Coded Modulation [Ch. 13]:

- Orthogonal modulation had $\mathcal{O}(K_b)$ complexity MLWD but performance no better than BPSK.
- To improve performance, map sequence of info bits onto sequence of symbols, then transmit using linear stream modulation. If clever, still have $\mathcal{O}(K_b)$ MLWD.
- Fitz calls it " orthogonal modulation with memory."
- This idea subsumes most coding+modulation schemes.
- We focus on performance, spectral efficiency, and demodulator design rather than on code design.

Phil Schniter **OSU ECE-809**

Basic Idea:

- A sequence of K_b bits $\{I^{(l)}\}_{l=1}^{K_b}$ is mapped to a sequence of N_f constellation labels $\{J^{(l)}\}$ N_f
 $l=1$.
- Each label $J^{(l)}$ is mapped to symbol $\tilde{D}_z^{(l)} = a(J^{(l)})$.
- \bullet The symbol sequence $\{\tilde{D}_z^{(l)}\}$ $\frac{N_f}{l=1}$ is linearly modulated using M_s -ary stream modulation.

Fundamental Goals:

- $\bullet\,$ Out of $M^{N_f}_s$ possible symbol sequences, choose 2^{K_b} sequences with good Euclidean distance properties.
- Ensure that the bit-sequence to symbol-sequence mapping allows $\mathcal{O}(K_b)$ MLWD. (Idea: use FSM.)

Outline:

- 1. Rate-1 mappings (i.e., $N_f \approx K_b$).
- 2. Arbitrary rate mappings: convolutional and trellis codes.
- 3. Duality between codes and frequency-selective channels.
- 4. $\mathcal{O}(K_b)$ demodulation [Ch. 14].

Assumptions:

- Bits $\{I^{(l)}\}_{l=1}^{K_b}$ are independent and equally likely.
- \bullet Symbol mapping ensures $\operatorname{E}\left[|\tilde{D}_z^{(l)}|^2\right]=R$ (i.e., rate).

3

Phil Schniter **OSU ECE-809**

Coded Modulation for $R = 1$:

• K_b bits $\{I^{(l)}\}$ mapped onto K_b constellation labels $\{J^{(l)}\}$ using a finite state machine (FSM).

• FSM characterized by N_s modulation states $\sigma^{(l)} \in \Omega_{\sigma}$:

$$
\begin{array}{ccc} \sigma^{(l+1)} & = & g_1\big(\sigma^{(l)},I^{(l)}\big) \\ J^{(l)} & = & g_2\big(\sigma^{(l)},I^{(l)}\big) \end{array}
$$

Larger N_s means more freedom in sequence design but higher demod complexity.

MLWD:

Orthogonal modulation leads to a decoupled ML metric:

$$
\hat{I} = \arg \max_{i \in \{0, ..., 2^{K_b} - 1\}} T_i
$$
\n
$$
= \arg \max_{i} \sqrt{E_b} \sum_{k=1}^{N_f} \text{Re} [\tilde{d}_i^{(k)*} Q^{(k)}] - \frac{E_b}{2} \sum_{k=1}^{N_f} |\tilde{d}_i^{(k)}|^2
$$
\n
$$
= \arg \min_{i} \sum_{k=1}^{N_f} |Q^{(k)} - \sqrt{E_b} \, \tilde{d}_i^{(k)}|^2
$$

Hence, MLWD \Leftrightarrow Minimizing Euclidean sequence norm.

$$
\Delta_E(i,j) = \int |x_i(t) - x_j(t)|^2 dt = E_b \sum_{k=1}^{N_f} \left| \tilde{d}_i^{(k)} - \tilde{d}_j^{(k)} \right|^2
$$

7

Phil Schniter OSU ECE-809

Example: HCV code with 4-PAM modulation and $K_b = 4$.

- $J^{(l)} \in [1, 2, 3, 4] \leftrightarrow \tilde{D}_z^{(l)} \in$ $\left[\frac{-3}{\sqrt{5}}, \frac{-1}{\sqrt{5}}, \frac{1}{\sqrt{5}}, \frac{3}{\sqrt{5}}\right]$ 5 1
- $\frac{1}{2}2^{K_b}(2^{K_b}-1)=160$ distances in error spectrum.
- $\bullet \ \Delta_E \big([0000], [1000] \big) = 13.6 E_b \gg 4 E_b$ (recall BPSK).

