely, if the data bits driving
the trellis modulation are equally likely and independent then spectrum of the stream modulation will
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σ(l + 1) = g1 (I(l), σ(l)) J(l) = g2 (I(l), σ(l)) D̃z(l) = a(J(l))
I(l) I(l) J(l) D̃z(l)

State, σ(l) 0 1 State, σ(l) 0 1 0 −
√

2
1 1 2 1 1 0 1 0
2 1 2 2 2 1 2

√
2

Table 13.2: The finite state machine description of the AMI trellis code.

Figure 13.6: The trellis diagram for AMI with Kb=4.

be

Dxz(f) =
E [GXz(f)]

Kb
(13.9)

=
E

[∣∣∣∑l D̃z(l)U(f) exp[−j2πfT (l − 1)]
∣∣∣2]

Kb
=

∑2Kb−1
i=0

∣∣∣∑l d̃i(l)U(f) exp[−j2πfT (l − 1)]
∣∣∣2

2KbKb
.

For the example of AMI with Kb = 4 and stream modulation with

ur(t) =


√

1
T

0 ≤ t ≤ T

0 elsewhere
(13.10)

the average energy spectrum per bit is plotted in Fig. 13.7. This figure clearly shows the spectrum of an
OMWM can be shaped (compare to Fig. 9.18) and this shaping ability is often why a modulation with
memory is used in practice. The interesting aspect of AMI modulation is that it achieves about the
same performance as BPSK modulation in addition to the spectral shaping characteristics (See Problem
13.14). This combination of spectral shaping without much loss in performance is the reason for AMI’s
adoption in many telecommunication applications.

13.3.2 Spectrum of OMWM for Large Kb

It is often of interest to evaluate the spectrum resulting from an OMWM in a stream modulation from
a long frame of data (Kb large). It should be noted that the complexity of evaluating the average in
(13.11) grows proportional to 2Kb . Clearly for large frames this computation is increasingly impractical.
Since there is a regular trellis structure to the modulation this can be exploited to compute the desired
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Figure 13.7: The spectrum of AMI used in a stream modulation with rectangular pulses. Kb = 4.

average energy spectrum per bit. To understand this structure we first expand

KbDxz(f) = E

∣∣∣∣∣∣
Nf∑
l=1

D̃z(l)U(f) exp[−j2πfT (l − 1)]

∣∣∣∣∣∣
2

= Eb |U(f)|2
Nf∑

l1=1

Nf∑
l2=1

E
[
D̃z(l1)D̃∗

z(l2)
]
exp [−j2πf(l1 − l2)T ] . (13.11)

Since the trellis is the same every symbol in the frame and we assume the information bits are a white
sequence, it is reasonable to assume that D̃z(l) is a stationary process. Since an OMWM typically starts
from a fixed state and terminates to a fixed state this is not a true model as the distribution of the
modulation at the frame boundaries will be different than the middle of the frame. If the frame is very
long it is a good engineering approximation to ignore this non-stationarity at the frame boundaries. Also
it is possible with certain OMWM modulation sequences can be produced in the middle of the frame that
are not stationary time series but in general that will be the exception and not the rule. Consequently
for a presentation that captures many of the important engineering applications the discussion will
assume stationarity. The stationarity assumption implies that

E
[
D̃z(l1)D̃∗

z(l2)
]

= RD̃(l1 − l2). (13.12)

Since all terms with the same time difference l1 − l2 will be constant the double sum can be rearranged
to give

KbDxz(f) = Eb |U(f)|2
Nf−1∑

m=−Nf+1

(Nf − |m|)RD̃(m) exp [−j2πfTm] . (13.13)
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Looking at the limit of a long frame size and noting that

lim
Kb→∞

Nf

Kb
= 1 (13.14)

gives1

lim
Kb→∞

Dxz(f) = Eb |U(f)|2
∞∑

m=−∞
RD̃(m) exp [−j2πfTm] = Eb |U(f)|2 SD̃

(
ej2πfT

)
. (13.15)

where SD̃

(
ej2πfT

)
is the power spectrum of the discrete random process D̃z(l) evaluated at a discrete

frequency fT . It should be noted that SD̃

(
ej2πfT

)
is a periodic function of f with a period of 1/T .

The transmitted energy spectrum per bit for stream modulation is seen to be a product of the pulse
shape energy spectrum and the power spectral density of the discrete time modulation sequence. The
form of the OMWM will determine the power spectrum of the discrete modulation sequence.

To compute SD̃

(
ej2πf

)
the correlation function, RD̃(m), needs to be identified using the trellis

structure of the OMWM. For a stationary random process the correlation function is given by

RD̃(m) =
∑

di∈ΩD̃

∑
dj∈ΩD̃

did
∗
jPD̃z(l)D̃z(l−m) (di, dj) . (13.16)

The key point in finding the correlation function is identifying an algorithm to compute the joint PMF
of the modulation symbols at various time offsets from the trellis representation of the modulation.
The modulation symbol at any point in time, D̃z(l), is determined entirely by specifying the edge of
the trellis. The edges of the trellis can be enumerated by considering the modulation state at the same
time, σ(l), and the modulation state at the next time, σ(l + 1).

Definition 13.1 An edge of the trellis at time l, denoted S(l), is a pair of states {σ(l) = i, σ(l + 1) = j}
such that P (σ(l + 1) = i |σ(l) = j ) �= 0.

For notational purposes we define the possible values that S(l) can take as being the set Ωs. The number
of edges for a particular time near the middle of the frame for the R = 1 OMWM is ‖Ωs‖ = 2Ns. In
general, the number of edges corresponding to a trellis transition is less than the total number of pairs
{σ(l + 1) = i, σ(l) = j}, ‖Ωσ‖2 = N2

s .

Property 13.1 There is a functional mapping from S(l) to D̃z(l).

Consequently identifying PS(l)S(l−m) (si, sj) will completely specify PD̃z(l)D̃z(l−m) (di, dj).

Example 13.1: Consider AMI modulation again. There are 2Ns = 4 edges for AMI. The edges and the
functional mapping to the modulation symbols for AMI are enumerated in Table 13.3

The needed joint probability, PS(l)S(l−m) (si, sj), can be computed by forming some vectors and
using linear algebra. First, the definition of conditional probability gives

PS(l)S(l−m) (si, sj) = PS(l)|S(l−m) (si|sj)PS(l−m) (sj) . (13.17)

Clearly from (13.17) the PS(l−m) (sj) will be an important quantity to evaluate the spectrum of the
OMWM. To have a concise notation define a vector (size 1 × 2Ns) of the edge probabilities at time l

�PS(l) =
[
PS(l) (1) PS(l) (2) · · ·PS(l) (2Ns)

]
(13.18)

1The readers will have to excuse the slightly inconsistent notation in this equation. This is the only place in the text
where a discrete frequency variable and a continuous frequency variable both denoted with f are required in the same
equation.
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s(l) σ(l) σ(l + 1) D̃z(l)
1 1 1 0
2 2 1 −

√
2

3 1 2
√

2
4 2 2 0

Table 13.3: The edge enumeration for the AMI trellis code.

A one-step recursion of this probability can be obtained by using total probability and (13.17)

PS(l) (si) =
2Ns∑
n=1

PS(l)S(l−1) (si, n) =
2Ns∑
n=1

PS(l)|S(l1) (si|n)PS(l−1) (n) (13.19)

This summation can be represented by a matrix equation

�Ps(l) = �Ps(l − 1)ST (13.20)

where ST is often denoted a state transition matrix [Gal01] where

[ST ]ij = PS(l)|S(l−1) (j|i) . (13.21)

The state transition matrix of an OMWM is easily identified by examining g1 (I(k), σ(k)). Examining
�Ps(l + 1) it is clear that

�Ps(l + 1) = �Ps(l)ST = �Ps(l − 1)S2
T (13.22)

and by induction

�Ps(l) = �Ps(l − m)Sm
T . (13.23)

Examining (13.21) it is clear that

[Sm
T ]ij = PS(l)|S(l−m) (j|i) . (13.24)

Consequently half of the characterization necessary for the PMF in (13.17) is given by (13.24) and only
a form for PS(l) (si) is needed for a complete evaluation of RD̃(m). Most often the stationary probability
of each edge is equally likely, but in the case that an unusual chain is encountered the theory of Markov
chains [Gal01] can be used to solve for the stationary probability distribution of the edges.

Example 13.2: Consider again the AMI modulation. The edge state transition matrix is

ST =


0.5 0 0.5 0
0.5 0 0.5 0
0 0.5 0 0.5
0 0.5 0 0.5

 (13.25)

and using a uniform edge probability, PS(l−m)(i) = 1/4, i = 1, 4, gives

SD̃

(
ej2πf

)
= −0.5e−j2πf + 1 − 0.5ej2πf = 1 − cos(2πf) (13.26)

Equation (13.26) shows that AMI used as an OMWM in a stream modulation will always produce a
notch at DC. This condition is evident in Fig. 13.7 where a short frame was considered (Kb = 4). This
characteristic is advantageous in telecommunications systems as it prevents a large DC current from
being driven over the coaxial or twisted pair cable prevalent in the telecommunications network.
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13.4 Varying Transmission Rates with OMWM

The OMWM that has been presented so far has limited utility as it only allows for a rate of one
information bit per modulated symbol. This is usually denoted one bit per channel utilization by
communications engineers. OMWM of this type only allows a communication engineer to design a
modulation that would move horizontally on the rate performance curve of Fig. 13.5. In certain sit-
uations it might be desired to lower the bit rate and achieve higher fidelity at a lower Eb/N0 (e.g.,
deep space communications). Alternately it might be useful to achieve more than one bit per channel
utilization. This is often the case when bandwidth is a scarce resource and the signal to noise ratio is
relatively high (e.g., cable modems). This section will show how to generalize the OMWM to achieve
these varying information transmission rates.

The key to this generalization is to enable multiple bit inputs and multiple symbol outputs in the
OMWM. The general orthogonal modulation with memory, as considered in this section, consists of a
finite state machine operating at an integer fraction of the symbol rate, 1/NmT . The Kb bits to be
transmitted are broken up into blocks of Ks in length (a total of Nb = Kb/Ks blocks per frame. At each
symbol time a new set of Ks bits, �I(m) is input into a finite state machine and this produces a new
constellation label, J(m), and a new modulation state, σ(m+1). The constellation label, J(m) = �J(m)
of the finite state machine is used as an input to a modulator that produces an Nm symbol block of
Ms-ary modulation symbols. Again to keep a consistent normalization the mapping, D̃z(l) = a (Ji(m)),

is selected such that E

[∣∣∣D̃z(l)
∣∣∣2] = R. A total of Nb trellis transitions are needed to communicate the

Kb bits. Fig. 13.8 shows the block diagram for a general linear orthogonal modulation with memory.
Ns again denotes the number of states in the modulation and the nonlinear equations governing the
updates are

σ(m + 1) = g1

(
σ(m), �I(m)

)
(13.27)

�J(m) = g2

(
σ(m), �I(m)

)
. (13.28)

Note J(m) = 0, MNm
s − 1 where each component of �J(m) only take values Ji(m) = 0, Ms − 1, i =

1, Nm. The constellation label at time m and in position i will generate the modulation symbol at
time (m − 1)Nm + i for the orthogonal modulation. In general it is again usually desirable to have
νc extra symbols transmitted to return the modulation to a common final state at the end of the
transmission frame. The total length of the frame for the orthogonal modulation is denoted Nf , hence,
Nf = NbNm + νc, where νc is a code dependent constant. Due to termination the effective rate is
Reff = Kb

NbNm+νc
= KbKm

KbNm+νc
but if a large number of bits are transmitted then the rate becomes

approximately R = Km/Nm. If a rate less than one is desired then a communication engineer would
choose Nm > Km. If a higher transmission rate is desired then the communication engineer would
choose Nm < Km.

13.4.1 Spectrum of Stream Modulations with Nm > 1

When Nm = 1 the spectral characteristics of stream modulation can be computed as in Section 13.3,
but if Nm > 1 the techniques of Section 13.3 need to be generalized. If Kb is small all the waveforms
can be detailed out and the average energy spectrum can be easily computed in exactly the same way
as previously detailed. This section will concentrate on evaluation of Dxz(f) given as

KbDxz(f) = Eb |U(f)|2
Nf∑

l1=1

Nf∑
l2=1

E
[
D̃z(l1)D̃∗

z(l2)
]
exp [−j2πf(l1 − l2)T ] (13.29)
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Figure 13.8: The block diagram for a general modulation with memory.

in the case of Kb large. Again the regular trellis structure of the modulation can be exploited. Again
it is assumed that the information bits are a white sequence. Since the trellis transition is driven by
a white process but the modulation symbols are produced Nm at a time D̃z(l) is a cyclo-stationary
process [SW02]. The cyclo-stationarity assumption implies that

E
[
D̃z(l1)D̃∗

z(l2)
]

= RD̃(l1 − l2, l) l = 1, . . . , Nm, (13.30)

i.e., the correlation could be a function of the time in the between the transitions. The double sum can
be rearranged in a similar way to that of Section 13.3.2 to give

KbDxz(f) = Eb |U(f)|2
Nf−1∑

m=−Nf+1

Nm∑
l=1

(Nb − |m| + g(m, l))RD̃(m, l) exp [−j2πfTm] . (13.31)

Again looking at the limit of a long frame size gives

lim
Kb→∞

Dxz(f) = KmEb |U(f)|2
∞∑

m=−∞

Nm∑
l=1

RD̃(m, l) exp [−j2πfTm] . (13.32)

Realized that the function
Nm∑
l=1

RD̃(m, l) = R̄D̃(m) (13.33)

now is analogous to the RD̃(m) of Section 13.3.2. Once this function is identified then the desired
average energy spectrum can be computed as

lim
Kb→∞

Dxz(f) = KmEb |U(f)|2 S̄D̃

(
ej2πfT

)
. (13.34)

where S̄D̃

(
ej2πfT

)
is the discrete Fourier transform of R̄D̃(m). It should again be noted that S̄D̃

(
ej2πfT

)
is a periodic function of f with a period of 1/T . The transmitted energy spectrum per bit for stream
modulation is again seen to be a product of the pulse shape energy spectrum and the effective power
spectral density of the discrete time modulation sequence. The form of the OMWM will determine the
power spectrum of the discrete modulation sequence.

To compute S̄D̃

(
ej2πf

)
the correlation function, RD̃(m, l), needs to be identified using the trellis

structure of the OMWM. The correlation function is given by

RD̃(m, l) =
∑

di∈ΩD̃

∑
dj∈ΩD̃

did
∗
jPD̃z((k−1)Nm+l)D̃z((k−1)Nm+l−m) (di, dj) . (13.35)
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σ(m + 1) = g1 (I(m), σ(m)) �J(m) = g2 (I(m), σ(m))
I(m) I(m)

State, σ(m) 0 1 State, σ(m) 0 1
1 1 2 1 [0 0] [1 1]
2 3 4 2 [0 1] [1 0]
3 5 6 3 [1 1] [0 0]
4 7 8 4 [1 0] [0 1]
5 1 2 5 [1 1] [0 0]
6 3 4 6 [1 0] [0 1]
7 5 6 7 [0 0] [1 1]
8 7 8 8 [0 1] [1 0]

Table 13.4: The finite state machine description of an example convolutional code.

The key point in finding the correlation function is identifying an algorithm to compute the joint PMF
of the modulation symbols at various time offsets from the trellis representation of the modulation.
Recall the modulation symbol at any point in time, D̃z(l), is determined entirely by specifying the edge
of the trellis. The edges of the trellis can be enumerated as in Section 13.3.2.

Property 13.2 There is a functional mapping from S(k) to D̃z((k − 1)Nm + l).

The needed joint probability for the edges, PS(l)S(l−m) (si, sj), can be computed using the techniques
introduced in Section 13.3.2, i.e.,

[Sm
T ]ij = PS(l)|S(l−m) (j|i) . (13.36)

Consequently half of the characterization necessary for the joint PMF of two edges is given by (13.36)
and only a form for PS(l) (si) is needed for a complete evaluation of RD̃(m, l).

The major difference in the computation of RD̃(m, l) is working out the number of trellis transitions
as a function of l. If m = Nmk + n for n = 0, . . . , Nm − 1 then there will need to be k trellis transitions
modeled for l > n and k + 1 trellis transitions for l ≤ n. Once the number of transitions are computed
then RD̃(m, l) can be computed using the techniques of Section 13.3.2 and the symbol mappings for each
edge. Once RD̃(m, l) is computed then R̄D̃(m) can be evaluated. A discrete Fourier transform leads to
the complete characterization of the spectrum of the OMWM. A detailed example will be considered in
the sequel.

13.4.2 Example R < 1: Convolutional Codes

Consider an OMWM consisting of an eight state convolutional code [LC04] (Ns=8) using BPSK mod-
ulation (Ms=2) that has R = 1/2 (Km = 1 and Nm = 2). The modulation updates are given in
Table 13.4. Since this code only sends 1 bit every two symbols the spectral efficiency of the modulation
(ηB ≈ 1/2 for this OMWM) will be reduced compared to BPSK, for example. Note that the modulation
is normalized to have an average energy of Km = 1 per trellis transition, i.e.,

D̃z((m − 1)Nm + i) =
1√
2

(−1)Ji(m) (13.37)

The trellis for this modulation is shown in Fig. 13.9. There are a total of 2Ns = 16 edges in this
example. The edge labels indicate the input that causes the transition and the modulation symbol that
is output for that input and state. This particular code requires at most three transitions to allow the
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Figure 13.9: The trellis diagram of the example convolutional code.

modulation to transition from any state to any other state so this code has νc = 3. Again Nf trellis
sections can be combined together to get a complete description of an OMWM. For instance for Kb = 4,
Fig. 13.10 shows a trellis description for a modulation that has σ(1) = 1 and returns to σ(8) = 1. One
can verify that there are 2Kb paths through this trellis. To understand the performance of this particular
OMWM squared Euclidean distance spectrum should be computed. The entire distance spectrum of
this modulation is explored in the homework problems (see Problem 13.16) and the union bound to the
probability of word error is plotted in Fig. 13.11. The important thing to notice is that the performance
is markedly improved compared to a modulation that does not use memory. For instance if we compare
performance at PW (E) = 10−5 then this example convolutional code is about 2dB better that the
16FSK, which is the memoryless modulation we considered in Chapter 8 with roughly the same spectral
efficiency.

Figure 13.10: The trellis diagram of the example convolutional code. Kb = 4.
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Figure 13.11: The union bound of the example convolutional code OMWM and frame error rate of
Kb = 4 memoryless orthogonally modulated bits using 16FSK.

c©1996-2004 - Michael P. Fitz - The University of California Los Angeles



• •
• •
• •

• •

σ m( ) σ m +( )100 0|

00 1| 00 2|

00 3|

10 4|

10 5|
10 6|

10 7|

01 2|

01 3|

01 0|

01 1|

11 6|

11 7|

11 4|

11 5|

13.4 Varying Transmission Rates with OMWM 335

σ(m + 1) = g1

(
�I(m), σ(m)

)
J(m) = g2

(
�I(m), σ(m)

)
�I(m) �I(m)

State, σ(m) 0 0 1 0 0 1 1 1 State, σ(m) 0 0 1 0 0 1 1 1
1 1 1 2 2 1 0 4 2 6
2 3 3 4 4 2 1 5 3 7
3 1 1 2 2 3 2 6 0 4
4 3 3 4 4 4 3 7 1 5

Table 13.5: The finite state machine description of an example trellis coded modulation.

Figure 13.12: The trellis diagram of the example trellis coded modulation.

13.4.3 Example R > 1: Trellis Codes

Consider an OMWM consisting of a four state trellis coded modulation [Ung82] (Ns=4) using 8PSK
modulation (Ms=8) that has R = 2 (Km = 2 and Nm = 1). The modulation updates are given in
Table 13.5. Note that the modulation is normalized to have an average energy of R = 2 per trellis
transition, i.e.,

D̃z(m) =
√

2 exp
[
jπ(2J(m) + 1)

8

]
(13.38)

The trellis for this modulation is shown in Fig. 13.9. There are a total of 2KmNs = 16 edges in this
example and there are parallel edges in the trellis. Parallel edges connect the same states but are
associated with different input information bits and output modulations symbols. This particular code
requires at most two transitions to allow the modulation to transition from any state to any other state
so this code has νc = 2.

