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Coded Modulation [Ch. 13]:

• Orthogonal modulation had O(Kb) complexity MLWD

but performance no better than BPSK.

• To improve performance, map sequence of info bits

onto sequence of symbols, then transmit using linear

stream modulation. If clever, still have O(Kb) MLWD.

• Fitz calls it “orthogonal modulation with memory.”

• This idea subsumes most coding+modulation schemes.

• We focus on performance, spectral efficiency, and

demodulator design rather than on code design.
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Basic Idea:

• A sequence of Kb bits {I(l)}Kb

l=1 is mapped to a

sequence of Nf constellation labels {J (l)}Nf

l=1.

• Each label J (l) is mapped to symbol D̃
(l)
z = a(J (l)).

• The symbol sequence {D̃(l)
z }Nf

l=1 is linearly modulated

using Ms-ary stream modulation.

Fundamental Goals:

• Out of M
Nf
s possible symbol sequences, choose 2Kb

sequences with good Euclidean distance properties.

• Ensure that the bit-sequence to symbol-sequence

mapping allows O(Kb) MLWD. (Idea: use FSM.)
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Outline:

1. Rate-1 mappings (i.e., Nf ≈ Kb).

2. Arbitrary rate mappings: convolutional and trellis codes.

3. Duality between codes and frequency-selective channels.

4. O(Kb) demodulation [Ch. 14].

Assumptions:

• Bits {I(l)}Kb

l=1 are independent and equally likely.

• Symbol mapping ensures E
[
|D̃(l)

z |2
]

= R (i.e., rate).

3

Phil Schniter OSU ECE-809

Coded Modulation for R = 1:

• Kb bits {I(l)} mapped onto Kb constellation labels

{J (l)} using a finite state machine (FSM).

z−1

σ(l) σ(l+1)

I(l)
J (l)

Xz(t)
FSM Ms-ary

stream
modulator

• FSM characterized by Ns modulation states σ(l) ∈ Ωσ:

σ(l+1) = g1

(
σ(l), I(l)

)
J (l) = g2

(
σ(l), I(l)

)
Larger Ns means more freedom in sequence design but

higher demod complexity.

4



Phil Schniter OSU ECE-809

FSM well described by a trellis diagram:

σ(l) = 1

σ(l) = 2

σ(l) = 3

σ(l) = 4

σ(l+1) = 1

σ(l+1) = 2

σ(l+1) = 3

σ(l+1) = 4

I(l) = 0, J (l) = 1

I(l) = 1, J (l) = 3

I(l) = 0, J (l) = 3

I(l) = 1, J (l) = 1

I(l) = 0, J (l) = 4

I(l) = 1, J (l) = 2

I(l) = 0, J (l) = 2

I(l) = 1, J (l) = 4

This Ho-Cavers-Varaldi trellis code has Ns = 4 and Ms = 4.
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Expanded trellis diagram for Kb = 4 bits:

Here, νc = 2 extra bits are used to return to initial state

(“termination”). Thus, for R = 1, have frame length

Nf = Kb + νc. Note Reff = Kb

Kb+νc
≈ 1 = R for large Kb.

Also note: # of paths through trellis = 2Kb = 16.
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MLWD:

Orthogonal modulation leads to a decoupled ML metric:

Î = arg max
i∈{0,...,2Kb−1}

Ti

= arg max
i

√
Eb

Nf∑
k=1

Re
[
d̃

(k)∗
i Q(k)

] − Eb

2

Nf∑
k=1

|d̃(k)
i |2

= arg min
i

Nf∑
k=1

∣∣∣Q(k) −
√

Eb d̃
(k)
i

∣∣∣2

Hence, MLWD ⇔ Minimizing Euclidean sequence norm.

∆E(i, j) =

∫
|xi(t) − xj(t)|2dt = Eb

Nf∑
k=1

∣∣∣d̃(k)
i − d̃

(k)
j

∣∣∣2
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Example: HCV code with 4-PAM modulation and Kb = 4.

• J (l) ∈ [1, 2, 3, 4] ↔ D̃
(l)
z ∈

[
−3√

5
, −1√

5
, 1√

5
, 3√

5

]

• 1
22

Kb(2Kb − 1) = 160 distances in error spectrum.

• ∆E

(
[0000], [1000]

)
= 13.6Eb & 4Eb (recall BPSK).