In the case of large K_b , need a different approach...

$$
D_{X_z}(f) = \frac{E_b}{K_b} E \Big| \sum_{l=1}^{N_f} \tilde{D}_z^{(l)} U(f) e^{-j2\pi f T(l-1)} \Big|^2
$$

\n
$$
= \frac{E_b}{K_b} \sum_{l=1}^{N_f} \sum_{k=1}^{N_f} E \Big[\tilde{D}_z^{(l)} \tilde{D}_z^{(k)*} \Big] |U(f)|^2 e^{-j2\pi f T(l-k)}
$$

\n
$$
= E_b |U(f)|^2 \frac{1}{K_b} \sum_{m=-N_f+1}^{N_f-1} (N_f - |m|) R_{\tilde{D}} [m] e^{-j2\pi f T m}
$$

\n
$$
= E_b |U(f)|^2 \sum_{m=-\infty}^{\infty} R_{\tilde{D}} [m] e^{-j2\pi f T m} \text{ as } K_b \to \infty
$$

\n
$$
= E_b |U(f)|^2 S_{\tilde{D}} (e^{j2\pi f T})
$$

11

Phil Schniter OSU ECE-809

To find $R_{\tilde{D}}[m]$, note

$$
R_{\tilde{D}}[m] = \sum_{d_i} \sum_{d_j} d_i d_j^* P_{\tilde{D}_z^{(l)}, \tilde{D}_z^{(l-m)}}(d_i, d_j)
$$

- The trellis edge $S^{(l)}$ connecting state $\sigma^{(l)}$ to $\sigma^{(l+1)}$ completly determines the symbol $\tilde{D}_z^{(l)}.$
- Can represent $S^{(l)}$ by an integer in $\{1, \ldots, 2N_s\}$.

Thus we note that

$$
P_{S^{(l)},S^{(l-m)}}(s_i,s_j) \rightarrow P_{\tilde{D}_z^{(l)},\tilde{D}_z^{(l-m)}}(d_i,d_j)
$$

To characterize $P_{S^{(l)},S^{(l-m)}}(\cdot,\cdot)$, we use the fact that

$$
P_{S^{(l)},S^{(l-m)}}(s_i,s_j) = P_{S^{(l)}|S^{(l-m)}}(s_i|s_j)P_{S^{(l-m)}}(s_j)
$$

Phil Schniter **OSU ECE-809**

Assume uniform $P_{S^{(l-m)}}(\cdot)$. To find $P_{S^{(l)}|S^{(l-m)}}(\cdot|\cdot)$, note

$$
P_{S^{(l)}}(s_i) = \sum_{s_j=1}^{2N_s} P_{S^{(l)},S^{(l-1)}}(s_i, s_j) = \sum_{s_j=1}^{2N_s} P_{S^{(l)}|S^{(l-1)}}(s_i|s_j) P_{S^{(l-1)}}(s_j)
$$

$$
\triangleq [\mathbf{S}_T]_{j,i}
$$

where $[\boldsymbol{S}_T]_{j,i}$ are easily determined from $g_1(I^{(l)}, \sigma^{(l)})$. Defining pmf vector $\underline{P}_{S^{(l)}} \stackrel{\Delta}{=} [P_{S^{(l)}}(1), \ldots, P_{S^{(l)}}(2N_s)]$,

$$
\begin{array}{rcl}\n\underline{P}_{S^{(l)}} & = & \underline{P}_{S^{(l-1)}} S_T, \\
\Rightarrow \underline{P}_{S^{(l)}} & = & \underline{P}_{S^{(l-n)}} S_T^m\n\end{array}\n\quad\n\begin{array}{rcl}\n\underline{P}_{S^{(l-1)}} & = & \underline{P}_{S^{(l-2)}} S_T\n\end{array}
$$

From the definition of $[\boldsymbol{S}_T]_{j,i}$ above, we can now see that

$$
P_{S^{(l)}|S^{(l-m)}}(s_i|s_j) = [\boldsymbol{S}_T^m]_{j,i}.
$$

13

Phil Schniter **OSU ECE-809**

AMI Example: Assume $P_{S^{(l-m)}} = [\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}].$ $S_t =$ $\sqrt{ }$ 0.5 0 0.5 0 0.5 0 0.5 0 0 0.5 0 0.5 0 0.5 0 0.5 \setminus $\begin{array}{c} \hline \end{array}$ $S^{(l-1)}=1$ S(l−1) = 2 S(l) = 3 $S^{(l-\lambda)} = 3$ $S^{(l-1)} = 4$ $S^{(l)} = 1$ $S^{(l)}\!\!\!\!\!\!/ = 2$ $S^{(l)} = 4$ Note that $\left. \bm{S}^{m}_t \right|$ $\big|_{m>1}$ has equal entries.