Again Nf trellis sections can be combined together to get a complete description of an OMWM.
For instance for Kb = 4, Fig. 13.13 shows a trellis description for a modulation that has σ(1) = 1 and
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Figure 13.13: The trellis diagram of the example trellis coded modualtion. Kb = 4.

returns to σ(5) = 1. One can verify that there are 2Kb paths through this trellis. It is interesting to
note that due to the parallel transitions there is more than on way to terminate the trellis for each of
the states (4 possibilities in this example). These extra paths during termination would allow you to
transmit Kb = 6 bits in the same time (Nf = 4) as Kb = 4 bits without much loss in performance.
To understand the performance of this particular OMWM, the squared Euclidean distance spectrum
should be computed. The entire distance spectrum of this modulation is explored in the homework
problems (see Problem 13.17) and the union bound to the probability of word is plotted in Fig. 13.14.
The important thing to notice is that again the performance is markedly improved compared to a
modulation that does not use memory. For instance if we compare performance at PW (E) = 10−5

then this example trellis coded modulation is about 3dB better than QPSK, which is the memoryless
modulation we considered in Chapter 8 with the same spectral efficiency.

13.4.4 Example for Spectral Shaping: Miller Code

Consider an OMWM consisting of a four state coded modulation [Mil63] (Ns=4) using BPSK modu-
lation (Ms=2) that has R = 1/2 (Km = 1 and Nm = 2) known as the Miller code. The modulation
updates are given in Table 13.6. Again the modulation is normalized to have an average energy of R = 1
per trellis transition, i.e.,

D̃z((m − 1)Nm + i) =
1√
2

(−1)Ji(m) (13.39)

The trellis for this modulation is shown in Fig. 13.15. There are a total of 2Ns = 8 edges in this
example. The edge labels indicate the input that causes the transition and the modulation symbol
that is output for that input and state. A Miller code is typically not terminated as it is not used
to achieve a desired performance (squared Euclidean distance) and it is not possible to return to a
common state in an identical number of transitions from each state. To understand the performance of
this particular OMWM, the squared Euclidean distance spectrum again should be computed and this
distance spectrum is explored in the homework problems (see Problem 13.19).

Since the Miller code was not conceived to improve the distance properties but to change the time
and spectral characteristics of an orthogonal modulation, it is of interest to explore these properties.
An interesting property of the Miller code is that at most there are 4 symbols in a row that are the same
polarity. Codes of this type that limit the number of symbols between a transition are often referred
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Figure 13.14: The union bound and simulated performance of the example R = 2 OMWM and frame
error rate of QPSK. Kb = 4.

σ(m + 1) = g1 (I(m), σ(m)) �J(m) = g2 (I(m), σ(m))
I(m) I(m)

State, σ(m) 0 1 State, σ(m) 0 1
1 2 3 1 [0 1] [0 0]
2 1 4 2 [1 0] [1 1]
3 2 4 3 [0 1] [1 1]
4 1 3 4 [1 0] [0 0]

Table 13.6: The finite state machine description of the Miller code.
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Figure 13.15: The trellis diagram of the Miller code.

to as run length limited (RLL) codes. This type of code is important in magnetic recording due to the
physics of magnetic recording. A more important characteristic of the Miller code is that the memory
of the code shapes the transmitted spectrum. This shaped spectrum again has advantages in magnetic
recording and playback. This spectrum can be explored using the results of Section 13.4.1.

Finding the joint probability distribution of the edges is the important step in finding the transmitted
spectrum. The edge enumeration of the Miller code is given in Table 13.7. Recall the edge probability
update to compute the needed modulation symbol correlation is given as

�Ps(l) = �Ps(l − 1)ST (13.40)

where by examining Table 13.7 we have

ST =



0 0 0.5 0.5 0 0 0 0
0 0 0 0 0 0 0.5 0.5

0.5 0.5 0 0 0 0 0 0
0 0 0 0 0.5 0.5 0 0

0.5 0.5 0 0 0 0 0 0
0 0 0 0 0 0 0.5 0.5
0 0 0.5 0.5 0 0 0 0
0 0 0 0 0.5 0.5 0 0


. (13.41)

This edge transition probability can be used to compute RD̃(m, l). For example if �̃D(l) is defined as
the vector of symbol outputs at time (m − 1)Nm + l for all the different edges S(m) then we have

RD̃(1, 1) =
2Ns∑
j=1

2Ns∑
i=1

[
�̃D(2)

]
j

[
�̃D(1)

]∗
i

[
�Ps(l)

]
i

[
�Ps(l)S0

T

]
j

= 0 (13.42)

and

RD̃(1, 2) =
2Ns∑
j=1

2Ns∑
i=1

[
�̃D(1)

]
j

[
�̃D(2)

]∗
i

[
�Ps(l)

]
i

[
�Ps(l)S1

T

]
j

= 0.25. (13.43)
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s(m) σ(m) σ(m + 1) �̃Dz(m)
1 2 1 [1 0]
2 4 1 [1 0]
3 1 2 [0 1]
4 3 2 [0 1]
5 1 3 [0 0]
6 4 3 [0 0]
7 2 4 [1 1]
8 3 4 [1 1]

Table 13.7: The edge enumeration for the Miller code.

This leads to R̄D̃(1) = 0.25. The average correlation, R̄D̃(m), can be computed numerically using
results like (13.42) and (13.43) for all m and the DFT can be taken of R̄D̃(m) to give the final result,
S̄D̃

(
ej2πfT

)
. The plot of modulation symbol average power spectrum is shown in Fig. 13.16. Having

a spectrum of the modulation concentrated at higher frequencies in magnetic recording is important
since lower frequencies of the modulation tend to interfere with the servo mechanism of the magnetic
read/write head. The Miller code is another example of how the OMWM can be designed to achieve a
desired spectral characteristic.

Figure 13.16: The effective power spectrum of the modulation symbols for Miller coded modulation.

13.5 Forney Equivalence

Linear stream modulation on frequency selective channels that was introduced in Chapter 11 and
OMWM that was introduced in this chapter can be viewed in a unified framework. This equivalence of
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a) Transformation. b) Signal model.

Figure 13.17: The linear transformation that turns a stream modulation on a frequency selective channel
into a orthogonal modulation with memory.

stream modulation on a frequency selective channel and an OMWM is herein denoted Forney equivalence
[For72]. In this section we want to clearly distinguish between memoryless stream modulations on
a frequency selective channel (Q̃(k) and Dz(l)) and the OMWM (Q(k) and D̃z(l)). The discussion
will again focus on the case of a binary stream modulation (using BPSK) but the generalization is
straightforward. Recall that the optimum demodulator for memoryless stream modulation, Dz(l), on a
frequency selective channel is

�̂I = arg max
i=0,M−1

T̃i

= arg max
i=0,M−1

Kb∑
k=1

�
[
d∗i (k)Q̃(k)

]
− Ei

2

= arg max
i=0,M−1

√
Eb

Kb∑
k=1

�
[
d∗i (k)Q̃(k)

]
− 1

2

Kb∑
l1=1

Kb∑
l2=1

di(l1)d∗i (l2)Vũ((l2 − l1)T ) (13.44)

where Q̃(k) is the output sample of the match filter to the distorted pulse for the kth transmitted
symbol. In contrast, the orthogonal modulation with memory has an optimum demodulator of

�̂I = arg max
i=0,M−1

Ti.

= arg max
i=0,M−1

√
Eb

Nf∑
k=1

�
[
d̃∗i (k)Q(k)

]
− Eb

2

Nf∑
k=1

∣∣∣d̃i(k)
∣∣∣2 (13.45)

where again Nf is the number of transmitted symbols from the modulation with memory. The goal of
this section is to show that a simple linear filter, W

(
ej2πf

)
transforms the demodulator for the frequency

selective channel into an equivalent OMWM. This transformation is shown in Fig. 13.17-a). Recall that
stream modulation on a frequency selective channel is characterized by the discrete time linear filter
G

(
ej2πf

)
. The concatenation of the filter G

(
ej2πf

)
with the filter W

(
ej2πf

)
results in a filter F

(
ej2πf

)
.

F
(
ej2πf

)
is known as the equivalent discrete time white noise filter model of the channel. The diagram

of the whitened signal model is shown in Fig. 13.17-b).
The form of the simple linear filter can be found using the results that were developed in the

derivation of the DFE in Chapter 11. Recall that

Q̃(k) =
Kb∑
l=1

Dz(l)g(k − l) + Ñ(k) (13.46)

where the noise is colored with RÑ (m) = EbN0g(m). The spectral factorization for the PSD of this
noise is given as

SÑ

(
ej2πf

)
= N0EbG

(
ej2πf

)
= N0S1

(
ej2πf

)
= N0γ1F

+
1

(
ej2πf

)
F−

1

(
ej2πf

)
. (13.47)
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Property 13.3 Forney Equivalence [For72] Choosing W
(
ej2πf

)
=

(√
γ1F

−
1

(
ej2πf

))−1 provides the
desired transformation where D̃z(l) =

∑Nu
m=0 Dz(l − m)f+

1 (m) where f+
1 (n) is the impulse response of

the filter having a frequency response
√

γ1F
+
1

(
ej2πf

)
.

It should be noted here that W
(
ej2πf

)
is an anti-causal filter and

√
γ1F

+
1

(
ej2πf

)
is a causal filter.

Also in the spectral factorization
(
f+
1 (n)

)∗ = f−
1 (−n) and f+

1 (n) is a filter of length Nu as defined in
Chapter 11. Since Kb bits are transmitted the equivalent OMWM will have Nf = Kb + Nu.

Proof: The goal is to show that (13.44) and (13.45) become identical when the transforming filter
is chosen as W

(
ej2πf

)
=

(√
γ1F

−
1

(
ej2πf

))−1. The physical structure that is being considered is given
in Fig. 13.18. Choosing W

(
ej2πf

)
=

(√
γ1F

−
1

(
ej2πf

))−1 and denoting the filter length to be Nu + 1
implies that

Q̃(k) =
Nu∑
n=0

f−
1 (−n)Q(k + n) =

Kb+Nu∑
l=1

f−
1 (k − l)Q(l) =

Nf∑
l=1

f−
1 (k − l)Q(l) k = 1, Kb. (13.48)

The matched filter to the transmitted sequence (the first term of (13.45)) is then given as

�

 Nf∑
k=1

d̃∗i (k)Q(k)

 = �

 Nf∑
k=1

Kb∑
m=1

d∗i (m)
(
f+
1 (k − m)

)∗
Q(k)

 (13.49)

= �
[

Kb∑
m=1

d∗i (m)
Kb+Nu∑

k=1

(
f+
1 (k − m)

)∗
Q(k)

]

= �
[

Kb∑
m=1

d∗i (m)
Kb+Nu∑

k=1

f−
1 (m − k)Q(k)

]

= �
[

Kb∑
m=1

d∗i (m)Q̃(m)

]

Consequently the first terms of (13.44) and (13.45) (the matched filter terms) are equivalent when we
have set D̃z(l) =

∑Nu
m=0 Dz(l − m)f+

1 (m). Additionally

Nf∑
k=1

∣∣∣d̃i(k)
∣∣∣2 =

Nf∑
k=1

∣∣∣∣∣
Nu∑

m=0

di(k − m)f(m)

∣∣∣∣∣
2

=
Nf∑
k=1

(
Kb∑
l=1

di(l)f+
1 (k − l)

) (
Kb∑

m=1

d∗i (m)
(
f+
1 (k − m)

)∗)

=
Kb∑
l=1

Kb∑
m=1

di(l)d∗i (m)
Nf∑
k=1

f+
1 (k − l)

(
f+
1 (k − m)

)∗
=

Kb∑
l=1

Kb∑
m=1

di(l)d∗i (m)
Nu∑
n=0

f+
1 (n)f−

1 ((m − l) − n). (13.50)

The properties of the spectral factorization theorem in Appendix B then produces

Nu∑
n=0

f+
1 (n)f−

1 ((m − l) − n) = Ebg(m − l) = EbVũ((m − l)T ). (13.51)
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a) Transformation. b) Signal model.

Figure 13.18: The linear transformation that turns a stream modulation on a frequency selective channel
into a orthogonal modulation with memory.

Using this in (13.50) gives

Nc∑
k=1

∣∣∣d̃i(k)
∣∣∣2 =

Kb∑
l=1

Kb∑
m=1

di(l)d∗i (m)Vũ((m − l)T ). (13.52)

Equation (13.52) shows that the second terms (the energy correction terms) of (13.44) and (13.45) are
equivalent when we have set D̃z(l) =

∑Nu
m=0 Dz(l−m)f+

1 (m) and this implies that optimum demodula-
tion of memoryless stream modulations on a frequency selective channel can be made to be equivalent
to optimum demodulation of orthogonal modulations with memory by the given transformation. �

The discrete time equivalent whiten filter model is now given in Fig. 13.18. This model also is causal.
The equivalent modulation with memory is given as

D̃z(l) =
Nu∑

m=0

Dz(l − m)f+
1 (m). (13.53)

Since this modulation with memory is a function of the latest Nu + 1 information bits it is apparent
that the modulation state is given as σ(k) = [I(k − 1), · · · , I(k − Nu)] and consequently there are 2Nu

states in the modulation with memory.

c©1996-2004 - Michael P. Fitz - The University of California Los Angeles



13.6 Conclusions 343

σ(l + 1) = g1 (I(l), σ(l)) D̃z(l) = a (g2 (I(l), σ(l)))
I(l) I(l)

σ(l) 0 1 σ(l) 0 1
1 1 2 1

√
0.51

(
1 + 0.98ejπ/3

) √
0.51

(
−1 + 0.98ejπ/3

)
2 1 2 2

√
0.51

(
1 − 0.98ejπ/3

) √
0.51

(
−1 − 0.98ejπ/3

)
Table 13.8: The finite state machine description of the equivalent orthogonal modulation with memory.

Example 13.3: Consider again the channel given in Example 11.1, where α1 = 0.7 exp [jπ/3] and τ1 = T .
The signal spectrum, S1

(
ej2πf

)
, is given as

S1

(
ej2πf

)
= EbG

(
ej2πf

)
= γ1F

−
1

(
ej2πf

)
F+

1

(
ej2πf

)
(13.54)

= Eb0.51 (1 + 0.98 exp [j(2πf − π/3)]) (1 + 0.98 exp [−j(2πf − π/3)]) .

It should be noted here that this channel only has one symbol worth of ISI. The anti-causal whitening
filter is given as

W
(
ej2πf

)
=

1.4√
Eb (1 + 0.98 exp [j(2πf − π/3)])

= 1.4
∞∑
i=0

(−0.98 exp [j(2πf − π/3)])i . (13.55)

It should be noted that the anti-causal whitening filter has an infinite impulse response. The whitening
filter outputs will be of the form

Q(k) = 1.4Q̃(k) − 1.372 exp [−jπ/3)] Q̃(k + 1) + 1.344 exp [−j2π/3)] Q̃(k + 2) − . . .

=
√

Eb

(√
0.51Dz(k) +

√
0.510.98 exp [jπ/3]Dz(k − 1)

)
+ N(k) (13.56)

When BPSK modulation is used on this channel the equivalent modulation with memory that exists at
the output of the anti-causal whitening filter is given in Table 13.8. It should be noted that the binary
modulation (BPSK) has been transformed into a 4-ary modulation with memory with a constellation
that is channel dependent. The Euclidean distance characteristics of this equivalent modulation and
the consequently performance of stream modulation on this channel are explored in the homework (see
Problem 13.21)

The important point that results from Forney equivalence is that from this point forward OMWM
and stream modulations on frequency selective channels can be treated as a single entity. The optimum
demodulation structures and the performance analysis will all have the same form. This unified look at
low complexity demodulation and at find the union bound to the performance will be addressed in the
following chapter. There is a unified nature in the tools needed by a communication engineer and this
Forney equivalence is further evidence of this unified theme. Once a communication engineer acquires
the feel for this unified framework they can comfortably address problems across a broad range of topics.

13.6 Conclusions

This chapter introduced the idea of orthogonal modulations with memory (OMWM). OMWM are used
in practice to get better performance than orthogonal modulations or to change the spectral character-
istics of orthogonal modulations while still maintaining a demodulation complexity that is O (Kb). The
demodulation complexity of OMWM was not addressed in this chapter but will be addressed in the next
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Figure 13.19: A comparison between the modulations considered in this book.

chapter in detail. OMWM can be implemented in a wide variety of rates and complexities. This variety
of rates and complexity was illustrated with a handful of simple examples. For example Fig. 13.19 is a
plot of the achieved spectral efficiency for the memoryless modulations and the OMWM that were con-
sidered in this book. Clearly these simple examples of OMWM have moved the achieved performance
closer to that predicted by Shannon than were achieved by memoryless orthogonal modulations. These
simple examples, while illustrative, do not really reflect the sophistication that is currently the state
of the art in digital communications. Also included in Fig. 13.19 are the operating points of several of
the best OMWM that have appeared in the literature. The discussion of these modulations and the
methods of demodulation requires a level of sophistication that is not appropriate for where this text is
at in the development of digital communication theory, so we will not go into more details. Interested
readers should take a course or read a book on modern error correcting codes [Wic95, LC04, BDMS91].
The important point is that Shannon’s upperbound is one that is achievable in modern communications.
The next couple chapters will show that OMWM can have a demodulation complexity that is O(Kb) as
desired. Finally this chapter proved the equivalence of OMWM and stream modulations on frequency
selective channels so that both of these situations can be viewed with a common framework. The use
of this framework will begin with the discussion in the next chapter.

13.7 Homework Problems

Problem 13.1. Consider a R = 1 OMWM consisting of a four state trellis code (Ns=4) using 4PAM
modulation (Ms=4) as proposed by Ho, Cavers and Varaldi [HCV93] and detailed in Section 13.2.2.
The modulation is defined as
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σ(l + 1) = g1 (I(l), σ(l)) J(l) = g2 (I(l), σ(l)) D̃z(l) = a(J(l))
I(l) I(l) J(l) Dz(l)

State, σ(l) 0 1 State, σ(l) 0 1 0 −3/
√

5
1 1 2 1 0 2 1 −1/

√
5

2 3 4 2 3 1 2 1/
√

5
3 1 2 3 2 0 3 3/

√
5

4 3 4 4 1 3

a) For Kb = 4 and the termination back to σ(7) = 1 as discussed in the text (Nf = 6) find the
squared Euclidean distance spectrum of the code and plot the union bound to the probability of
word error.

b) Draw two transmitted paths and the corresponding error paths through the trellis associated with
the minimum squared Euclidean distance error event.

c) For Kb = 4 and no trellis termination (i.e., no return to a common final state, Nf = Kb) find the
squared Euclidean distance spectrum of the code and plot the union bound to the probability of
word error.

d) Draw two transmitted paths and the corresponding error paths through the trellis associated with
the minimum squared Euclidean distance error event.

Problem 13.2. The following is a commonly used R = 1 OMWM with four states (Ns = 4) and QPSK
modulation (Ms = 4):

σ(l + 1) = g1 (I(l), σ(l)) D̃z(l) = g2 (I(l), σ(l))
I(l) I(l)

State, σ(l) 0 1 State, σ(l) 0 1
1 1 2 1 d0 d2

2 3 4 2 d1 d3

3 1 2 3 d2 d0

4 3 4 4 d3 d1

where d0 = 1, d1 = j, d2 = −1, and d3 = −j.

a) Starting in σ(1) = 1 with �I = [1 1 0 1] give the values of I(5) and I(6) such that σ(7) = 1
(for Nf = 6). Draw the trellis and show the path through the trellis that corresponds to this
transmitted word.

b) Find the squared Euclidean distance spectrum of this code for Kb = 4 with termination to σ(7) =
1.

c) With a transmitted waveform produced by �I = [1 1 0 1] enumerate out the three unique smallest
non-zero squared Euclidean distances to the transmitted waveform in the conditional union bound
and show a corresponding path through the trellis.

d) Is this code better or worse in terms of resulting performance than the HCV code used as an
example in the text?