0

0

0000

1

−3√
5

−3√
5

−3√
5

−3√
5

1√
5

1√
5

3√
5
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Spectral Characteristics:

• Though the info bits {I(k)} are iid, the coded symbols

{D̃(l)
z } will be correlated.

• Correlated symbols lead to a “shaping” of the power

spectrum.

• In some cases, the spectrum becomes more compact,

which is reason enough to use modulation with memory.

• In the sequel, we develop tools to analyze the spectrum.
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Energy spectrum (averaged per bit):

DXz(f) =
Eb

Kb

E
[|Xz(f)|2]

=
Eb

Kb2Kb

2Kb−1∑
i=0

∣∣∣∣∣∣
Nf∑
k=1

d̃
(k)
i U(f)ej2πfT (k−1)

∣∣∣∣∣∣
2

Possible to compute above equation for small Kb.

Example: Alternate Mark Inversion with Kb = 4:

I = 0, Dz = 0

I = 1, Dz = −√
2

I = 0, Dz =
√

2

I = 1, Dz = 0
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In the case of large Kb, need a different approach. . .

DXz(f) =
Eb

Kb

E

∣∣∣∣∣
Nf∑
l=1

D̃(l)
z U(f)e−j2πfT (l−1)

∣∣∣∣∣
2

=
Eb

Kb

Nf∑
l=1

Nf∑
k=1

E
[
D̃(l)

z D̃(k)∗
z

]
︸ ︷︷ ︸

RD̃[l−k]

|U(f)|2e−j2πfT (l−k)

= Eb|U(f)|2 1

Kb

Nf−1∑
m=−Nf +1

(Nf − |m|)RD̃[m]e−j2πfTm

= Eb|U(f)|2
∞∑

m=−∞
RD̃[m]e−j2πfTm as Kb → ∞

= Eb|U(f)|2SD̃(ej2πfT )
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To find RD̃[m], note

RD̃[m] =
∑
di

∑
dj

did
∗
jPD̃

(l)
z ,D̃

(l−m)
z

(di, dj)

• The trellis edge S(l) connecting state σ(l) to σ(l+1)

completly determines the symbol D̃
(l)
z .

• Can represent S(l) by an integer in {1, . . . , 2Ns}.
Thus we note that

PS(l),S(l−m)(si, sj) → P
D̃

(l)
z ,D̃

(l−m)
z

(di, dj)

To characterize PS(l),S(l−m)(·, ·), we use the fact that

PS(l),S(l−m)(si, sj) = PS(l)|S(l−m)(si|sj)PS(l−m)(sj)
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Assume uniform PS(l−m)(·). To find PS(l)|S(l−m)(·|·), note

PS(l)(si) =
2Ns∑
sj=1

PS(l),S(l−1)(si, sj) =
2Ns∑
sj=1

PS(l)|S(l−1)(si|sj)︸ ︷︷ ︸
∆
= [ST ]j,i

PS(l−1)(sj)

where [ST ]j,i are easily determined from g1(I(l),σ(l)).

Defining pmf vector P S(l)
∆
= [PS(l)(1), . . . , PS(l)(2Ns)],

P S(l) = P S(l−1)ST , P S(l−1) = P S(l−2)ST

⇒ P S(l) = P S(l−m)S
m
T

From the definition of [ST ]j,i above, we can now see that

PS(l)|S(l−m)(si|sj) = [Sm
T ]j,i.
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AMI Example: Assume P S(l−m) = [14 ,
1
4 ,

1
4 ,

1
4 ].

St =




0.5 0 0.5 0

0.5 0 0.5 0

0 0.5 0 0.5

0 0.5 0 0.5




S(l−1) = 1

S(l−1) = 2

S(l−1) = 3

S(l−1) = 4

S(l) = 1

S(l) = 3

S(l) = 2

S(l) = 4

Note that S
m
t

∣∣
m>1

has equal entries.

! Edges S(l) & S(l−m) independent for m > 1.

! Symbols D̃
(l)
z & D̃

(l−m)
z uncorrelated for m > 1.