 \rightsquigarrow Edges $S^{(l)}$ & $S^{(l-m)}$ independent for $m>1$. \rightsquigarrow Symbols $\tilde{D}_z^{(l)}$ & $\tilde{D}_z^{(l-m)}$ uncorrelated for $m>1.$

Can show that

$$
(R_{\tilde{D}}[-1], R_{\tilde{D}}[0], R_{\tilde{D}}[1]) = \left(\frac{1}{2}, 1, -\frac{1}{2}\right)
$$

$$
\Rightarrow S_{\tilde{D}}(e^{j2\pi fT}) = 1 - \cos(2\pi fT)
$$

$$
R_{\text{eff}} = \frac{K_b}{N_b N_m + \nu_c} = \frac{K_b K_m}{K_b N_m + \nu_c} \approx \frac{K_m}{N_m} \triangleq R.
$$

- Might choose $R > 1$ or $R < 1$ depending on desired performance/spectral-efficiency tradeoff.
- \bullet Symbols always normalized so that $\mathrm{E}\big|\tilde{D}_z^{(l)}\big|$ \mid $2^2 = R$.

Phil Schniter **OSU ECE-809**

Analyzing Spectral Characteristics when $N_m > 1$

$$
D_{X_z}(f) = \frac{E_b}{K_b} \sum_{l=1}^{N_f} \sum_{k=1}^{N_f} \mathbb{E} \left[\tilde{D}_z^{(l)} \tilde{D}_z^{(k)*} \right] |U(f)|^2 e^{-j2\pi f T(l-k)}
$$

$$
\mathbb{E} \left[\tilde{D}_z^{(l)} \tilde{D}_z^{(k)*} \right] = R_{\tilde{D}} \left[l - k, \langle l-1 \rangle_{N_m} + 1 \right] \quad \text{``cyclostationary''}
$$

As $K_b \to \infty$, the same techniques used before yield

$$
D_{X_z}(f) = E_b|U(f)|^2 \sum_{m=-\infty}^{\infty} \underbrace{\frac{R}{N_m} \sum_{l=1}^{N_m} R_{\tilde{D}}[m,l]}_{\triangleq \overline{R}_{\tilde{D}}[m]}
$$

=
$$
E_b|U(f)|^2 \overline{S}_{\tilde{D}}(e^{j2\pi fT})
$$

21

Phil Schniter **OSU ECE-809**

To find $R_{\tilde{D}}[m, l]$, we start with the definition

$$
R_{\tilde{D}}[m,l] = \sum_{d_i} \sum_{d_j} d_i d_j^* P_{\tilde{D}_z^{((k-1)Nm+l)}, \tilde{D}_z^{((k-1)Nm+l-m)}}(d_i, d_j)
$$

Noting that the edge determines the symbol-block:

$$
S^{(k)} \rightarrow \{\tilde{D}_z^{((k-1)N_m+l)}\}_{l=1}^{N_m}
$$

- 1. Use, as before, $[\boldsymbol{S}^m_T]_{j,i} = P_{S^{(l)}|S^{(l-m)}}(i|j)$ and the uniform $P_{S^{(l-m)}}(\cdot)$ assumption to find $P_{S^{(l)},S^{(l-m)}}(\cdot,\cdot)$.
- 2. Use $P_{S^{(l)},S^{(l-m)}}(\cdot,\cdot)$ and the trellis description to find $R_{\tilde{D}}[m, l]$. This entails averaging over the multiple symbols per edge.

Channel/Code Duality:

Recall the WMF model for uncoded stream modulation in a frequency selective channel. A $\sqrt{\gamma_G}$ -scaled version looks like:

Now consider rate-1 coded stream modulation in a frequency flat channel:

Note the similarities!

23

Phil Schniter **OSU ECE-809**

Comments:

- Called "Forney equivalence " in Fitz ' s notes.
- Important implication: same MLWD for both cases.
- $\bullet\,$ With a FS channel, the effective symbols $\{\tilde D^{(k)}_z\}$ obey

$$
\tilde{D}_z^{(k)} = \sqrt{\gamma_G} \sum_{m=0}^{N_u} f_G[m] D_z^{(k-m)}
$$

hence channel acts as a code with $R = 1$ & 2^{N_u} states.

- In general, channels form "bad" codes: they decrease, rather than increase, the minimum distance!
- N_s -state coded modulation over a FS channel can be interpreted as $N_s 2^{N_u}$ -state coding over a flat chan.