Problem 13.3. Consider the R = 1 OMWM given by
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σ(l + 1) = g1 (I(l), σ(l)) D̃z(l) = g2 (I(l), σ(l))
I(l) I(l)

State, σ(l) 0 1 State, σ(l) 0 1
1 1 2 1 d0 d2

2 3 4 2 d1 d3

3 1 2 3 d2 d0

4 3 4 4 d3 d1

Design the symbol mapping D̃z(l) (i.e., give values of d0, d1, d2, d3) to give better performance than the
code presented in the previous problem while leaving all constellation points on the unit circle. Assume
the code is terminated back to state 1. One example is sufficient to demonstrate you understand the
concepts and there is no need to find the optimum mapping to get full credit.
Problem 13.4. A concept that is useful in the analysis of coded modulations is geometric uniformity
[For91]. A code is said to be geometrically uniform if the conditional squared Euclidean distance
spectrum for each of the possible transmitted codes words is identical. Since the conditional squared
Euclidean distance spectrum of a code is identical the union bound can be computed by only considering
the conditional squared Euclidean distance spectrum for one possible path in the trellis. The concept of
geometric uniformity allows one to reduce the terms needed to be computed for the union bound from
(M − 1)M to M − 1 where again M = 2Kb . Consider the following two trellis codes

σ(l + 1) = g1 (I(l), σ(l)) J(l) = g2 (I(l), σ(l)) D̃z(l) = a(J(l))
I(l) I(l) J(l) D̃

(1)
z (l) D̃

(2)
z (l)

State, σ(l) 0 1 State, σ(l) 0 1 0 −3/
√

5 1
1 1 2 1 0 2 1 −1/

√
5 j

2 3 4 2 3 1 2 1/
√

5 −1
3 1 2 3 2 0 3 3/

√
5 −j

4 3 4 4 1 3

Consider the case of Kb=4 with termination back to σ(7) = 1, are either of these codes geometrically
uniform?
Problem 13.5. Consider the following R = 1 OMWM with seven states (Ns = 7) and 4-PAM
modulation (Ms = 4):

σ(l + 1) = g1 (I(l), σ(l)) J(l) = g2 (I(l), σ(l)) D̃z(l) = a(J(l))
I(l) I(l) J(l) D̃z(l)

State, σ(l) 0 1 State, σ(l) 0 1 0 −3/
√

5
1 2 4 1 1 0 1 −1/

√
5

2 3 5 2 1 0 2 1/
√

5
3 4 6 3 1 0 3 3/

√
5

4 1 7 4 3 0
5 2 4 5 3 2
6 3 5 6 3 2
7 4 6 7 3 2

a) Starting in σ(1) = 4 and that we want to return to σ = 4, show that if Kb is odd then this is
possible in one transition and if Kb is even then this is possible in two transitions.

b) For Kb = 3 find the squared Euclidean distance spectrum and plot the union bound. Will this
modulation perform better or worse than BPSK?
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c) For Kb = 3 when the modulation is used in linear stream modulation, show that∫ ∞

−∞
xi(t)dt = 0. (13.57)

d) For Kb = 3 when the modulation is used in linear stream modulation, find and plot Dxz(f)? How
do you see the characteristic of c) manifested in this plot?

Problem 13.6. Consider the channel impulse response

hz(t) = h0δ(t) + h1δ(t − 0.25T ) (13.58)

and a BPSK stream modulation with a square root raised cosine pulse, u(t), with excess bandwidth
50% and Tu = 6T . Compute the causal whitening filter W

(
ej2πf

)
for h0 = 0.8 and h1 = 0.6 and the

impulse response and the equivalent modulation with memory.

a) How many states will be in the modulation with memory?

b) Often the optimal demodulator complexity is too high and some approximations need to be made.
By making an engineering judgment shorten either the whitening filter or impulse response that
defines the modulation with memory that is decoded (note this will result in a mismatch between
the channel output and what is assumed for demodulation). How will your choices effect the
performance and complexity of the demodulator?

Problem 13.7. Recall a memoryless binary linear stream modulation has the form

Xz(t) =
Kb∑
l=1

Dz(l)ũ(t − (l − 1)T ) (13.59)

where Dz(l) = a(I(l)) is the modulation symbol and ũ(t) is the pulse shape. For the case where BPSK
modulation is used and

Vũ(nT ) =


1 n = 0
0.5 n = ±1
0 elsewhere.

(13.60)

The equivalent OMWM for an orthogonal stream modulation in a frequency selective channel as dis-
cussed in text has the form given in Fig. 13.20 where Q̃(k) is the output of the filter matched to ũ(t)
and Q(k) = D̃z(k) + N(k) where N(k) is a white noise and

D̃z(k) =
Nu∑
l=0

Dz(k − m)f+
1 (m) (13.61)

is the equivalent modulation with memory.

a) Identify f+
1 (m), m ∈ {0, . . . , Nu}.

b) Detail the equivalent modulation with memory. Provide either the trellis diagram or the functions
g1(I(l), σ(l)) and g2(I(l), σ(l)).

c) If Kb = 4 and �I = [0 0 1 1] give D̃z(l) l ∈ {1, . . . , Kb + Nu}

d) Compute the conditional union bound to the probability of word error given that �I = [0 0 1 1]
was the transmitted word.
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Figure 13.20: The whitening filter approach to optimal demodulation of non-Nyquist linear modulations.

Figure 13.21: A trellis diagram for a modulation with memory.

e) Given the result in d) how does the word error performance of a system where Nyquist criterion
can be maintained compare to the word error performance of one where Nyquist criterion cannot
be maintained when optimal demodulation is implemented.

Problem 13.8. In Fig. 13.20, recall that Q̃(k) = S̃(k) + Ñ(k) and that Q(k) = S(k) + N(k). Show
that

RN (m) = E [N(k)N∗(k − m)] = N0δm (13.62)

or that the filter obtained from a spectral factorization of Vũ(mT ) is also a filter that whitens the noise.
Problem 13.9. An OMWM is defined by the trellis in Fig. 13.21. Assume that d0 = 1, d1 =
exp[j2π/3], d2 = exp[−j2π/3] and σ(1) = 1.

a) For an input arbitrary Kb = 3 bit sequence and if the modulation has to stay as defined by the
trellis how many symbols will be needed to guaranteed a return to σ = 1.

b) Will this MWM give better performance than memoryless BPSK modulation when Kb = 3 when
terminated as in part a)? Plot the union bound

c) Is this OMWM geometrically uniform (see Problem 13.4 for the definition of geometrically uni-
form)?

d) It is possible to define a one symbol termination (i.e., Nf = Kb +1), which might not be as defined
by the trellis, that would result in a minimum distance that is the same as if the modulation had
stayed on the trellis and had Nf > Kb + 1. Give what the final symbol should be as a function of
σ(Kb + 1) to achieve this goal. Plot a union bound and compare it with the performance when
Nf > Kb + 1 and the modulation stays on the trellis.

c©1996-2004 - Michael P. Fitz - The University of California Los Angeles



13.7 Homework Problems 349

Problem 13.10. Your company, Dakota Instruments, is building a communication system that uses a
BPSK stream modulation. A particular client wants you to use it on a frequency selective channel. A
colleague of yours has characterized the channel and she provided you an unnormalized discrete time
equivalent white noise channel model given as

√
γ1F

+
1 (ej2πf ) = 1 − e−j2πf + 0.25e−j4πf (13.63)

You will be transmitting a large number of bits (Kb is large).

a) Find the energy of the equivalent pulse shape, ũ(t).

b) Assume no noise is present and for a k in the middle of the frame, give all possible values of Q(k).
How many states will be in the equivalent modulation with memory?

c) Assume no noise is present and for a k in the middle of the frame, give all possible values of Q̃(k).

Problem 13.11. If AMI modulation is used as an OMWM in an OFDM system, what characteristic
would it produce? Would you consider AMI useful in any way as an OMWM for an OFDM system.
Hint: AMI puts a DC notch in a stream modulation’s spectrum.
Problem 13.12. Consider an OMWM consisting of a four state trellis code (Ns=4) using 4PAM
modulation (Ms=4) as proposed by Ho, Cavers and Varaldi [HCV93] and detailed in Section 13.2.2.
Assume this modulation is used in a stream modulation with Kb large and

ur(t) =


√

1
T

0 ≤ t ≤ T

0 elsewhere.
(13.64)

a) Enumerate out the edges, s(l), and the mappings to D̃z(l).

b) Identify the edge transition matrix, ST .

c) Compute the average energy spectrum per bit, DXz(f), of the resultant stream modulation.

Problem 13.13. Consider a OMWM consisting of a two state trellis code (Ns=2) using 3PAM mod-
ulation (Ms=3) denoted as AMI modulation in the text. The modulation is defined as

σ(l + 1) = g1 (I(l), σ(l)) J(l) = g2 (I(l), σ(l)) D̃z(l) = a(J(l))
I(l) I(l) J(l) D̃z(l)

State, σ(l) 0 1 State, σ(l) 0 1 0 −2
1 1 2 1 1 0 1 0
2 1 2 2 2 1 2 2

a) For Kb = 4 and the termination back to σ(6) = 1 as discussed in the text (Nf = 5) find the
squared Euclidean distance spectrum of the code and plot the union bound to the probability of
word error.

b) Draw two pairs of transmitted paths and the corresponding error paths through the trellis asso-
ciated with the minimum squared Euclidean distance error event.

c) For Kb = 4 and no trellis termination (i.e., no return to a common final state, Nf = Kb) find the
squared Euclidean distance spectrum of the code and plot the union bound to the probability of
word error.

d) Draw two pairs of transmitted paths and the corresponding error paths through the trellis asso-
ciated with the minimum squared Euclidean distance error event.

c©1996-2004 - Michael P. Fitz - The University of California Los Angeles



350 Orthogonal Modulations with Memory

Problem 13.14. In Problem 13.5 a OMWM is presented that at least for small Kb was shown to
produce a notch at DC in the transmitted spectrum. Using the results of Section 13.3.2 find the average
energy spectrum per bit for Kb large.
Problem 13.15. Consider a OMWM consisting of a eight state convolutional code (Ns=8) using BPSK
modulation (Ms=2) and detailed in Section 13.4.2. The modulation is defined in Table 13.4.

a) For Kb = 4 and the termination back to σ(8) = 1 as discussed in the text (Nf = 14) find the
squared Euclidean distance spectrum of the code and plot the union bound to the probability of
word error.

b) Draw two transmitted paths and the corresponding error paths through the trellis associated with
the minimum squared Euclidean distance error event.

c) Is this modulation geometrically uniform? (See Problem 13.4)

Problem 13.16. Consider an OMWM consisting of an eight state convolutional code as detailed in
Table 13.4 and discussed in Section 13.4.2. Assume this modulation is used in a stream modulation
with Kb large and

ur(t) =


√

1
T

0 ≤ t ≤ T

0 elsewhere.
(13.65)

a) Enumerate out the edges, s(l), and the mappings to D̃z(l).

b) Identify the edge transition matrix, ST .

c) Compute the average energy spectrum per bit, DXz(f), of the resultant stream modulation.

Problem 13.17. Consider an OMWM consisting of a four state trellis coded modulation (Ns=4) using
8PSK modulation (Ms=8) and detailed in Section 13.4.3. The modulation is defined in Table 13.5.

a) For Kb = 4 and the termination back to σ(7) = 1 as discussed in the text (Nf = 6) find the
squared Euclidean distance spectrum of the code and plot the union bound to the probability of
word error.

b) Draw two transmitted paths and the corresponding error paths through the trellis associated with
the minimum squared Euclidean distance error event.

c) Is this modulation geometrically uniform? (See Problem 13.4)

Problem 13.18. When the information bits are all equally likely and independent, prove that if

E [Dz ((m − 1)Nm + j) |σ(m) = i ] = 0 j ∈ {1, . . . , Nm} , i ∈ {1, . . . , Ns} (13.66)

then the transmitted energy spectrum per bit of an OMWM using stream modulation is

Dxz(f) = Eb |U(f)|2 . (13.67)

In other words the spectrum is unchanged by the OMWM compared to a standard linear stream
modulation [BDMS91, Big86]. Which of the example OMWM in this chapter satisfy this condition?
Problem 13.19. Consider an OMWM consisting of a four state (Ns=4) OMWM using BPSK modu-
lation (Ms=2) and detailed in Section 13.4.4. The modulation is defined in Table 13.6.
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a) For Kb = 4 and no termination (Nf = 8) find the squared Euclidean distance spectrum of the
code and plot the union bound to the probability of word error.

b) Draw two transmitted paths and the corresponding error paths through the trellis associated with
the minimum squared Euclidean distance error event.

c) Is this modulation geometrically uniform? (See Problem 13.4)

Problem 13.20. Consider the situation in Example 13.3 where a linear stream modulation is used
on a frequency selective channel. If QPSK modulation, Ωd = {1 + j, 1 − j,−1 + j,−1 − j}, is used (in
place of BPSK) to send two bits per symbol find the Forney equivalent OMWM. Specify how many
states are in the OMWM and the effective symbol constellation points.
Problem 13.21. Consider the situation in Example 13.3 where a linear stream modulation (BPSK)
is used on a frequency selective channel. Find the union bound for Kb = 4 to the performance of
the MLWD for this example. Plot this performance and compare to the performance of BPSK on a
frequency flat channel. Is the Forney equivalent OMWM geometrically uniform? (See Problem 13.4)
Problem 13.22. In the example that considered an R = 2 Ungerboeck trellis code in Section 13.4.3 it
was stated that an extra two bits can be transmitted during the termination stages.

a) For the example detailed in Section 13.4.3 show the Nf = 4 trellis where Kb = 6 and σ(5) = 1.

b) Has the minimum squared Euclidean distance changed by adding these two extra bits?

c) Compute the union bound of this new case. Plot this union bound along with the union bound
of the Kb = 4 case. Justify the difference.

Problem 13.23. Forney equivalence was shown in the text for a memoryless stream modulation on a
frequency selective channel. A similar equivalent modulation can be formed if a stream MWM is used
on a frequency selective channel. The trellis structure of the equivalent modulation is a concatenation
of the trells for the OMWM and the trellis resulting from the frequency selective channel. The resultant
trellis is often denoted the supertrellis in the literature. For the frequency selective channel given in
Example 13.3 and the R = 1 modulation detailed in Section 13.2.2

a) Show the equivalent modulation with memory has Ns = 8.

b) Identify all the elements of the equivalent constellation?

c) Give tables with σ(k + 1) = g1 (I(k), σ(k)) and J(k) = g2 (I(k), σ(k)) for the concatenated equiv-
alent OMWM.

13.8 Projects

Not completed this edition
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Chapter 14

Maximum Likelihood Sequence
Demodulation

Up to this point in this text we have introduced three general methods to communicate Kb bits on both
frequency flat channels and frequency selective channels.

1. General M -ary modulations

• The advantage of a general M -ary modulation is that it can achieve very good performance
and arbitrary spectral efficiency.

• The disadvantage of a general M -ary modulation is that without more structure the optimal
demodulator has complexity O(2Kb).

2. Orthogonal memoryless modulations (including stream modulations, OFDM, OCDM)

• The advantage of orthogonal modulation is that the optimum demodulator has complexity
O(Kb) and a desired spectral efficiency can be achieved with a proper design of the modulation
signals.

• The disadvantage is that the performance is limited to that achievable with a single symbol
transmission.

• Frequency selective channels cause orthogonality to be lost. A variety of algorithms were in-
troduced to address optimal and sub-optimal demodulation of memoryless orthogonal modu-
lations in frequency selective channels. Performance on frequency selective channels is always
lower bounded by the performance on frequency flat channels.

3. Orthogonal Modulations with Memory

• The advantage of orthogonal modulations with memory (OMWM) is that a desired spectral
efficiency and a performance arbitrarily close to Shannon’s limit can be achieved with a
proper design of the modulation signals.

The goal for the next two chapters will be to explore the remaining areas of tradeoff in performance,
complexity, and spectral efficiency, i.e.,

• Showing that OMWM can be demodulated with a complexity that is O(Kb). Since OMWM
can achieve performance close to the Shannon bound, achieving a complexity O(Kb) for OMWM
demodulation is the “Holy Grail” of communication theory and this book can claim to have
completed an introduction to communication theory satisfactorily.
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This chapter will be a brief introduction into the optimum word demodulation of OMWM and will
derive a key algorithm that a communication engineer should understand; the Viterbi Algorithm (VA)
[Vit67, For73].

The trellis structure of an OMWM will allow the complexity of optimum demodulation to be reduced
from O(2Kb), as would be required for a general modulation, to O(Kb). This linear demodulation
complexity with the significantly improved performance or a desired spectral characteristics are the goals
for which communications engineers strive. The formulation and understanding of the form of the low
complexity optimum demodulator for OMWM is one of the most important tools for a communication
engineer. This chapter explores the MLWD structures and the next chapter explores the MAPBD
structures. The development in these two chapters explores the case of OMWM when R = 1 in detail
and the generalization to other R will be explore in the homework.

These optimum demodulation algorithms can best be understood by introducing a graphical rep-
resentation of the modulation with memory. A good reference that explores this idea is [Fre98]. A
graphical model of OMWM is shown in Fig. 14.1. In a modulation with memory there are random
variable that represent this modulation and the observations associated with the demodulation of this
modulation with memory. These random variables are associated with the circles in Fig. 14.1. Many
of the random variables in the modulation with memory are a result of functions of other random vari-
ables in the modulation with memory. These functions are represented by letters. In our discussion
deterministic functions will be represented by g(•) and random functions (those containing auxiliary
randoms variables) will be denoted by f(•). The equations governing the modulation finite state ma-
chine are examples of the g(•) type functions and mapping from constellation selection signal, J(m), to
the matched filter output, Q(k), is an example of the f(•) type function where the auxiliary random
variable in this case is the channel noise. The goal in optimum demodulator algorithms is to use the
observations, Q(k), to make optimum estimates about the state of the OMWM, typically the values of
I(m). By examining graphical models for digital communication a great deal of commonality can be
exploited in examining optimal demodulation structures for OMWM.

It is apparent from examining Fig. 14.1 that an OMWM only has local connections/relations be-
tween the random variables in the demodulation. This local connectivity that is defined by the finite
state machine of the OMWM is what enables a simplified MLWD. Finding MLWD algorithm that
has a complexity O(Kb) and deriving analysis methods also of reasonable complexity that predict the
performance of MLWD is the focus of this chapter

14.1 Maximum Likelihood Sequence Demodulation

A brute force demodulation of an OMWM would still have a complexity of O(2Kb). Recall the MLWD
for an OMWM is given as

�̂I = arg max
i∈{0,... ,M−1}

Ti (14.1)

= arg max
i∈{0,... ,M−1}

√
Eb

Nf∑
k=1

�
[
d̃∗i (k)Q(k)

]
− Eb

2

Nf∑
k=1

∣∣∣d̃i(k)
∣∣∣2

= arg min
i∈{0,... ,M−1}

Nf∑
k=1

∣∣∣Q(k) −
√

Ebd̃i(k)
∣∣∣2

= arg max
i∈{0,... ,M−1}

P�I

(
i
∣∣∣ �Q)
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Figure 14.1: A graphical model of an OMWM and demodulator sufficient statistics for the case R = 1.

where Q(k) is the matched filter ouptut sample for an OMWM. Further understanding of this demod-
ulator can be gained by restating the optimum demodulator to give

�̂I = arg min
i∈{0,... ,M−1}

∆E

(
�Q,

√
Eb

�̃
di

)
(14.2)

where ∆E

(
�Q,

√
Eb

�̃
di

)
is the squared Euclidean distance between the vector of matched filter outputs,

�Q, and the vector of possible noiseless signals that could be produced by the OMWM,
√

Eb
�̃
di. Eval-

uating this squared Euclidean distance over all possible 2Kb possible signals produced by the OMWM
without considering the trellis structure would require complexity O(2Kb). The discussion of compu-
tational complexity in this text is intended for clarity of understanding. The complexity measure of
an algorithm will be measured in operations (e.g., additions, multiplications and compares) and this
counting is not always a fair comparison in all implementations. There are also many ways to improve
the complexity of optimum demodulation algorithms and not all will be discussed in this text book
since the goal is a clarity of understanding of the algorithms.
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Example 14.1: Consider again the 4-PAM code of Section 13.2.2 with Kb = 4 and Nf = 6. The trellis
diagram for this transmission is shown in Fig. 14.2. The computations needed to be done to implement
the MLWD can be summarized with

1. Compute the Nf = 6 matched filter outputs, Q(k), k ∈ {1, . . . , Nf}. This particular computation
is dependent on the choice for the orthogonal modulation so we will denote this computation as
taking NQA additions and NQM multiplications.