Can show that(
RD̃[−1], RD̃[0], RD̃[1]

)
=

(
1
2 , 1,−1

2

)
⇒ SD̃(ej2πfT ) = 1 − cos(2πfT )
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Coded Modulation for General R:

z−1

σ(l) σ(l+1)

I(l)
J (l)

J
(l)
i

Xz(t)
FSM parallel

to
serial

Ms-ary
stream

modulator

• Kb bits parsed into Nb blocks of Km bits (Kb = NbKm)

• The FSM accepts I(l), a block of Km bits, and
produces J (l), a block of Nm constellation labels.

σ(l+1) = g1(σ
(l), I(l))

J (l) = g2(σ
(l), I(l))

• Label sequence drives Ms-ary linear stream modulation:

a
(
J

(l)
i

)
= D̃((l−1)Nm+i)

z

15

Phil Schniter OSU ECE-809

• Total # of symbols in frame is Nf = NbNm + νc.

• Effective rate (bits/channel-use) is

Reff =
Kb

NbNm + νc

=
KbKm

KbNm + νc

≈ Km

Nm

∆
= R.

• Might choose R > 1 or R < 1 depending on desired

performance/spectral-efficiency tradeoff.

• Symbols always normalized so that E
∣∣D̃(l)

z

∣∣2 = R.
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R < 1 Example: Convolutional Code

• BPSK (Ms = 2), R = 1
2 (Km = 1, Nm = 2), Ns = 8

• ≈2 dB better than 16-FSK at similar spectral efficiency.
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R > 1 Example: Trellis Code

• 8-PSK (Ms = 8), R = 2 (Km = 2, Nm = 1), Ns = 4.

• ≈3 dB better than QPSK at same spectral efficiency.
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Spectral efficiency of coded modulation schemes:
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Spectral Shaping Example: the Miller Code

• Ns = 4, BPSK (Ms = 2), R = 1
2 (Km = 1, Nm = 2)

• Run Length Limited: ≤ 4 same symbols in a row.

• Used in magnetic recording, since low frequencies

interfere with servo mechanism of read/write head.
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Analyzing Spectral Characteristics when Nm > 1

DXz(f) =
Eb

Kb

Nf∑
l=1

Nf∑
k=1

E
[
D̃(l)

z D̃(k)∗
z

]
|U(f)|2e−j2πfT (l−k)

E
[
D̃(l)

z D̃(k)∗
z

]
= RD̃

[
l − k, 〈l − 1〉Nm + 1

]
“cyclostationary”

As Kb → ∞, the same techniques used before yield

DXz(f) = Eb|U(f)|2
∞∑

m=−∞

R

Nm

Nm∑
l=1

RD̃[m, l]

︸ ︷︷ ︸
∆
= RD̃[m]

e−j2πfTm

= Eb|U(f)|2SD̃(ej2πfT )
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To find RD̃[m, l], we start with the definition

RD̃[m, l] =
∑
di

∑
dj

did
∗
jPD̃

((k−1)Nm+l)
z ,D̃

((k−1)Nm+l−m)
z

(di, dj)

Noting that the edge determines the symbol-block:

S(k) → {D̃((k−1)Nm+l)
z }Nm

l=1

1. Use, as before, [Sm
T ]j,i = PS(l)|S(l−m)(i|j) and the

uniform PS(l−m)(·) assumption to find PS(l),S(l−m)(·, ·).
2. Use PS(l),S(l−m)(·, ·) and the trellis description to find

RD̃[m, l]. This entails averaging over the multiple

symbols per edge.
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Channel/Code Duality:

Recall the WMF model for uncoded stream modulation in a

frequency selective channel. A
√

γG-scaled version looks like:

I(k)
EbD

(k)
z EbD̃

(k)
z√

γGF+
G (z)

W (k)

Q̄(k)BPSK
mapper

+

Now consider rate-1 coded stream modulation in a

frequency flat channel:

I(k)
J (k) EbD̃

(k)
z

W (k)

Q̄(k)FSM symbol
mapper

+

Note the similarities!
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Comments:

• Called “Forney equivalence” in Fitz’s notes.

• Important implication: same MLWD for both cases.

• With a FS channel, the effective symbols {D̃(k)
z } obey

D̃(k)
z =

√
γG

Nu∑
m=0

fG[m]D(k−m)
z

hence channel acts as a code with R = 1 & 2Nu states.

• In general, channels form “bad” codes: they decrease,

rather than increase, the minimum distance!

• Ns-state coded modulation over a FS channel can be

interpreted as Ns2Nu-state coding over a flat chan.
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