2. For each postulated transmitted sequence, i ∈ {0, M − 1}, the MLWD must form

Ti =
Nf∑
k=1

Ti(k) = −∆E

(
�Q,

√
Eb

�̃
di

)
. (14.3)

This requires for each time instance, k, that

Ti(k) = −
∣∣∣Q(k) −

√
Ebd̃i(k)

∣∣∣2 (14.4)

be computed for each i ∈ {0, M − 1}. This symbol–wise squared Euclidean distance metric
requires 3 real additions and 2 real multiplications. Consequently for each possible transmitted
sequence, i ∈

{
0, 2Kb − 1

}
a total of 6+6× 3 = 24 additions and 2× 6 = 12 multiplies are needed

to compute the maximum likelihood metric for the sequence.

To compute all the maximum likelihood metrics leads to a complexity of 16×24+6×NQA = 384+6×NQA

additions and 16 × 12 + 6 × NQM = 192 + 6 × NQM multiplies. Finally finding the largest likelihood
(smallest Euclidean square distance) requires a total of 15 comparison operations. The important point
to note here is that all computations (adds, multiplies, and compares) all have a multiplicative factor
that is proportional to M = 2Kb .

Figure 14.2: A trellis diagram for a modulation with memory having Kb=4, Nf = 6, and Ns=4.

The simplest form of the MLWD for the OMWM was first found by Viterbi [Vit67] and has been de-
noted maximum likelihood sequence demodulation (MLSD) or more often the Viterbi Algorithm (VA).
Forney recognized this common structure in the stream modulation in a frequency selective channel
[For72]. An interesting tutorial article on the Viterbi algorithm is given in [For73]. It should be noted
that the Viterbi algorithm is so common in modern communication systems that most processors that
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are used in communication applications often have special purpose hardware accelerators to specifically
implement certain important operations common in the Viterbi algorithm. Also Viterbi algorithm is a
special case of a more general tool called dynamic programming [Bel57]. It is well accepted that under-
standing the Viterbi algorithm is a fundamental step in a communication system engineer’s educational
process. Because of this reason this text provides both a heuristic overview and a formal derivation in
the sequel.

14.1.1 The Viterbi Algorithm: Enabling Observations

The basic idea in MLWD is that given the trellis structure of an OMWM the maximum likelihood
demodulated word correspnds to the path through the trellis that has the smallest Euclidean square
distance. The reduced complexity form for MLSD was predicated on two observations:

1. The computations associated with the edges of the trellis are common to many sequences.

2. The 2Kb competing paths through the trellis often have a great deal of commonality.

The number of edges will determine the number of Euclidean square distance computations that
have to be performed on the MLWD. Using the notation from Chapter 13 we can denote the edges at
time l with S(l) (see Definition 13.1). There is a mapping from edges to symbols transmitted, hence if
we identify the number of edges in the trellis we have upper bounded the number of computations of
the form

Ti(k) = −
∣∣∣Q(k) −

√
Ebd̃i(k)

∣∣∣2 (14.5)

that must be performed. Again for simplicity of discussion we will consider only the R = 1 OMWM
and the generalization is straightforward. The number of edges in a trellis for a R = 1 OMWM is

Ke = 2NsKb − Kt (14.6)

where Kt is an integer depending on the particular trellis. Consequently the number of squared Eu-
clidean distance computations that is needed in the MLWD only grows linearly with the number of bits
to be transmitted, Kb.

Example 14.2: Returning to the 4 state OMWM that is described with the trellis in Fig. 14.2. There is a
total of 28 edges in this case (Kb = 4, Ns = 4, and Kt = 4). All of the needed squared Euclidean distance
computations can be accomplished with 28 × 3 = 84 additions and 28 × 2 = 56 multiplications. These
28 edge associated Euclidean square distances need to be added up for each of the possible 2Kb = 16
possible paths of length Nf = 6 through the trellis. The total complexity of this form of the MLWD
that only computes one squared Euclidean distance per edge is 84 + 16× 6 + 6×NQA = 180 + 6×NQA

additions and 56 + 6×NQM multiplications. Compare this with the results from Example 14.1 and a
significant savings is observed by only making each edge computation once.

Using the common trellis paths followed by many data sequences can help reduce the amount of
processing further. Note this idea was explored in the Ungerboeck MLWD for stream modulation in the
frequency selective channel that was introduced in Section 12.2. The key idea here is that at any point
if two sequences have a common future path through the trellis then there is no loss in eliminating the
one with the lower likelihood metric accumulated up to that time.
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Figure 14.3: The two paths through the trellis denoted by �I = 0 and �I = 1.

Example 14.3: Consider again the 4-PAM code of Section 13.2.2 with Kb = 4 and Nf = 6. Two
sequences in this possible OMWM are denoted

�I = 0 = [0 0 0 0] �I = 1 = [1 0 0 0] . (14.7)

These two input words produce

�̃
d0 =

[
−3/

√
5 − 3/

√
5 − 3/

√
5 − 3/

√
5 − 3/

√
5 − 3/

√
5
]

(14.8)

and

�̃
d1 =

[
1/

√
5 3/

√
5 1/

√
5 − 3/

√
5 − 3/

√
5 − 3/

√
5
]
. (14.9)

The ML metric for these two words can be divided into parts corresponding to

T0 = −
3∑

k=1

∣∣∣∣Q(k) +
3
√

Eb√
5

∣∣∣∣2 − 6∑
k=4

∣∣∣∣Q(k) +
3
√

Eb√
5

∣∣∣∣2 (14.10)

and

T1 = −
∣∣∣∣Q(1) −

√
Eb√
5

∣∣∣∣2 − ∣∣∣∣Q(2) − 3
√

Eb√
5

∣∣∣∣2 − ∣∣∣∣Q(3) −
√

Eb√
5

∣∣∣∣2 − 6∑
k=4

∣∣∣∣Q(k) +
3
√

Eb√
5

∣∣∣∣2 . (14.11)

The first three of the terms in the six term summation are different for each of the sequences. The last
three terms of the summation are identical and hence will make no difference in whether T0 > T1. If
we examine the trellis diagram in Fig 14.3 it is pretty clear that the path followed through the trellis
for each of these information words differs only in the first three trellis sections and is the same in the
last three trellis sections. Consequently a choice between whether �I = 0 or �I = 1 will have a larger
ML metric (smaller squared Euclidean distance) can be made after the third matched filter output is
computed.

Decisions between sequences can be made anytime future paths of the competing sequences would be
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the same. This implies at each time in the trellis only Ns paths need to be maintained (one for each
state). Since the paths leaving a state will have a common future, only the path with the largest ML
metric coming into a state can end up being the ML path. Consequently at each state with multiple
incoming paths there will be a sequence with the largest ML metric. Only this metric and the path
through the trellis corresponding to that “winning” metric need be saved for future processing. Since
only Ns � 2Kb paths need to be maintained at each state and the decision process is distributed across
the whole frame the complexity can be significantly reduced. The decision processing now has a com-
plexity linear in the number of bits transmitted (i.e., NsKb) versus the exponential complexity (2Kb)
that would be needed if the modulation did not have the trellis structure.

Example 14.4: Consider again the 4-PAM code of Section 13.2.2 with Kb = 4 and Nf = 6. Points where
paths join in the trellis are represented by numbers in the trellis diagram of Fig. 14.4. The first time
decision are made (points 1-4) eliminates half of the possible paths in the trellis (8 paths will remain).
The second time when decisions are made (points 5-8) will eliminate half of the remaining paths (4 will
remain). The third time (points 9-10) eliminate all but two and the final decision can be made at point
11.

Figure 14.4: An enumeration of the decision nodes.

The Viterbi algorithm takes advantage of these two characteristics to produce a decoding complexity
that is O(Kb). Since all transmitted signals are defined via paths on the trellis the Euclidean squared
distance associated with each edge only need to be computed once. Also since all codewords are defined
on a trellis the common future of paths on a trellis can be used to eliminate a significant number of
paths from possible contention as the maximum likelihood metric. The next subsection provides a formal
derivation of the Viterbi algorithm to complement the more heuristic discussion in this subsection.

14.1.2 The Viterbi Algorithm: Formal Derivation

First a couple of definitions will aid the derivation.

Definition 14.1 For any time series, X(k) from time 1, X(1), up to time k, X(k) shall be denoted as
�Xp(k).

Definition 14.2 The set of all sequences, �Ip(k − 1) that end up in state σ(k) = is is denoted Ωis(k).
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Figure 14.5: The block diagram of the MLSD recursion.

The Viterbi algorithm is a time recursive algorithm that computes the maximum likelihood path through
a trellis that describes an OMWM. The one step recursion is an time update on the following two
statistics

1. The best accumulated ML decision metric at time m for each state σ(m) ∈ {1, . . . , Ns}. Denote

T (m, ks) = max
i∈Ωks (m)

−
m−1∑
k=1

∣∣∣Q(k) −
√

Ebd̃i(k)
∣∣∣2 ks ∈ {1, . . . , Ns} (14.12)

2. The data sequence that achieves the best accumulated ML decision metric at time m for each
state σ(m) ∈ {1, . . . , Ns}. Here denote

�̂Ip (m, ks) = arg max
i∈Ωks (m)

−
m−1∑
k=1

∣∣∣Q(k) −
√

Ebd̃i(k)
∣∣∣2 ks ∈ {1, . . . , Ns} (14.13)

Consequently the Viterbi algorithm takes inputs of T (m, ks) and �̂Ip (m, ks) for ks ∈ {1, . . . , Ns} and

provides a way to compute T (m + 1, is) and �̂Ip (m + 1, is) for is ∈ {1, . . . , Ns}. The block diagram of
this recursive algorithm is shown in Fig. 14.5.

The desired one-step outputs are

T (m + 1, is) = max
i∈Ωis (m+1)

−
m∑

k=1

∣∣∣Q(k) −
√

Ebd̃i(k)
∣∣∣2 is ∈ {1, . . . , Ns} (14.14)

�̂Ip (m, is) = arg max
i∈Ωis (m)

−
m−1∑
k=1

∣∣∣Q(k) −
√

Ebd̃i(k)
∣∣∣2 is ∈ {1, . . . , Ns} (14.15)

An important notational formalism that facilitates a simple derivation will be a method to indicate valid
state transitions (enumerate the edges in the trellis) and this formalism is captured in the following
definition

Definition 14.3 The function g3(is, ks, ms), is ∈ {1, . . . , Ns} , ks ∈ {1, . . . , Ns} , ms = 0, 1 with a range
of {0, 1} will indicate which transitions in the trellis are allowable. Specifically g3(is, ks, m) = 1 if
σ(m) = ks and I(m) = ms implies that σ(m + 1) = is.
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Example 14.5: Consider again the 4-PAM code of Section 13.2.2. The enumeration of g3(•, •, •) is
given in the following table

g3(σ(m + 1), σ(m), I(m)))
I(m)

σ(m) σ(m + 1) 0 1
1 1 1 0
1 2 0 1
1 3 0 0
1 4 0 0
2 1 0 0
2 2 0 0
2 3 1 0
2 4 0 1
3 1 1 0
3 2 0 1
3 3 0 0
3 4 0 0
4 1 0 0
4 2 0 0
4 3 1 0
4 4 0 1

The function g3 for this code indicates, for instance, that σ(m + 1) = 1 can only be arrived at from
σ(m) = 1 and σ(m) = 3 and only for I(m) = 0.

More specifically Ωis(m + 1) is the set of all sequences �Ip(m) such that g3(is, •, •) = 1, i.e.,

Ωis(m + 1) =
{

�Ip(k) : g3 (is, ks, m1) = 1
}

ks ∈ {1, . . . , Ns} , m1 = 0, 1 (14.16)

Now (14.14) can be restated as

T (m + 1, is) = max
i∈Ωis (m+1)

−
m∑

k=1

∣∣∣Q(k) −
√

Ebd̃i(k)
∣∣∣2 is ∈ {1, . . . , Ns} (14.17)

= max
ks∈{1,... ,Ns}

i∈Ωks
(m)

m1=0,1

−
∣∣∣Q(m) −

√
Ebd̃(ks,m1)

∣∣∣2
g3(is, ks, m1)

−
m−1∑
k=1

∣∣∣Q(k) −
√

Ebd̃i(k)
∣∣∣2 is ∈ {1, . . . , Ns} .

It should be noted that dividing the term corresponding to the most recent possible edge in the sum-
mation by g3(•) only ensures that the maximization is done over valid paths in the trellis. Noting that
the second term of (14.17) is not a function of I(m) = m1 and that the first term is only a function of
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σ(m) = ks and I(m) = m1, enables the following simplification

T (m + 1, is) = max
ks∈{1,... ,Ns}

i∈Ωks
(m)

m1=0,1

−
∣∣∣Q(m) −

√
Ebd̃(ks,m1)

∣∣∣2
g3(is, ks, m1)

+ max
i∈Ωks (m)

−
m−1∑
k=1

∣∣∣Q(k) −
√

Ebd̃i(k)
∣∣∣2(14.18)

is ∈ {1, . . . , Ns} .

= max
ks∈Ωσ

m1=0,1

−
∣∣∣Q(m) −

√
Ebd̃(ks,m1)

∣∣∣2
g3(is, ks, m1)

+ T (m, ks)

 is ∈ {1, . . . , Ns} . (14.19)

= max
ks∈Ωσ

m1=0,1

T (+)(m, ks, m1)

The ML metric update for each state considers each edge that connects to the state and looks at the
sum of the metric from the state at the previous time and the edge metric that connects the states.
Similarly the winning sequence is updated with

�̂Ip (m + 1, is) = arg max
ks∈{1,... ,Ns}

i∈Ωks
(m)

m1=0,1

−
∣∣∣Q(m) −

√
Ebd̃(ks,m1)

∣∣∣2
g3(is, i, m1)

+ max
i∈Ωks (m)

−
m−1∑
k=1

∣∣∣Q(k) −
√

Ebd̃i(k)
∣∣∣2 .

(14.20)

Example 14.6: Consider again the 4-PAM code of Section 13.2.2 and σ(m + 1) = 1. There are two
edges that connect to σ(m + 1) = 1 from the states σ(m) = 1 and σ(m + 1) = 3. Consequently the
accumulated ML metric at time m + 1 is given as

T (m + 1, 1) = max {Z1, Z2} (14.21)

= max

{
−

∣∣∣∣Q(m) +
3
√

Eb√
5

∣∣∣∣2 + T (m, 1) ,−
∣∣∣∣Q(m) −

√
Eb√
5

∣∣∣∣2 + T (m, 3)

}
.

If Z1 > Z2 then

�̂Ip (m + 1, 1) = [�̂Ip (m, 1) 0] (14.22)

otherwise

�̂Ip (m + 1, 1) = [�̂Ip (m, 3) 0]. (14.23)

The Viterbi algorithm is a relatively simple way to compute the MLWD output. The essential idea is
that only the best ML metric has to be kept at each time and at each state. The time recursive update
at each state only has to consider the previous states that are edge connected to this state and find the
winning metric coming into the state. The total metric coming into the state is the sum of the previous
state ML metric and the branch metric. The winning bit sequence at each state is then the bit value
associated with the edge of the ML path concatenated with the sequence from the previous state on
the ML path. The mechanization of this process requires an add (to generate the updated metric), a
compare (looking to see which metric is larger) and a select (selecting the winning sequence) so engineers
often refer to add compare select (ACS) processing units when discussing the Viterbi algorithm.
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14.1.3 Initialization and Termination

Intialization and termination of the Viterbi algorithm (VA) are critical to achieving optimum demodu-
lation performance. Initialization is simply achieved by setting

T (1, 1) = 0 T (1, ks) = −∞ ks ∈ {2, . . . , Ns} (14.24)

and operating the algorithm as in steady-state when the modulation starts off with σ(1) = 1. A similar
initialization would occur when the modulation starts off in a different state. This initialization works
because zero is the additive identity and having metrics of the other states set to −∞ ensure that these
states and their associated updates never impact the demodulation. Note this initialization procedure
actually produces more computations than absolutely necessary but the algorithm is more consistent
and easier to implement with this initialization.

Termination can also be done in a similar simple way. Recall that after Kb trellis updates in the VA
the following metrics are obtained

T (Kb + 1, is) = max
i∈Ωis (Kb+1)

−
m∑

k=1

∣∣∣Q(k) −
√

Ebd̃i(k)
∣∣∣2 is ∈ {1, . . . , Ns} (14.25)

�̂Ip (Kb + 1, is) = arg max
i∈Ωis (Kb+1)

−
m∑

k=1

∣∣∣Q(k) −
√

Ebd̃i(k)
∣∣∣2 is ∈ {1, . . . , Ns} . (14.26)

At this point there are only Ns surviving sequences that could possibly be the ML word decision and
the associated partial maximum likelihood metrics. The surviving sequences are also now fully Kb in
length and do not need to be further extended. The final decision can be given as

�̂I = arg max
is∈{1,... ,Ns}

max
i∈Ωis (Kb+1)

−
m∑

k=1

∣∣∣Q(k) −
√

Ebd̃i(k)
∣∣∣2 − Nf∑

k=Kb+1

∣∣∣Q(k) −
√

Ebd̃is(k)
∣∣∣2 (14.27)

where d̃is(k), k ∈ {Kb + 1, . . . , Nf} is the transmitted symbols that would be sent in terminating the
trellis when the modulation starts the termination process at σ(Kb + 1) = is. Hence termination only
has to add the terms associated with the squared Euclidean distance between the matched filter outputs
and the termination symbols for each state over the last νc symbols to the state metrics and find the
largest of the resulting metrics, i.e.,

�̂I = arg max
is∈{1,... ,Ns}

T (Kb + 1, is) −
Nf∑

k=Kb+1

∣∣∣Q(k) −
√

Ebd̃is(k)
∣∣∣2 . (14.28)

Again a more computationally efficient method than shown in (14.28) is possible by eliminating half the
sequences every trellis stage during the termination but the method shown in (14.28) is conceptually
most straightforward.

14.2 Performance of MLWD for OMWM

The error performance of a OMWM can again be bounded by using the union bound. To this end the
word error probability is

PW (E) = P
(
�̂I �= �I

)
=

M−1∑
j=0

P
(
�̂I �= j

∣∣∣�I = j
)

P
(
�I = j

)
. (14.29)
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In most situation it is assumed that P
(
�I = i

)
= 1/M = 1/2Kb . Recall here j corresponds to a path

through the trellis that defines the OMWM. Using the ideas from Chapter 8 the conditional word error
probability is given as

P
(
�̂I �= j

∣∣∣�I = j
)

= P

M−1⋃
i=0
j �=i

{
Ti|j > Tj|j

} ≤
M−1∑
i=0
j �=i

P
(
Ti|j > Tj|j

)
(14.30)

where again Ti|j is the likelihood metric for the ith signal conditioned on the event the jth signal was
transmitted. While, in general, a closed form expression for this conditional error probability is not
easily found, the union bound, first explored in Chapter 8, is again applicable and an important tool
for understanding the performance of an OMWM. It should also be noted that in engineering practice,
word errors are often denoted frame errors. Consequently the goal of this section is to bound the word or
frame error probability performance of the MLWD. This bound will give insights into the performance
of OMWM. The approach to this problem will

1. Introduce the idea of a simple error event. The idea of a simple error event will reduce the number
of sequences that need to be considered in a conditional union bound.

2. Using simple error events, the conditional union bound can be computed via a modified trellis

3. Using the insight from the conditional union bound computation, the complete union bound can
be computed via an error state diagram.

This three step approach to performance analysis of OMWM introduces many tools that are useful to
a communication engineer.

14.2.1 Simple Error Events

This section is focused on eliminating some codeword sequences from the conditional union bound. A
transmitted codeword, �I = j, defines a path through the trellis. There are many ways to define this
path but one way that uniquely defines a path is to define the set of states that that this path traverses,
σj(k), k ∈ {1, . . . , Nf}. Any codeword, �I = i, considered in the conditional union bound can also be
specified by the states it traverses during the frame, σi(k), k ∈ {1, . . . , Nf}. The codewords that can be
removed from the conditional union bound are removed due to the trellis structure of the modulation.
This is accomplished by using the idea of a simple error events.

Definition 14.4 A simple error event is an error event that begins at time k and has length Le

which implies

σj(k) = σi(k) Ii(k) �= Ij(k)
σj(k + m) �= σi(k + m) m = 1, Le − 1 (14.31)
σj(k + Le) = σi(k + Le)

For a simple error event the likelihood metric of the possible incorrect codeword and the likelihood
metric of the transmitted codeword are only different for the Le symbols of the error event. Specifically
if �I = j is the transmitted codeword and if the possible incorrect codeword �̂I = i is composed of one
simple error event at time k and of length Le then

Tj|j = T
(−)
j|j (k) + Tj|j(k, k + Le) + T

(+)
j|j (k + Le)

Ti = T
(−)
j|j (k) + Ti|j(k, k + Le) + T

(+)
j|j (k + Le) (14.32)
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where T
(−)
j|j (k) is the accumulated likelihood metric for word �I = j from time 1 to k − 1, T

(+)
j|j (k + Le)

is the accumulated likelihood metric for word �I = j from time k + Le + 1 to Nf , Tj|j(k, k + Le) is the
accumulated likelihood metric for word �I = j from time k to k + Le. Consequently{

Ti|j > Tj|j
}

=
{
Ti|j(k, k + Le) > Tj|j(k, k + Le)

}
. (14.33)

The only part of the ML metric that will cause a conditional decoding error is accumulated during the
course of the simple error event.

Definition 14.5 Error events composed of two or more simple error events are denoted compound error
events.

Property 14.1 Any word error �̂I = i that is a compound error event for �I = j does not need to be
included in the union bound given in (14.30).

Proof: This can be proven for a codeword with two simple error events and a simple inductive argument
leads to it being true for any number of simple error events. Assume that �̂I = i consists of two simple
error events: one starting at k1 of length Le1 and one starting at k2 of length Le2. Equivalently

Tj|j = T
(−)
j|j (k1) + Tj|j(k1, k1 + Le1) + Tj|j(k1 + Le1 + 1, k2 − 1) + Tj|j(k2, k2 + Le2) + T

(+)
j|j (k2 + Le2)

Ti|j = T
(−)
j|j (k1) + Ti|j(k1, k1 + Le1) + Tj|j(k1 + Le1 + 1, k2 − 1) + Ti|j(k2, k2 + Le2) + T

(+)
j|j (k2 + Le2)

If Ti|j > Tj|j then either Ti|j(k1, k1 + Le1) > Tj|j(k1, k1 + Le1) or Ti|j(k2, k2 + Le2) > Tj|j(k2, k2 + Le2).
Consequently{

Ti|j > Tj|j
}
⊂

{
Ti|j(k1, k1 + Le1) > Tj|j(k1, k1 + Le1)

} ⋃ {
Ti|j(k2, k2 + Le2) > Tj|j(k2, k2 + Le2)

}
and the event does not need to be included in the union bound due to Property 8.1 as both of the
composite simple error events are already included in the union bound. �

Using only simple error events now gives a tighter form to the conditional union bound given as

P

M−1⋃
i=0
j �=i

{Ti > Tj}
∣∣∣�I = j

 ≤
Kb∑
k=1

∑
n∈Ωe(k,j)

P
(
Tk,n,j > Tj

∣∣∣�I = j
)

<

M−1∑
i=0
j �=i

P
(
Ti > Tj

∣∣∣�I = j
)

(14.34)

where Tk,n,j denotes the likelihood metric for nth simple error event starting at time k for the transmitted
word j. Note Ωe(k, j) is the set of simple error events starting at time k for transmitted codeword �I = j
and Ne(k, j) denotes the cardinality of this set or the number of simple error events that start at time k.
The tighter bound here is due to the fact that any error event that is composed of multiple simple error
events has been taken out of the brute force union bound. Hence the bound in (14.34) only enumerates
the simple error events. Again the PWEP is given as

P
(
Ti > Tj

∣∣∣�I = j
)

= P
(
Ti|j > Tj|j

)
=

1
2
erfc

√
∆E(i, j)

4N0

 (14.35)

where again

∆E(i, j) =
∫ ∞

−∞
|xj(t) − xi(t)|2 dt (14.36)
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is the square Euclidean distance between xi(t) and xj(t). Consequently the union bound to the con-
ditional error probability can be computed by enumerating all possible simple error events for a trans-
mitted word and summing the PWEPs associated with these simple error events, i.e.,

P
(
�̂I �= j

∣∣∣�I = j
)
≤

Kb∑
k=1

∑
n∈Ωe(k,j)

1
2
erfc

√
∆E({k, n} , j)

4N0

 (14.37)

where ∆E({k, n} , j) is the squared Euclidean distance between the transmitted signal, xj(t), and the
signal for the nth simple error event starting at time k for �I = j, x{k,n,j}(t). For simplicity of notation
we denote Ωe(j) the set of all simple error events and Ωe(k, j) the set of all simple error events starting
at time k. The conditional union bound is then completely characterized by the enumeration of the
first error events and the associated squared Euclidean distance. It should be noted that the number of
compound error events grows significantly with the frame size. For small frame lengths the tightening
of the union bound is not significant but it becomes more significant with larger Kb.

Example 14.7: Consider a linear modulation with Kb=4, Nf = 6, and Ns=4 whose trellis diagram is
given in Fig. 14.2. Note this trellis has σ(1) = 1 and σ(7)=1. Assume the top transition corresponds
to I(k)=0 and the bottom transition corresponds to I(k)=1. If the transmitted word is �I = 0 then the
simple sequences are easily enumerated:

k = 1 Ωe(1, 0) = {1, 3, 5, 7, 11, 13, 15}
k = 2 Ωe(2, 0) = {2, 6, 10, 14}
k = 3 Ωe(3, 0) = {4, 12}
k = 4 Ωe(4, 0) = {8} (14.38)

In this simple example only one word, �I = 9, of the 15 possible error sequences is composed of more than
one simple sequence. This particular word takes a path through the trellis that leaves the transmitted
state at k = 1 and returns to the transmitted state at k = 3 and immediately leaves the transmitted
state at k = 4 and again rejoining the transmitted state at k = Nf + 1 = 7.

14.2.2 The Modified Trellis

The enumeration of the simple error events for a modulation with memory corresponds to an enumer-
ation of the possible paths through a modified trellis. Note the error events that are excluded from the
union bound are paths through the trellis that have left the transmitted path and rejoined it at a future
point more than one time. Consequently if the trellis for the modulation with memory is modified to
eliminate the possibility of an error event having more than one simple error event then we have a way
to enumerate all simple error events. This is accomplished by adding an additional state per trellis
stage. This state represents the termination of a simple error event at that stage or time. Since once a
simple error event completes it no longer has to be considered, each of these augmented states have no
outputs or are “absorbing”. Once this modified trellis is constructed the necessary simple error events
for the union bound correspond directly to all paths through the modified trellis.
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Figure 14.6: A trellis diagram for a modulation with memory having Kb=4, Nc = 6, and Ns=4 used
for enumerating all the simple error events corresponding to �I = 0.

Example 14.8: Consider a linear modulation with Kb=4, Nf = 6, and Ns=4 whose trellis diagram is
given in Fig. 14.2. The modified trellis to be used for the computation of the union bound for �I = 0
is given in Fig. 14.6. Note the dashed path corresponds to the transmitted signal while all the paths
that terminate in the “absorbing” state correspond to the simple error events. If the transmitted word
is �I = 0 then the simple sequences that terminate at each time are easily enumerated:

k = 4 {1}
k = 5 {2, 3}
k = 6 {4, 5, 6, 7}
k = 7 {8, 10, 11, 12, 13, 14, 15} (14.39)

The modified trellis enumerates all the simple error events and the union bound can be computed
by identifying the Euclidean square distance of all the simple error events. Recall that for an OMWM
that

∆E(i, j) = Eb

Nf∑
l=1

∣∣∣d̃i(l) − d̃j(l)
∣∣∣2 =

Nf∑
l=1

∆E(i, j, l). (14.40)

Consequently the Euclidean square distance is additive over each time interval of the frame. In fact,
each edge not associated with the edge that the transmitted signal uses has an associated edge squared
Euclidean distance compared to the transmitted signal. Since an edge is entirely determined by the two
states it connects, we will use interchangeably the notation

∆E(�I = i, �I = j, l) = ∆σ(σi(l), σi(l + 1), σj(l), σj(l + 1)) (14.41)

to indicate the edge Euclidean square distance. For notational consistency if an edge does not exist
between either σi(l) and σi(l + 1) or σj(l) and σj(l + 1) then we set

∆σ(σi(l), σi(l + 1), σj(l), σj(l + 1)) = ∞. (14.42)
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The total squared Euclidean distance for each path in the modified trellis is the sum of the edge squared
Euclidean distance. Consequently for reasonably short frames the modified trellis diagram can function
to both enumerate the simple error events and the associated Euclidean square distance.

Example 14.9: Consider again the 4-PAM code of Section 13.2.2 and assume the transmitted edge at
time l is given as σj(l) = 1 and σj(l + 1) = 1. The edge Euclidean distance is then given as

σ(l) σ(l + 1) ∆σ(σi(l), σi(l + 1), 1, 1)
1 1 0
1 2 16/5
1 3 ∞
1 4 ∞
2 1 ∞
2 2 ∞
2 3 36/5
2 4 4/5
3 1 16/5
3 2 0
3 3 ∞
3 4 ∞
4 1 ∞
4 2 ∞
4 3 4/5
4 4 36/5

The combination of the modfied trellis and the edge distance enumeration allows the conditional
union bound to be computed. The modified trellis allows a communication engineer to enumerate
all of the possible simple error events for the transmitted word. The squared Euclidean distance of
each of the simple error events can be computed from the edge distance enumeration. Once the squared
Euclidean distance is known for each simple error events the conditional union bound can be computed.

Example 14.10: Consider again the 4-PAM OMWM of Section 13.2.2 and assume �I = 0. The enumerated
simple error events have the following sets of squared Euclidean distance

∆E(1, 0) =
16
5

+
36
5

+
16
5

∆E(2, 0) = 0 +
16
5

+
36
5

+
16
5

∆E(3, 0) =
16
5

+
4
5

+
4
5

+
16
5

∆E(4, 0) = 0 + 0 +
16
5

+
36
5

+
16
5

∆E(5, 0) =
16
5

+
36
5

+ 0 +
36
5

+
16
5

∆E(6, 0) = 0 +
16
5

+
36
5

+
16
5

∆E(7, 0) = 0 +
16
5

+
36
5

+
16
5

∆E(8, 0) = 0 +
16
5

+
36
5

+
16
5

∆E(10, 0) = 0 +
16
5

+
36
5

+
16
5

∆E(11, 0) = 0 +
16
5

+
36
5

+
16
5

∆E(12, 0) = 0 +
16
5

+
36
5

+
16
5

∆E(13, 0) = 0 +
16
5

+
36
5

+
16
5

∆E(14, 0) = 0 +
16
5

+
36
5

+
16
5

∆E(15, 0) = 0 +
16
5

+
36
5

+
16
5
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Figure 14.7: A trellis diagram for a modulation with memory having Ns=4 used for enumerating all
the simple error events corresponding to �I = 0.

14.3 Approximations for Large Frame Size

In many communications applications the frame or word size is large. Large frames can make the
enumeration of the simple error event tedious. Fortunately the large frame provides a more uniform
structure to the OMWM and this structure can lead to simplified union bounds. In the case of a large
frame size the trellis used to enumerate the simple error events begins to look more uniform and the
trellis termination effects do not have such a big effect. As an example consider a modulation with
memory having Ns = 4 with a very large Kb where �I = 0. The trellis for enumerating the simple error
events is shown in Fig. 14.7. In examining the trellis in Fig. 14.7 it is apparent that the longer the trellis
becomes in time the more Ωe(k, 0) begins to have the same form for each k (except for the time shift).
Consequently this has led to a simpler form for the analysis of the word or frame error probability.
Assuming an infinite length trellis one only need to enumerate the simple error events starting at a
single time k. The simple error events for a single time k are often denoted the first error events in the
literature. The enumeration of the simple error events in the union bound is greatly simplified by only
having to consider error events starting at a single time. While at first glance assuming an infinite trellis
size seems to produce an infinite number of first error events, the recursive structure embedded in the
first error events allows some straightforward computations. The union bound now can be approximated
(and strictly upper bounded) as

P
(
�̂I �= j

∣∣∣�I = j
)
≤ Kb

∑
n∈Ωe(1,j)

1
2
erfc

√
∆E({n, j} , j)

4N0

 . (14.43)

where ∆E({n, j} , j) is the squared Euclidean distance between the transmitted signal, xj(t), and the
signal for the nth first error event for �I = i, which corresponds to the signal denoted x{n,j}(t).

When enumerating out first error events the trellis code is best viewed as a finite state machine.
This finite state machine has a number of similiarities to a finite state Markov chain [Gal01] and several
tool from that area will be used to derive some solutions for the infinite frame case. Recall the tools of
Markov chains were used in Section 13.3.2, as well, when considering the spectrum of a long frame of
data from an OMWM. This discussion will only consider the case of the transmitted codeword being
�I = 0 to simplify the ideas and the sequel will generalize the ideas to consider all possible transmitted
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Figure 14.8: A state diagram for a modulation with memory used for enumerating all the first error
events corresponding to �I = 0.

codewords. It will be assumed here in the discussion that �I = 0 has σ(k) = 1 ∀k. The state transition
diagram for enumerating the first error events for �I = 0 is given in Fig. 14.8. Essentially the first error
event must diverge from σ(2) = 1. This forces a transition into the “transient” states, where these
transient states represent σi(k) �= 1, k > 1. A first error event then moves among the transient states
until the error event is completed. This completion is represented as a transition to the absorbing state
that represents σi(k) = 1. All paths through the state diagram in Fig. 14.8 represent all the possible
first error events of the modulation with memory. The state diagram will prove useful for numerically
evaluating the union bound to the frame or word error rate.

Example 14.11: Consider again the modulation with memory having Ns=4 and �I = 0. Fig. 14.9 shows
the state transition diagram for enumerating the first error events for this modulation corresponding to
�I = 0.

There is a roadblock at this point in that there is an infinite number of first error events that would
arise by considering the chain in Fig. 14.8. Consequently there is no way to enumerate the Euclidean
square distance like discussed in the previous section. While the Euclidean square distance has an
additive characteristic in the chain, i.e.,

∆E(i, 0) = Eb

Nf∑
l=1

∣∣∣d̃i(l) − d̃0(l)
∣∣∣2 =

Nf∑
l=1

∆E(i, 0, l). (14.44)

most results for characterizing finite state machine outputs exist when the characterisitcs of interest
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Figure 14.9: A state diagram for a modulation with memory with Ns=4 used for enumerating all the
first error events corresponding to �I = 0.

have a multiplicative form in the chain [Gal01, MZ60]. Consequently progress could be made if

1
2
erfc

√
∆E(i, 0)

4N0

 =
Le(i)∏
l=1

P (i, 0, l) (14.45)

where Le(i) is the length of the error event for codeword �I = i. While (14.45) is not valid, the
consideration of (14.44) does give us hope when we note

exp [C∆E(i, 0)] =
Le(i)∏
l=1

exp [C∆E(i, 0, l)] (14.46)

where C is an arbitrary constant. Using the idea in (14.46) it is possible to make progress on two fronts
in the analysis

1. An upper bound (the Chernoff bound [Che52]) to the conditional union bound can be formed by
noting that (see (7.28))

1
2
erfc

√
∆E(i, 0)

4N0

 ≤ 1
2

exp
[−∆E(i, 0)

4N0

]
=

1
2

Le(i)∏
l=1

exp
[
∆E(i, 0, l)

4N0

]
(14.47)

2. The true conditional union bound can be numerically calculated by using Craig’s form [Cra91,
SD98] for the erfc (•) (see Problem 9.17), i.e.,

1
2
erfc

√
∆E(i, 0)

4N0

 =
1
π

∫ π
2

0
exp

[ −∆E(i, 0)
4N0 cos2 (np)

]
dnp =

1
π

∫ π
2

0

Le(i)∏
l=1

exp
[ −∆E(i, 0, l)
4N0 cos2 (np)

]
dnp

(14.48)
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The Chernoff bound to the performance for OMWM is considered by many texts [For72, VO79, Pro89,
BDMS91] so students interested in that bound can consult those references. This text will concentrate
on the computing the true union bound. Craig’s method is an extremely powerful analysis tool and
students interested in more details than provided in the text are referred to [SA00]

The conditional union bound can be computed by using some characteristics of a finite state machine.
Combining (14.43) with (14.48) gives

P
(
�̂I �= 0

∣∣∣�I = 0
)

≤ Kb

∑
n∈Ωe(1,0)

1
2
erfc

√
∆E({n, 0} , j)

4N0

 (14.49)

=
Kb

π

∫ π
2

0

∑
n∈Ωe(1,0)

Le(n)∏
l=1

exp
[ −∆E(n, 0, l)
4N0 cos2 (np)

]
dnp.

At this point it will be noted that for a fixed np if

∑
n∈Ωe(1,0)

Le(n)∏
l=1

exp
[ −∆E(n, 0, l)
4N0 cos2 (np)

]
(14.50)

can be evaluated in a simple manner than the integral in (14.49) is numerically simple to evaluate.
Consequently we will focus on evaluating (14.50). As a first step, recall that edges are entirely determined
by the states they connect. Because of this characteristic first error events of length Le = 2 can
completely enumerated by considering all possible transient states at time 2 because for a first error
event of length two, it is apparent that σn(1) = 0 and σn(3) = 0 by definition of a first error event.
Consequently the terms in (14.50) that have Le = 2 are given as

∑
n∈Ω2(1,0)

Le(n)∏
l=1

exp
[ −∆E(n, 0, l)
4N0 cos2 (np)

]
=

Ns∑
m=2

exp
[−∆σ(0, m, 0, 0)

4N0 cos2 (np)

]
exp

[−∆σ(m, 0, 0, 0)
4N0 cos2 (np)

]
(14.51)

where we have used the notation ΩLe(1, 0) to denote the set of all error events of length Le. Much like
in Section 13.3.2 vectors can be used to simplify the notation so we define

�Sgb(np) =
[
exp

[−∆σ(0, 1, 0, 0)
4N0 cos2 (np)

]
exp

[−∆σ(0, 2, 0, 0)
4N0 cos2 (np)

]
· · · exp

[−∆σ(0, Ns, 0, 0)
4N0 cos2 (np)

]]
(14.52)

�Sbg(np) =
[
exp

[−∆σ(1, 0, 0, 0)
4N0 cos2 (np)

]
exp

[−∆σ(2, 0, 0, 0)
4N0 cos2 (np)

]
· · · exp

[−∆σ(Ns, 0, 0, 0)
4N0 cos2 (np)

]]
. (14.53)

These vectors (size 1×Ns−1) represent a transition from the correct state (or good state1) to the set of
incorrect states (or bad states) (hence subscript gb) or vice versa (hence subscript bg). Using the vector
notation we have now have

∑
n∈Ω2(1,0)

Le(n)∏
l=1

exp
[ −∆E(n, 0, l)
4N0 cos2 (np)

]
= �Sgb(np)�ST

bg(np). (14.54)

Any first error event that is longer than Le = 2 will dwell within the bad states in between these

1The good and bad notation is borrowed from [Big84]
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transitions. To represent this transition among bad states, define a transition matrix of the form

Sb(np) =


exp

[
−∆σ(2,2,0,0)
4N0 cos2(np)

]
exp

[
−∆σ(2,3,0,0)
4N0 cos2(np)

]
· · · exp

[
−∆σ(2,Ns,0,0)
4N0 cos2(np)

]
exp

[
−∆σ(3,2,0,0)
4N0 cos2(np)

]
exp

[
−∆σ(3,3,0,0)
4N0 cos2(np)

]
...

. . .

exp
[
−∆σ(Ns,2,0,0)
4N0 cos2(np)

]
· · · exp

[
−∆σ(Ns,Ns,0,0)

4N0 cos2(np)

]

 (14.55)

Using this vector notation, the terms in (14.50) that have Le = 2 + k are given as

∑
n∈Ω2+k(1,0)

Le(n)∏
l=1

exp
[ −∆E(n, 0, l)
4N0 cos2 (np)

]
= �Sgb(np)Sb(np)k �ST

bg(np) (14.56)

and consequently (14.50) itself is given

∑
n∈Ωe(1,0)

Le(n)∏
l=1

exp
[ −∆E(n, 0, l)
4N0 cos2 (np)

]
= �Sgb(np)

( ∞∑
k=0

Sb(np)k

)
�ST

bg(np) (14.57)

Using the representation of a powers series gives the closed form result of

∑
n∈Ωe(1,0)

Le(n)∏
l=1

exp
[ −∆E(n, 0, l)
4N0 cos2 (np)

]
= �Sgb(np) (INs−1 − Sb(np))

−1 �ST
bg(np). (14.58)

We now have derived an algorithm to compute the union bound. The code can be summarized in
pseudo code as

Union Bound Computation

• Identify �ST
bg(np), �ST

bg(np), and Sb(np) as a function of np and Eb/N0.

• Choose Eb/N0.

• For m = 1 : Mp (points for numeric integration)

1. np = (m−1)π
2(Mp−1)

2. Compute (INs−1 − Sb(np))
−1

3. Compute Z(np) = �Sgb(np) (INs−1 − Sb(np))
−1 �ST

bg(np)

• Compute Kb
π

∫ π
2

0 Z(np)dnp.
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Figure 14.10: The frame error rate of the 4-PAM OMWM of Section 13.2.2 with �I = 0 from simulation
and from the large frame size analysis. Kb = 200.

Example 14.12: Consider again the 4-PAM OMWM of Section 13.2.2 and assume �I = 0. To compute
the conditional union bound the vectors �ST

bg(np) and �ST
bg(np) and the matrix Sb(np) need to be identified

as a function of np and Eb/N0. To this end we have

�Sgb(np) =
[
exp

[ −4Eb

5N0 cos2 (np)

]
0 0

]
(14.59)

�Sbg(np) =
[
0 exp

[ −4Eb

5N0 cos2 (np)

]
0
]

. (14.60)

and

Sb(np) =


0 exp

[
−9Eb

5N0 cos2(np)

]
exp

[
−Eb

5N0 cos2(np)

]
1 0 0
0 exp

[
−Eb

4N0 cos2(np)

]
exp

[
−9Eb

4N0 cos2(np)

]
 . (14.61)

The conditional union bound and the simulation performance is plotted in Fig. 14.10 for a frame of
Kb = 200 bits. This bound for the infinite frame length is very tight for at moderate SNR and also Kb

does not have to be extremely large for it also to be useful.
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14.3.1 Full Union Bound

Now that the idea of using the error state diagram to enumerate the first error events for �I = 0 is
understood we can generalize this technique to compute the entire union bound. The computation
of entire union bound requires enumeration and averaging of the first error events for all possible
transmitted codewords �I = j. Recall when �I = 0 the first error event was entirely characterized by
a finite state machine that could track the trajectory of the error state σi(k). For considering all
transmitted codewords the analysis must track the trajectory of both the transmitted state, σi(k) and
the error state, σi(k). The error state diagram for this case is formed by associating the transmitted
state and the decoder state into a product state denoted as (σi(k) = ni, σj(k) = nj), ni, nj = 1, Ns. For
R = 1 each product state will have 4 branches exiting the state, each representing the joint transmitted
and decoded bit pair (I(k) = l, Î(k) = m), l, m = 0, 1. The product states (σi, σj) are denoted as good if
σi = σj and bad otherwise. The number of product states for a Ns state trellis code is N2

s among which
Ng = Ns will be good and Nb = Ns(Ns − 1) will be bad.

A first error event can be viewed in this error state diagram as a path that diverges from a good
state into a bad state and moves among the bad states until it transitions back into a good state. Similar
to �I = 0 case Ns additional states are added to error state diagram as absorbing states to represent the
termination of an error event.

Example 14.13: Consider again the OMWM having Ns=4 of Section 13.2.2. Fig. 14.11 shows the state
transition diagram for enumerating the first error events for all possible transmitted codewords for this
modulation. There are four good state and twelve bad states. Each state has four branches leaving the
state.

While this error state diagram is more complicated it’s operation follows in much the same way as
the case for �I = 0 case. There are transitions from the good states to the bad states and vice versa
as for the �I = 0 case. The only difference is that there are Ns good states and Ns(Ns − 1) bad states.
The only major difference is that each of the paths through the trellis accounts for both of the possible
transmitted sequences and the possible error sequences. The union bound wants to consider all the
error sequences while averaging over all the possible transmitted sequences. This averaging requires
each transition to account for the random data bits of the error event. Consequently the error event is
represented transitions to and from the good and bad states with two matrices

Sgb(np)(size Ns × Ns(Ns − 1)) Sbg(np)(size Ns(Ns − 1) × Ns) (14.62)

The entries in these matrices are again of the form

1
2

exp
[−∆σ(i, j, k, l)

4N0 cos2 (np)

]
(14.63)

where recall that the notation (i, j, k, l) is an enumeration of the true transmitted edge and possible
error edge. (1, 2, 1, 1) implies σi(k) = 1, σi(k + 1) = 2, σj(k) = 1, and σj(k + 1) = 1. The 1

2 term takes
into account the random transmitted modulation. For instance, consider error state (1,1) in Fig. 14.11.
The random transmitted bit can cause the transmitted state to either go to state 1 or state 2. The
union bound must provide an average over these two paths and this is accomplished with this 1

2 term.
Likewise there is a Ns(Ns − 1) × Ns(Ns − 1) matrix to represent the transitions within the bad states
and this matrix is again given as Sb(np).

Following steps in the previous section gives an integrand for the first error event that starts in good
state (j1, j1) and ends up in good state (j2, j2) as

∑
n∈Ωe(1,j1,js)

Le(n)∏
l=1

exp
[ −∆E(n, 0, l)
4N0 cos2 (np)

]
=

[
Sgb(np) (INs−1 − Sb(np))

−1 ST
bg(np)

]
j1js

. (14.64)
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Figure 14.11: The error state diagram for the HCV OMWM.
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All error events require all the elements in the matrix in (14.64) to be summed up. Consequently all
first error events can be accounted for as

∑
n∈Ωe(1)

Le(n)∏
l=1

exp
[ −∆E(n, 0, l)
4N0 cos2 (np)

]
= �1T

Ns
Sgb(np) (INs−1 − Sb(np))

−1 ST
bg(np)�1Ns . (14.65)

This implies the complete union bound can be expressed as

P
(
�̂I �= �I

)
≤ Kb

πNs

∫ π
2

0

∑
n∈Ωe(1)

Le(n)∏
l=1

exp
[ −∆E(n, 0, l)
4N0 cos2 (np)

]
dnp.

=
Kb

πNs

∫ π
2

0

�1T
Ns

Sgb(np) (INs−1 − Sb(np))
−1 ST

bg(np)�1Nsdnp. (14.66)

The Ns in the denominator is to take into account the random starting good state. It can be seen that
the algorithm for the complete union bound is essentially the same as the algorithm for the conditional
(�I = 0) union bound with just larger matrices and some extra constants to accomodate all the random
transmitted paths that produce the error events.
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Example 14.14: Consider again the OMWM having Ns=4 of Section 13.2.2. Enumerating the bad error
states as (1,2)=1, (2,1)=1,..., (4,2)=12, the matrices needed for the union bound are given as

Sgb(np) =


W1 W1 0 0 0 0 0 0 0 0 0 0
W1 W1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 W1 W1 0 0 0 0 0 0
0 0 0 0 W1 W1 0 0 0 0 0 0

 , (14.67)

Sbg(np) =


0 0 0 0 0 0 W1 W1 0 0 0 0
0 0 0 0 0 0 W1 W1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 W1 W1

0 0 0 0 0 0 0 0 0 0 W1 W1

 (14.68)

and

Sb(np) =



0 0 0 0 0 0 W2 0 W3 W3 W3 0
0 0 W3 W3 0 0 0 W2 0 0 0 W3

0 0 W2 W3 0 0 0 W3 0 0 0 W3

0 0 0 0 0 0 W3 0 W3 W2 W3 0
0 0 0 0 0 0 W3 0 W3 W3 W2 0
0 0 W3 W3 0 0 0 W3 0 0 0 W2

1 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 W3 0 W2 W3 W3 0
0 0 W3 W2 0 0 0 W3 0 0 0 W3

0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0



(14.69)

where

W1 =
1
2

exp
[ −4Eb

5N0 cos2 (np)

]
W2 =

1
2

exp
[ −9Eb

5N0 cos2 (np)

]
W3 =

1
2

exp
[ −Eb

5N0 cos2 (np)

]
.

The union bound and the simulation performance is plotted in Fig. 14.12 for a frame of Kb = 200 bits.

14.3.2 State Reduction Techniques

The bound on the word error performance for OMWM can be simplified in a variety of ways. There
are in general two aspects to the complexity of calculating the bound

1. The evaluation of Z(np) = �1T
Ns

Sgb(np) (INs−1 − Sb(np))
−1 ST

bg(np)�1Ns . This requires an (Ns −
1)Ns × (Ns − 1)Ns matrix inversion and two matrix multiplies.

2. The evaluation of the integral in (14.66).

In general both of these aspects can be made simpler. The numeric integration is dominated by the val-
ues of np near zero and the computation of Z(np) can be simplified by using state reduction techniques.
The idea of state reduction is that many states in a state diagram are equivalent and can be grouped
together. Since the states are grouped together the size of the state space is significantly reduced and
the computation associated with Z(np) is significantly reduced. This idea of state reduction goes back
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Figure 14.12: The frame error rate of the 4-PAM OMWM of Section 13.2.2 from simulation and from
the large frame size analysis. Kb = 200.
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σ(l) T (l, σ(l)) �̂I(l, σ(l))
1 −2 �I1

2 −3 �I2

3 −4 �I3

4 −6 �I4

Table 14.1: The Viterbi algorithm metrics at time l.

to Boolean logic synthesis and is equally applicable to the Chernoff bound computation. Detailed ref-
erences for these state reduction techniques are given in [SW04, ?].

Example 14.15: Consider again the OMWM having Ns=4. In this case the modulation is entirely
represented by one good state and three bad states with

�Sgb(np) =
[
exp

[ −4Eb

5N0 cos2 (np)

]
0 0

]
(14.70)

�Sbg(np) =
[
0 exp

[ −4Eb

5N0 cos2 (np)

]
0
]

. (14.71)

and

Sb(np) =


0 1

2 exp
[

−Eb
5N0 cos2(np)

]
+ 1

2 exp
[

−36Eb
5N0 cos2(np)

]
exp

[
−Eb

5N0 cos2(np)

]
1 0 0
0 exp

[
−Eb

5N0 cos2(np)

]
1
2 exp

[
−Eb

5N0 cos2(np)

]
+ 1

2 exp
[

−36Eb
5N0 cos2(np)

]


(14.72)

14.4 Other Methods for MLWD for OMWM

Not completed this edition

14.5 Homework Problems

Problem 14.1. Consider the OMWM defined with the trellis given in Fig 14.13. The first component
on the branch label is I(m) and the second component is d̃i(m)

√
Eb. At time l in a Viterbi decoder

for this OMWM the surviving maximum likelihood metrics and sequence is given in Table 14.1. With
Q(l) = 2, find T (l + 1, σ(l + 1)) and �̂Ip(l + 1, σ(l + 1)) for σ(l + 1) ∈ {1, 2, 3, 4}.
Problem 14.2. Kb = 4 bits of the alternate mark inversion OMWM has a trellis description shown in
Fig. 14.14.

a) If the transmitted signal is �I = 0 find all the simple error events for this OMWM. A clear drawing
will suffice for an answer. How many error events out of the 15 possible error events have been
eliminated from the union bound by the concept of the simple error event for this OMWM?

b) Using the concept of a simple error event find the tightest union bound to PW

(
E

∣∣∣�I = 0
)
.
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Figure 14.13: A trellis diagram for a modulation with memory.

Figure 14.14: The trellis diagram for AMI with Kb=4.

c©1996-2004 - Michael P. Fitz - The University of California Los Angeles



• •

• •

• •

σ l( ) σ l +( )1

σ l +( ) =1 1

σ l +( ) =1 2

σ l +( ) =1 3σ l( ) = 3

σ l( ) = 2

σ l( ) = 1
0 0| d

1 1| d

0 0| d

1 1| d0 2| d

1 0| d

382 Maximum Likelihood Sequence Demodulation

Figure 14.15: A trellis diagram for a modulation with memory.

σ(l) T (l, σ(l)) �̂I(l, σ(l))
1 2 �I1

2 3 �I2

3 4 �I3

Table 14.2: The Viterbi algorithm metrics at time l.

Problem 14.3. Consider the orthogonal modulation with memory (OMWM) defined with the trellis
given in Fig 14.15. At time l in a Viterbi decoder for this OMWM, the surviving maximum likelihood
metric and sequence at each state is given in Table 14.2. Assume that d0 = 1, d1 = exp[j2π/3], d2 =

exp[−j2π/3], Eb = 1, and Q(l) = 0.2 + j0.1 find T (l + 1, σ(l + 1)) and �̂I(l + 1, σ(l + 1))
Problem 14.4. Prof. Fitz has four daughters who really enjoy sports and usually play on several teams
at a time. A typical Saturday has multiple games ongoing at various times. On a particular Saturday
the Fitz girls have multiple games ongoing at 8:00AM at locations A, B, and C, at 10:00AM at locations
D and E, at 12:00PM at locations F, G, H, I, and at 2:00PM at locations J, K, and L. Professor Fitz
would like to make it to one game at each time and yet since he is very cheap he would like to drive the
shortest distance from home getting to the games and back home again. The important distances are
given in Table 14.3. Prof. Fitz was completely flummoxed by this problem but you immediately realize
that the problem can be solved with the Viterbi algorithm.

a) Identify the trellis diagram (a directed graph) for this problem of getting from home to four
sporting events and back home again. Associate a distance with each edge of the directed graph.

b) Enumerate out an algorithm for finding the shortest path that does not require a brute force
search of all the possible game times and locations. Using this algorithm find the shortest path
to see four games and provide the locations where the four games will be watched.

Problem 14.5. CC all zeros
Problem 14.6. CC reduced state
Problem 14.7. TCM all zeros
Problem 14.8. TCM reduced state
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A B C D E F G H I J K L

Home 5 3 7 6 9 1
A 2 4
B 1 7
C 6 8
D 1 1 11 9
E 8 3 5 9
F 5 5 8
G 7 6 5
H 1 2 4
I 5 2 2

Table 14.3: The important distances to sporting events for the Fitz daughters’ Saturday games.

14.6 Mini-Projects

14.6.1 Project 1

Project Goals

1. Engage in an implementation of a Viterbi demodulator for an orthogonal modulation with memory
(OMWM).

Consider a OMWM consisting of a four state trellis code (Ns=4) using 4PAM modulation (Ms=4) as
proposed by Ho, Cavers and Varaldi [HCV93]. The modulation updates are given in Table 14.4. Assume
Kb = 198, Eb = 1. The OMWM produces a frame of Nf = 200 symbols. Assume further that the
modulation starts with σ(1) = 1 and that 2 symbols are used at the end to terminate the trellis at
σ(201) = 1.

a) Draw a trellis diagram and identify the additive metric for each branch used in the Viterbi algo-
rithm implementation of MLWD.

b) Detail the termination sequence that will happen for each of the modulation states.

c) Describe the maximum likelihood sequence demodulation given the 200 matched filter outputs. In
particular use the data in project1.mat and produce the MLSD word estimate. The file contains
the 200 matched filter outputs.

σ(l + 1) = g1 (I(l), σ(l)) J(l) = g2 (I(l), σ(l)) Dz(l) = a(J(l))
I(l) I(l) J(l) Dz(l)

State, σ(l) 0 1 State, σ(l) 0 1 0 −3/
√

5
1 1 2 1 0 2 1 −1/

√
5

2 3 4 2 3 1 2 1/
√

5
3 1 2 3 2 0 3 3/

√
5

4 3 4 4 1 3

Table 14.4: The finite state machine description of an example trellis code.
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14.6.2 Project 2

Project Goals

1. Engage in an implementation of a Viterbi demodulator for an OMWM.

2. Look at space–time trellis coding as a specific example of an OMWM.

In this problem we examine a packet based wireless transmission system with M -ary linear modulation
that uses multiple transmit antennas. The complex envelope of the transmitted signal from the ith

antenna has the form

Xzi(t) =
Nf∑
l=1

Di(l)u(t − (l − 1)T ) (14.73)

where Di(l) is a complex modulation symbol with |Di| ≤ 1, Nf is the length of the packet, and u(t) is
the pulse shape. The received signal has the form

Yz(t) =
Lt∑
i=1

ciXzi(t) + W (t) (14.74)

where ci are the known complex channel gains for the ith antenna and W (t) is a complex AWGN of
one-sided spectral density of N0, i.e. RW (τ) = N0δ(τ).

Assume that Lt = 2 and recall from Problem 9.10 that space–time transmission can be viewed as a
linear modulation where the constellation at time l is a function of Di(l) and ci i = 1, 2. Consider the
R = 1 bit/symbol 8 state space–time trellis code proposed by Yan and Blum [YB02]:

σ(l + 1) = g1 (I(l), σ(l)) (D1(l) D2(l)) = g2 (I(l), σ(l))
I(l) I(l)

State, σ(l) 0 1 State, σ(l) 0 1
1 1 2 1 (11) (−1 − 1)
2 3 4 2 (1 − 1) (−11)
3 5 6 3 (−11) (1 − 1)
4 7 8 4 (−1 − 1) (11)
5 1 2 5 (−1 − 1) (11)
6 3 4 6 (−11) (1 − 1)
7 5 6 7 (1 − 1) (−11)
8 7 8 8 (11) (−1 − 1)

Assuming a frame of 200 symbols in length where σ(1) = 1 and that 3 symbols are used at the end to
terminate the trellis at σ(201) = 1.

a) Define the VA algorithm by identifying the effective constellation points as a function of the
channel gains, c1 and c2 and (D1(l) D2(l)). Draw a trellis diagram and identify the additive
metric for each branch used in the Viterbi algorithm implementation of MLWD.

b) Describe the maximum likelihood word demodulation given the 200 matched filter outputs and
the known channel state. In particular use the data in framemfstc.mat and produce the MLWD
estimate. The file contains both the channel coefficients and the 200 matched filter outputs.
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Appendix A

Detection Theory

This appendix summarizes several important results in the theory of optimal detection. This theory
complements a graduate treatment of digital communications. Specifically this Appendix considers the
optimum demodulation of one symbol of a binary digital modulation in additive Gaussian noise. While
this case is far from general, it illustrates many important issues. The results presented here are derived
from Bayesian decision/detection theory. The derivations presented are limited to binary modulations
but the concepts are easily generalized for M-ary modulations. More details and examples for this
material can be obtained from a variety of textbooks [VT68, Poo88].

A.1 Binary Hypothesis Testing

In binary digital communications, a demodulator’s job is to make an optimum or near optimum estimate
of which of two signals were transmitted by examining distorted versions of the transmitted waveform.
This model only considers one symbol of a binary modulated waveform, but the results are easily
extended to sequences of modulated symbols. Ω is the signal space with two mutually exclusive
and collectively exhaustive sets of elements corresponding to the two possible hypotheses, �M ∈ Ω0 or
�M ∈ Ω1. The vector �M corresponds to a possible parameterization of the transmitted signal, i.e., �x

(
�M

)
or x

(
t, �M

)
. In general, �M is a nuisance parameter associated with the transmitted signal (an example

is the random phase in noncoherent detection see Section A.4). Associated with the transmitted signal
space is an a priori probability of the symbol being transmitted, denoted πi = P

(
�M ∈ Ωi

)
, i = 0, 1.

ΩY is the observation space (i.e., the demodulator input) we denote the observations with �Y or Y (t).
The distortion of the channel can be represented by conditional probability distribution1 P

(
�Y

∣∣∣ �M
)

defined on ΩY . The decision space has two elements, H0 and H1, corresponding to the two possible
transmitted waveforms. The decision process is represented by a probabilistic decision rule denoted
δ
(
Hi

∣∣∣�Y )
. Two important characteristics of this probabilistic decision rule are

0 ≤ δ
(
H0

∣∣∣�Y )
≤ 1 (A.1)

and

δ
(
H0

∣∣∣�Y )
+ δ

(
H1

∣∣∣�Y )
= 1. (A.2)

1Since we want to keep the discussion generic we use P
(

�Y
∣∣∣ �M

)
to represent either a conditional PDF or a conditional

PMF.
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Figure A.1: Diagram of the binary detection mathematical model.

Fig. A.1 shows the mathematical model for this decision process. The model has been developed without
specifications on the signal and observation spaces and the nuisance parameters. These parameters are
specified as needed in the following sections.

Given this mathematical model, the minimum probability of bit error decoding rule can be derived.
The goal in this section is to choose a decision rule as a function of an observed �Y = �y that minimizes
the bit error probability (BEP). Using total probability, the BEP is expressed as

PB (E) = P
(
H0, �M ∈ Ω1

)
+ P

(
H1, �M ∈ Ω0

)
(A.3)

= π1

∫
ΩY

δ (H0 |�y )P�Y

(
�y

∣∣∣ �M ∈ Ω1

)
d�y + π0

∫
ΩY

δ (H1 |�y )P�Y

(
�y

∣∣∣ �M ∈ Ω0

)
d�y

Using (A.3), the BEP is expressed as

PB (E) = π1 +
∫

ΩY

δ (H1 |�y )
[
π0P�Y

(
�y

∣∣∣ �M ∈ Ω0

)
− π1P�Y

(
�y

∣∣∣ �M ∈ Ω1

)]
d�y

= π1 +
∫

ΩY

δ (H1 |�y ) g (�y) d�y (A.4)

where

g (�y) =
[
π0P�Y

(
�y

∣∣∣ �M ∈ Ω0

)
− π1P�Y

(
�y

∣∣∣ �M ∈ Ω1

)]
. (A.5)

Realize that πi ≥ 0 and is not a function of δ (Hi |�y ), so the BEP is minimized by making the integral in
(A.5) as small as possible. Since the decision rule satisfies 0 ≤ δ (Hi |�y ) ≤ 1, the integral is minimized
by making δ (Hi |�y ) = 0 when g (�y) > 0, δ (Hi |�y ) = 1 when g (�y) < 0, and δ (Hi |�y ) arbitrary when
g (�y) = 0. This decision rule is expressed as

π0P�Y

(
�y

∣∣∣ �M ∈ Ω0

) H0
>
<
H1

π1P�Y

(
�y

∣∣∣ �M ∈ Ω0

)
(A.6)

It is interesting to note that the decoding model allows for a probabilistic decision rule but the resulting
decision rule is a deterministic function of �y. If both sides of are divided2 by P�Y (�y) and noting

P
(
Hj

∣∣∣�Y = �y
)

=
πjP�Y

(
�y

∣∣∣ �M ∈ Ωj

)
P�Y (�y)

, (A.7)

2P�Y (�y) is nonzero for any �Y = �y observed at the demodulator input.
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the decoding rule in (A.6) is equivalent to a rule that chooses the most likely hypothesis given the
observed �y. This rule, i.e.,

P
(
H0

∣∣∣�Y = �y
) H0

>
<
H1

P
(
H1

∣∣∣�Y = �y
)

(A.8)

is referred to as the maximum a posteriori (MAP) decision rule.

A.2 Karhunen Loève Expansion

The Karhunen-Loève (KL) expansion is a mathematical tool that permits a random process to be
represented using random vector spaces. The expansion first uses Mercer’s Theorem to show that
a covariance function can be expanded into a sum involving the associated eigenfunctions. These
eigenfunctions are then the basis for the vector space (KL) expansion of the random process. This
expansion is theoretically advantageous since it permits a derivation of the optimal demodulators for
digital communication signals. Unfortunately, the practicality of the expansion is limited due to the
difficulty in finding the appropriate set of orthonormal basis function. A good treatment of the KL
expansion is given in [VT68].

Theorem A.1 A covariance function, RN (τ), is a non-negative definite kernel for any g ∈ L2[a, b]3

Proof: Without loss of generality assume N(t) is a zero mean random process. A non-negative definite
kernel implies

KN (g, g) =
∫ b

a

∫ b

a
g∗(t)RN (t, s)g(s)dsdt ≥ 0. (A.9)

Using the definition of the covariance function and that g ∈ L2[a, b] gives

KN (g, g) =
∫ b

a
g∗(t)

∫ b

a
E[x(t)x∗(s)]g(s)dsdt

= E

[∣∣∣∣∫ b

a
g∗(t)x(t)dt

∣∣∣∣2
]
≥ 0. � (A.10)

Theorem A.2 (Mercer) If a linear transformation generated by the continuous Hermitian kernel
RN (t1, t2) is non-negative definite, then RN (t1, t2) can be expanded into the uniformly convergent series

RN (t1, t2) =
∞∑

k=1

λkΨk(t1)Ψ∗
k(t2) t1, t2 ∈ [a, b] (A.11)

where Ψk(ti)’s are the orthonormal eigenfunctions of RN (t1, t2) and λk’s are the eigenvalues which are
solutions of the following integral equation:

λkΨk(t1) =
∫ b

a
RN (t1, t2)Ψ∗

k(t2)dt2 a ≤ t1 ≤ b. (A.12)

3g ∈ L2[a, b] implies that
∫ b

a
|g(t)|2dt < ∞.
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Proof: See [Gre81] �

Theorem A.3 (Karhunen-Loève Expansion) Suppose that N(t), t ∈ [a, b] is a complex, zero mean,
second order random process with covariance function RN (t1, t2) continuous on [a, b]× [a, b] (i.e., N(t)
is mean square continuous on [a, b]), then N(t) can be expanded into the mean square convergent series

N(t) =
∞∑

k=1

NkΨk(t) a ≤ t ≤ b (A.13)

where

Nk =
∫ b

a
N(t)Ψ∗

k(t)dt. (A.14)

Proof: Recall mean square convergence implies

lim
N→∞

E

[
|N(t) −

N∑
k=1

NkΨk(t)|2
]

= 0. (A.15)

This limit can be broken into three terms

E

[
|N(t) −

N∑
k=1

NkΨk(t)|2
]

= E [N(t)N∗(t)] − 2�
{

E

[
N(t)

N∑
k=1

N∗
kΨ∗

k(t)

]}

+E

 N∑
j=1

NjΨj(t)
N∑

k=1

NkΨk(t)


= Z1 − Z2 + Z3. (A.16)

These three components are reduced as

1.

Z1 = lim
N→∞

E [N(t)N∗(t)] = RN (t, t) (A.17)

2.

Z2 = lim
N→∞

2�
{

E

[
N(t)

N∑
k=1

N∗
kΨ∗

k(t)

]}
. (A.18)

Using (A.14) gives

Z2 = lim
N→∞

2�
{

E

[
N(t)

N∑
k=1

∫ b

a
N∗(s)Ψk(s)dsΨ∗

k(t)

]}

= lim
N→∞

2�
{

N∑
k=1

∫ b

a
E [N(t)N∗(s)] Ψk(s)dsΨ∗

k(t)

}
. (A.19)

By Mercer’s Theorem this is given as

Z2 = lim
N→∞

2�
{

N∑
k=1

∫ b

a

∞∑
i=1

λiΨi(t)Ψ∗
i (s)Ψk(s)dsΨ∗

k(t)

}
. (A.20)
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The orthogonality of the basis functions and Mercer’s theorem reduce this to

Z2 = lim
N→∞

2�
{

N∑
k=1

λkΨk(t)Ψ∗
k(t)

}
= 2RN (t, t). (A.21)

3.

Z3 = lim
N→∞

E

 N∑
j=1

NjΨj(t)
N∑

k=1

N∗
kΨ∗

k(t)

 = lim
N→∞

N∑
j=1

Ψj(t)
N∑

k=1

E [NjN
∗
k ] Ψ∗

k(t)

= lim
N→∞

N∑
k=1

λkΨk(t)Ψ∗
k(t). (A.22)

Using these three results give the limit as

lim
N→∞

E

[
|N(t) −

N∑
k=1

NkΨk(t)|2
]

= −RN (t, t) + lim
N→∞

N∑
k=1

λkΨk(t)Ψ∗
k(t) (A.23)

which is zero as a consequence of Mercer’s Theorem. �

A.2.1 Characteristics of the KL Expansion

1. The KL expansion coefficients are orthogonal random variables, i.e.,

E
[
NiN

∗
j

]
= E

[∫ b

a
N(t1)Ψ∗

i (t1)dt1

∫ b

a
N(t2)Ψ∗

j (t2)dt2

]
(A.24)

=
∫ b

a
Ψ∗

i (t1)
∫ b

a
RN (t1, t2)Ψj(t2)dt2dt1 (A.25)

=
∫ b

a
Ψ∗

i (t1)λjΨj(t1)dt1 = 0 ∀ i �= j. (A.26)

This characteristic is the power of the KL expansion compared to other orthonormal expansions.

2. The function Ψk(t) (the eigenfunctions) define a coordinate system much the same way as eigen-
vectors do in linear algebra.

3. The eigenvalues are the average energy in that coordinate, i.e., E[|Ni|2] = λi. This implies that
λi is real and since RN (t1, t2) is non-negative definite λi ≥ 0.

4. The sum of the eigenvalues is the average energy of N(t) on the interval [a, b]

E

[∫ b

a
|N(t)|2dt

]
=

∫ b

a
RN (t, t)dt =

∫ b

a

∞∑
k=1

λk|Ψk(t)|2dt =
∞∑

k=1

λk. (A.27)

5. If N(t) is a Gaussian process then the coefficients of the KL expansion are statistically independent
Gaussian random variables. This characteristic of the KL expansion is due to linear transforma-
tions of a Gaussian random process producing another Gaussian random process and the fact that
orthogonality and independence are equivalent for Gaussian random variables. Consequently the
KL expansion reduces a Gaussian random process to a Gaussian random vector with independent
components. This proves to be the characteristic most valuable in the derivation of optimum
signal processors.
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6. If RN (t1, t2) is positive definite then the ψi(t) are a set of complete orthonormal basis functions.
Completeness implies that any deterministic signal, s(t), defined on [a, b] can be represented by
the ψi(t) as

s(t) =
∞∑

k=1

skψk(t) a ≤ t ≤ b (A.28)

with

sk =
∫ b

a
s(t)ψ∗

k(t)dt. (A.29)

It should be noted that equality is in the L2 sense.

Example A.1: The correlation function of a sinusoid with a random phase has the form

RN (t1, t2) = cos(2πf(t1 − t2)). (A.30)

For simplicity take [a,b] = [0, 1
f ] then it is easy to show that only two nonzero eigenvalues exist and the

associated eigenfunctions are

ψ1(t) =
√

2f cos(2πft) (A.31)
ψ2(t) =

√
2f sin(2πft) (A.32)

with

λ1 = λ2 =
1
2
. (A.33)

N(t) is represented as

N(t) = NI

√
2f cos(2πft) + NQ

√
2f sin(2πft). (A.34)
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Example A.2: Recall AWGN is an approximation to a random process with a continuous covariance
function. Since AWGN has

RN (t1, t2) = N0δ(t1 − t2) (A.35)

it is useful to examine the KL expansion knowing the discontinuous correlation function is only due
to the mathematical modeling of wideband noise. The integral equation defining the KL expansion of
AWGN is given by

λkψk(t1) =
∫ b

a
N0δ(t1 − t2)ψk(t2)dt2 (A.36)

= N0ψk(t1). (A.37)

Consequently, any orthonormal expansion is the KL expansion for AWGN and the eigenvalues are
λi = N0. It is interesting to note that the KL expansion of AWGN and Mercer’s theorem imply that

δ(t1 − t2) =
∞∑

k=1

ψk(t1)ψk(t2) t1, t2 ∈ [a, b]. (A.38)

Other examples of KL expansions for random processes commonly used in the analysis of communication
systems are given in [VT68].

A.3 Coherent Detection

This section will review the optimum demodulator of binary signals in additive Gaussian noise where
all parameters of the two possible signals are known. A great deal of insight into the real problems in
communication system design is gained from this exercise. A simple model of this problem is given as:

1. x0 (t) and x1 (t) t ∈ [0, Tp] are the two possible finite energy, complex baseband transmitted signals.
There are no nuisance parameters, so Ωj = {xj (t)}.

2. The channel is modeled as frequency flat with propagation delay τp, a carrier phase rotation of
φp, and propagation loss Lp.

3. The received signal is corrupted by an additive complex Gaussian baseband noise, Nz (t), with a
positive definite correlation function given by CNz (t, u).

Consequently, the input to the demodulator has the form

Yz (t) = xj (t − τp)Lp exp [jφp] + Nz (t) (A.39)

The derivation in the remainder of this section does not discuss several mathematical technicalities
(e.g., singular detection), since these technicalities detract from a fluid presentation of the main ideas.
A more detailed derivation of optimum decoding procedures is available in [VT68, Poo88].

The minimum BEP decoder satisfies (A.6), but an equivalent form of this decoding rule is obtained
by forming the likelihood function

L
(

�Y
)

=
f�Y (�y |H1 )
f�Y (�y |H0 )

(A.40)
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and making a threshold test

L
(

�Y
) H0

>
<
H1

π0

π1
. (A.41)

The computing of the likelihood function is trivial if the observations of vectors. For the case of
continuous time observations the computing of the likelihood function is more involved and requires
both the KL expansion and Grenander’s Therorem.

Theorem A.4 (Grenander) Suppose that �YN is a continuous random vector under H0 and H1 with
a PDF f�YN

(�yN |Hi ), for each value of N and define a vector likelihood function LN

(
�Y

)
on ΓY as

LN

(
�Y

)
=

f�YN
(�y |H1 )

f�YN
(�y |H0 )

. (A.42)

If LN (�Y ) is nonsingular for each N then

lim
N→∞

LN

(
�Y

)
= L

(
�Y

)
in probability. (A.43)

Proof: See [Gre81] �

This theorem enables the computing of the likelihood ratio by first truncating the vector representing
�Y (generated by the KL expansion) and forming a likelihood ratio, then taking the limit.

This technique is easily applied to this coherent detection problem since the received signal has the
form in (A.39) and the KL expansion of Nz (t) can be used to represent Y (t) in terms of a sequence of
random variables. This representation is given as

Y (t) = lim
N→∞

N∑
i=1

YiΨi (t) = lim
N→∞

N∑
i=1

(
Lpe

jφpxij + Ni

)
Ψi (t) (A.44)

where

xij =
∫ b

a
xj(t − τp)Ψ∗

i (t) dt. (A.45)

Since the noise is Gaussian, the coefficients in this expansion are independent Gaussian random variables
with E (Yi) = Lpe

jφpxij and var (Yi) = λi where λi is the ith eigenvalue associated with the correlation
function RN (t, u). Since Yi, for i = 1, . . . , N is a Gaussian vector, the corresponding conditional
density function, and hence the N term likelihood ratio, can be expressed in closed form for finite N .
The conditional PDF of the truncated vector is given by

f�Yn
(�yN |Hj ) = f�Yn

(y1, . . . , yN |Hj) =
1

πN
∏N

i=1 λi

exp

(
−

N∑
i=1

∣∣yi − Lpe
jφpxij

∣∣2
λi

)
(A.46)

and the likelihood ratio for the truncated vector is given by

LN

(
�Y

)
= exp

(
−

N∑
i=1

∣∣yi − Lpe
jφpxi1

∣∣2
λi

+
N∑

i=1

∣∣yi − Lpe
jφpxi0

∣∣2
λi

)
(A.47)
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This can be algebraically reduced to

LN

(
�Y

)
= exp

(
2�

{
Lpe

jφp

N∑
i=1

yi (xi1 − xi0)
∗

λi

}
+ L2

p

N∑
i=1

|xi0|2 − |xi1|2
λi

)
(A.48)

The second term in the exponent is not a function of �Y so the optimum demodulator consists of the
following test

exp

(
2�

{
Lpe

jφp

N∑
i=1

yi (xi1 − xi0)
∗

λi

}) H1
>
<
H0

R
(
�x1, �x0, �Λ, Lp, π0

)
(A.49)

At this point the limit of this ratio can be taken and by Grenander’s Theorem, this limit converges to
the optimum demodulator. A more useful form for the limit is obtained by Pitcher’s Theorem.

Theorem A.5 (Pitcher) Defining

qj (t) = lim
N→∞

N∑
i=1

xij

λi
Ψi (t) = lim

N→∞

N∑
i=1

qijΨi (t) (A.50)

and assuming that the support of xj(t − τp) is contained in [a, b], then

i) The optimum filter is defined by the integral equation∫ b

a
RNz (t, u) qj (u) du = xj (t − τp) , (A.51)

ii) The optimum filtering operation is

lim
N→∞

N∑
i=1

yix
∗
ij

λi
=

∫ b

a
yz (t) q∗j (t) dt, (A.52)

iii) The optimum threshold in the threshold test is

lim
N→∞

R
(
�x1, �x0, �Λ, Lp, π0

)
= exp

(
L2

p

(∫ b

a
x1 (t − τp) q∗1 (t) dt −

∫ b

a
x0 (t − τp) q∗0 (t) dt

))
π0

π1

= R (x1 (t) , x0 (t) , RNz (τ) , Lp, π0) . (A.53)

Proof:

i) Using Mercer’s theorem in the integral gives∫ b

a
RN (t, u) qj (u) du =

∫ b

a

∞∑
k=1

λkΨk (t) Ψ∗
k (u)

∞∑
i=1

xij

λi
Ψi (u) du

=
∞∑

k=1

λkΨk (t)
∞∑
i=1

xij

λi

∫ b

a
Ψ∗

k (u) Ψi (u) du

=
∞∑

k=1

xkjΨk (t)

= xj (t − τp) (A.54)
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ii)

lim
N→∞

N∑
i=1

yix
∗
ij

λi
= lim

N→∞

N∑
i=1

∫ b

a
yz (t) Ψ∗

i (t) dtq∗ij

=
∫ b

a
yz (t) q∗j (t) dt (A.55)

iii)

lim
N→∞

N∑
i=1

xijx
∗
ij

λi
= lim

N→∞

N∑
i=1

∫ b

a
xj (t − τp) Ψ∗

i (t) dtq∗ij

=
∫ b

a
xj (t − ε) q∗j (t) dt. � (A.56)

This property implies that the optimum receiver has the form

exp
(

2Lp�
{

e−jφp

∫ b

a
yz (t) [q1 (t) − q0 (t)]∗ dt

}) H1
>
<
H0

R (x1 (t) , x0 (t) , RNz (τ) , Lp, π0) . (A.57)

Since the natural log is a monotonic function, taking the log of both sides of the threshold test simplifies
the expression. Consequently the optimum demodulator can equivalently calculate the log-likelihood
function and compare it to a threshold. The optimum demodulator satisfies the following modified
threshold test

�
{

e−jφp

∫ b

a
yz (t) [q1 (t) − q0 (t)]∗ dt

} H1
>
<
H0

1
2Lp

log [R (x1 (t) , x0 (t) , RN (τ) , Lp, π0)] = R. (A.58)

It is worth noting that

R =
Lp

2

(∫ b

a
u1 (t − τp) q∗1 (t) dt −

∫ b

a
u0 (t − τp) q∗0 (t) dt

)
+

1
2Lp

log
(

π0

π1

)
. (A.59)

The resulting form of the optimum demodulator computes the correlation between the received wave-
form and a waveform that is a function of the pulse shapes and the noise statistics. This is a generalized
matched filtering operation. The output of this correlation is derotated (in phase) by φp. The real part
of the derotated value is compared to a threshold to produce the binary decisions. It should be noted that

Q1 =
∫ b

a
Yz (t) q∗1 (t) dt (A.60)

Q0 =
∫ b

a
Yz (t) q∗0 (t) dt (A.61)

are sufficient statistics for the optimum coherent binary detection problem considered in this section.
This characteristic is the major contribution of Pitcher’s theorem; the continuous time observation
yz(t) (an uncountable number of random variables) can be reduced to two random variables without
any loss of information about the transmitted information bit. This idea is what makes implementation
of optimum demodulators for digital communications in the presence of additive Gaussian noise feasible.
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A.3.1 Coherent Detection in AWGN

Results for the AWGN channel can be greatly simplified and an intuitive demodulation structure results.
Recall AWGN is characterized by

RNz (τ) = N0δ(τ). (A.62)

Again the AWGN model does not have a continuous correlation function but the model is a mathematical
approximation of a noise that does have a continuous correlation function. A more mathematical
rigorous derivation using the Weiner process is given in [Poo88]. The generalized matched filter for
AWGN will satisfy the following integral equation∫ b

a
N0δ(t − u)qj(u)du = N0qj(t) = xj(t − τp). (A.63)

The matched filter for AWGN is given as

qj(t) =
1

N0
xj(t − τp). (A.64)

This property implies that the optimum receiver has the form

exp

(
2Lp

N0
�

{
e−jφp

∫ b

a

yz (t) [x1 (t − τp) − x0 (t − τp)]
∗ dt

}) H1
>
<
H0

exp

(
L2

p

N0

(∫ b

a

|x1 (t − τp)|2 dt

))
(A.65)

× exp

(
−L2

p

N0

(∫ b

a

|x0 (t − τp)|2 dt

))
π0

π1
.

Noting that ∫ b

a
|xj (t − τp)|2 dt = Ej (A.66)

Rearranging gives the matched filter output/energy correction formulation that is used throughout this
text, i.e.,

exp

(
2Lp

N0
�

{
e−jφpQ1

}
−

L2
pE1

N0

)
π1

H1
>
<
H0

exp

(
2Lp

N0
�

{
e−jφpQ0

}
−

L2
pE0

N0

)
π0. (A.67)

A.4 Noncoherent Detection

Noncoherent detection typically refers to detection where no phase estimation is attempted. While the
performance of noncoherent detection in AWGN is lower than coherent detection noncoherent detection
is often used in practical communications systems. The same signal model is retained, i.e.,

Yz (t) = Lpxj (t) ejφp + Nz (t) (A.68)

except that φp is assumed unknown and uniformly distributed in [−π, π]. Consequently, using the mod-
els in Section A.1 implies that Ωj =

{
uj (t) ejφp , φp ∈ [−π, π]

}
, i.e., φp is the nuisance parameter in the

detection problem. The likelihood ratio is now given using total probability as

L
(

�Y
)

=
f�Y (�y |x (t, m) ∈ Ω1 )
f�Y (�y |x (t, m) ∈ Ω0 )

=
1
2π

∫ π
−π fY

(
�y

∣∣x1(t − τp)ejφp
)
dφp

1
2π

∫ π
−π fY

(
�y

∣∣x0(t − τp)ejφp
)
dφp

(A.69)
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Grenander’s theorem can again be used to evaluate (A.69) by truncating the KL expansion and exam-
ining the likelihood function for this truncated sequence, i.e.,

LN

(
�Y

)
=

1
2π

∫ π

−π
exp

(
−

N∑
i=1

∣∣yi − Lpe
jφpxi1

∣∣2
λi

)
dφp

1
2π

∫ π

−π
exp

(
−

N∑
i=1

∣∣yi − Lpe
jφpxi0

∣∣2
λi

)
dφp

. (A.70)

Mulitplying out the terms in the argument of the exponential and grouping the terms that depend on
both yz (t) and φp, the optimum demodulator for the truncated vector is then given as

LN

(
�Y

)
=

1
2π

∫ π

−π
exp

(
2�

{
Lpe

jφp

N∑
i=1

yix
∗
i1

λi

})
dφp

1
2π

∫ π

−π
exp

(
2�

{
Lpe

jφp

N∑
i=1

yix
∗
i0

λi

})
dφp

H1
>
<
H0

R
(
�x1, �x0, �Λ, Lp, π0

)
. (A.71)

Using Pitcher’s property and Grenander’s theorem again, the optimum demodulator converges to

1
2π

∫ π

−π
exp

(
2�

{
Lpe

jφp

∫ b

a
yz (t) q∗1 (t) dt

})
dφp

1
2π

∫ π

−π
exp

(
2�

{
Lpe

jφp

∫ b

a
yz (t) q∗0 (t) dt

})
dφp

H1
>
<
H0

R (x1 (t) , x0 (t) , RNz (τ) , Lp, π0) . (A.72)

Using the definition of I0 (x) [Ae72] one gets

I0

(
2Lp

∣∣∣∣∫ b

a
yz (t) q∗1 (t) dt

∣∣∣∣)
I0

(
2Lp

∣∣∣∣∫ b

a
yz (t) q∗0 (t) dt

∣∣∣∣) =
I0 (2Lp |q1|)
I0 (2Lp |q0|)

H1
>
<
H0

R (x1 (t) , x0 (t) , RNz (τ) , Lp, π0) . (A.73)

A.4.1 Noncoherent Detection In AWGN

Results for the AWGN channel can be greatly simplified and an intuitive demodulation structure results.
Recall AWGN is characterized by

RNz (τ) = N0δ(τ). (A.74)

The generalized matched filter for AWGN will satisfy the following integral equation∫ b

a
N0δ(t − u)qj(u)du = N0qj(t) = xj(t − τp). (A.75)

The matched filter for AWGN is given as

qj(t) =
1

N0
xj(t − τp). (A.76)

This property implies that the optimum receiver noncoherent detection in AWGN has the form

I0

(
2Lp

N0

∣∣∣∫ b
a yz (t) x∗

1 (t − τp) dt
∣∣∣)

I0

(
2Lp

N0

∣∣∣∫ b
a yz (t) x∗

0 (t − τp) dt
∣∣∣) =

I0

(
2Lp

N0
|q1|

)
I0

(
2Lp

N0
|q0|

) H1
>
<
H0

exp

(
L2

p(E1 − E0)
N0

)
π0

π1
. (A.77)
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Appendix B

Minimum Mean Square Error
Estimation

This appendix summarizes several important results for minimum mean square error (MMSE) esti-
mation. Detailed results and detailed proofs for this material can be obtained from a wide variety of
textbooks [KSH00, Poo88, Sch91, VT68]. The results needed for this text correspond to situations
where the observations are vectors of length N or an infinite time series. The problem notation is given
as

• The observations will be denoted �Y or Y (k) where k is the discrete time index.

• The desired output is B or B(k).

• The estimator is denoted as B̂ or B̂(k).

• The error is denoted as E = B − B̂ or E(k) = B(k) − B̂(k).

Minimum mean square estimation is a Bayesian estimator that minimizes the cost function E
[
|E|2

]
or

E
[
|E(k)|2

]
Property B.1 The unconstrained MMSE estimator is the conditional mean estimator, i.e.,

B̂ = E
[
B

∣∣∣�Y ]
B̂(k) = E

[
B(k)

∣∣∣�Y ]
(B.1)

Linear estimation is often used in practice because it is optimal (with Gaussian signals and noise) or
the complexity is managable. Linear estimation usually occurs when the random observations and de-
sired output are zero mean signals. If non-zero means exist then estimators have an affine characteristic.
The linear estimator is given as

B̂ = �wH �Y B̂(k) =
∑

l

w∗(l)Y (k − l) (B.2)

Property B.2 The linear MMSE estimator exists if and only if E [EZ∗] = 0 where Z = �HH �Y .

This property states that the error resulting from MMSE linear estimation is orthogonal to any linear
function of the observations. A useful special case of this property is

Property B.3 The MMSE estimator exists if and only if E
[
E�Y ∗

i

]
= 0 for any i.
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Stacking this orthogonality condition for all of the observed data results in the Wiener-Hopf equations

E
[
E�Y H

]
= �0T

N = E
[
B�Y H

]
− �wHE

[
�Y �Y H

]
. (B.3)

Rearranging and solving gives

�wH = E
[
B�Y H

] (
E

[
�Y �Y H

])−1
(B.4)

The minimum error is also given as

E
[
|E|2

]
= E

[
|B|2

]
− E

[
B�Y H

] (
E

[
�Y �Y H

])−1
E

[
�Y B∗

]
(B.5)

If we consider the case of the observations and the desired output being jointly stationary time series
the orthogonality condition becomes

0 = E

[(
B(k) −

∑
l

w(l)Y (k − l)

)
Y (i)∗

]
∀i (B.6)

and Wiener-Hopf equations then become

E [B(k)Y (i)∗] =
∑

l

w(l)E [Y (k − l)Y (i)∗] ∀i (B.7)

RBY (m) =
∑

l

w(l)RY (m − l) ∀m. (B.8)

Note that this corresponds to an infinte number of equations and an infinite number of unknowns. A
more intuitive solution can be obtain by taking the Fourier transform of both sides. This results in

SBY

(
ej2πf

)
= W

(
ej2πf

)
SY

(
ej2πf

)
(B.9)

where

W
(
ej2πf

)
=

∑
k

w(k)ej2πfk SY

(
ej2πf

)
=

∑
k

RY (k)(k)ej2πfk. (B.10)

Consequently we have

W
(
ej2πf

)
=

SBY

(
ej2πf

)
SY (ej2πf )

w(k) =
∫ 0.5

−0.5
W

(
ej2πf

)
ej2πfkdf (B.11)

This type of a filter is often referred to as noncausal Wiener-Kolmogorov filter.
Here we consider the concept of causal (anti-causal) Wiener-Kolmogorov filters. This paragraph will

summarize the results for causal filters as causal filters are more commonly implemented in practice,
but the results are easily redone for anti-causal filters (which is actually the main result we will need in
this text). Two characteristics enable causal filtering

1. Any correlation function can be decomposed into a causal and an anti-causal factorization (spectral
factorization).

2. If inputs into a MMSE filter are white then the optimal unconstrained filter can be truncated
(either causally or anti-causally) and the orthogonality conditions are satisfied.
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The procedure for finding causal filters is summarized as 1) form a spectral factorization of the input 2)
use the spectral factorization to causally whiten the input, and 3) form the unconstrained MMSE filter
for the whitened input and truncate. The important first step is the spectral factorization theorem.

Theorem B.1 (Spectral Factorization) If the power spectrum of a discrete random process, SX

(
ej2πf

)
,

does not go to zero then

SX

(
ej2πf

)
= γxF−

x

(
ej2πf

)
F+

x

(
ej2πf

)
(B.12)

where F−
x

(
ej2πf

)
= 1 +

∑∞
l=1 f∗(l)

(
ej2πf

)l and F+
x

(
ej2πf

)
= 1 +

∑∞
l=1 f(l)

(
ej2πf

)−l and γx a positive
constant.

Proof: See [Poo88, KSH00] for discussions and proof. �

Property B.4 The correlation function is obtained as

Rx(m) = γx

∞∑
l=0

f(l)f∗(l − m) (B.13)

Definition B.1 A monic filter is a filter F
(
ej2πf

)
whose impulse response value at zero is unity, i.e.,

f(0) = 1.

The spectral factorization is unique in the sense that F+
x

(
ej2πf

)
and F−

x

(
ej2πf

)
are both monic.

Property B.5 An important property of the spectral factorization is(
F+

x

(
ej2πf

))∗
= F−

x

(
ej2πf

)
(B.14)

Property B.6 A second important property of the spectral factorization is that

Fi

(
ej2πf

)
=

(
F+

x

(
ej2πf

))−1
(B.15)

is also a causal monic filter.

Property B.7 If one considers an unconstrained MMSE filter, B̂(k), and if the input Y (k) is a white
process then truncating the unconstrained filter to form a causal filter B̂+(k) will still satisfy the Wiener-
Hopf equations for all causally considered observations.

Proof: The orthogonality condition for the truncated filter for the causally considered observations can
be restated as

E
[(

B̂(k) − B̂+(k)
)

Y (k − m)∗
]

=
∞∑
l=1

w(−l)E [Y (k + l)Y (k − m)∗] ∀m ≥ 0

=
∞∑
l=1

w(−l)RY (m + l) = 0 ∀m ≥ 0 (B.16)

�
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Figure B.1: The block diagram for the causal MMSE linear filter.

The spectral factorization theorem can be used to causally whiten the observation process by putting
Y (k) through the filter

W1

(
ej2πf

)
=

1
√

γyF
+
y (ej2πf )

(B.17)

to obtain a process W̃ (k) where

SW̃

(
ej2πf

)
=

∣∣∣W1

(
ej2πf

)∣∣∣2 SY

(
ej2πf

)
=

SY

(
ej2πf

)
γy

∣∣F+
x (ej2πf )

∣∣2 = 1. (B.18)

The remainder of the unconstrained MMSE filter,

W2

(
ej2πf

)
=

SBY

(
ej2πf

)
√

γyF
−
y (ej2πf )

, (B.19)

can be truncated to be causal while still maintaining the desired orthogonality. The overall structure
of the causal MMSE filter is shown in Fig. B.1.
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Appendix C

Notation

Signals and Systems
x(t)=A signal

X(f)=The Fourier transform of x(t)
Px=The power of x(t)
Ex=The energy of x(t)

Vx(τ)=The correlation function of
x(t)

Gx(f)=The energy spectrum of x(t)
h(t)=A filter impulse response

H(f)=A filter transfer function

Bandpass Signals
xc(t)=Bandpass signal
xI(t)=In-phase signal
xQ(t)=Quadrature signal
xz(t)=Complex envelope signal
xA(t)=Amplitude signal
xP (t)=Phase signal

BT =Transmission bandwidth
fc=Carrier frequency

Analog Modulations
m(t)=Analog message signal

W=Message signal bandwidth
τp=Propagation time delay
Lp=Propagation loss
φp=Propagation phase shift
ET =Transmission efficiency
EB=Bandwidth efficiency
Ac=Transmission amplitude
a=Modulation coefficient

fi(t)=Instantaneous frequency
fd(t)=Instantaneous frequency devi-

ation
kp=Phase deviation constant
kf=Frequency deviation constant

(radians/s/volt)
fk=Frequency deviation constant

(Hertz/volt)
fp=Peak frequency deviation
D=Bandwidth expansion factor

EM=Multiplexing Efficiency

Digital Communications Basics
Eb=Energy per bit
T=Symbol time

Wb=Bit rate
Tp=Transmission duration
νB=Spectral efficiency (bits/s/Hz)

�I, I=Information bits
�̂I, Î=Information bit estimates

∆E(α, β)=Square Euclidean distance be-
tween xα(t) and xβ(t)

{Ad(k),∆E(k)}=Squared Euclidean distance
spectrum of a modulation

Kb=Number of bits to be transmit-
ted per frame

πi=A prior probability of �I = i
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408 Notation

Linear Modulations
u(t)=Modulation pulse shape

Di(k)=Modulation symbol
a(•)=Constellation mapping, i.e.,

di = a(i), i = 0, M − 1
Q=Output of filter matched to

u(t)

Orthogonal Modulations
I(l)=Information bit to be trans-

mitted at step l
Dz(l)=Modulation symbol for orthog-

onal modulation
Tu=Pulse shape duration for

stream modulation

Orthogonal Modulations with Memory
σ(l)=Modulation state at time l

Ns(l)=Number of states possible at
time l

J(l)=Constellation label sequence,
i.e., Dz(l) = a(J(l))

Ms=Number of points in the con-
stellation, i.e., J(l) = i, i =
0, Ms − 1

Lc=Number of taps in the discrete
time equivalent channel model
for channels with ISI

g1(•, •)=The modulation finite state
machine, i.e., σ(l + 1) =
g1 (I(l), σ(l))

g2(•, •)=The output symbol selec-
tor mapping, i.e., J(l) =
g2 (I(l), σ(l))

Le=Length of a simple error event

General Linear Modulations with Memory
�I(l), I(l)=Information bits to be trans-

mitted at symbol time l
Nc=Number of symbols transmit-

ted
Ks=Number of bits per trellis tran-

sition
Mi=Number of branches per trellis

transition, i.e., Mi = 2Ks

Ns=Number of output symbols per
trellis transition

R=Number of bits transmitted
per symbol, i.e., R = Ks/Ns

Nonlinear Modulations with Memory
Lm=Phase response length of a

CPM modulation
h=CPM modulation index

qm(t)=Phase smoothing response
gf (t)=Frequency pulse
θ(k)=Phase state at time k
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Appendix D

Acronyms

Signals and Systems
ADC=Analog to digital converter
BPF=Bandpass filter
DC=Direct current, often refers to zero fre-

quency
DTFT=Discrete time Fourier transform

I=In-phase
LPF=Lowpass filter
LTI=Linear Time Invariant

Q=Quadrature
SNR=Signal to noise ratio

Random Variables and Processes
AWGN=Additive white Gaussian noise

CDF=Cumulative distribution function
ChF=Characteristic function
CLT=Central limit theorem
PDF=Probability density function
PMF=Probability mass function
PSD=Power spectral density
RV=Random variable

WSS=Wide Sense Stationary

Analog Communication
AM=Amplitude modulation

DSB-AM=Double sideband AM
FDM=Frequency division multiplexing

FM=Frequency modulation
LC-AM=Large carrier AM

PLL=Phase-locked loop
PM=Phase modulation

QCM=Quadrature carrier multiplexing
SSB-AM=Single sideband AM

TV=Television
VCO=Voltage controlled oscillator

VSB-AM=Vestigial sideband AM

Digital Communication Basics
APP=A posteriori probability
BEP=Bit error probability

BFSK=Binary frequency shift keying
BPSK=Binary phase shift keying

DTMF=Discrete tone multiple frequency
EVM=Error vector magnitude
IEEE=Institute of electrical and electronic en-

gineers
ISI=Intersymbol interference

MAP=Maximum a posteriori
MAPBD=Maximum a posteriori bit demodulation

MLBD=Maximum likelihood bit demodulation
MLWD=Maximum likelihood word demodula-

tion
MFSK=M-ary frequency shift keying
MPSK=M-ary phase shift keying

MSK=Minimum shift keying
OCDM=Orthogonal code division multiplexing
OFDM=Orthogonal frequency division multi-

plexing
PPM=Pulse position modulation

PWM=Pulse width modulation
PWEP=Pair-wise error probability
QPSK=Quadri-phase shift keying
VPSK=Variable phase shift keying

Advanced Digital Communications
ICI=Intercarrier interference

=Not completed this edition
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