EE-806 Detection and Estimation Theory

Spring 2004

Homework #7 Due June 4, 2004

HOMEWORK SOLUTIONS #7

1. Poor 4.20:

(a) Note that Y7,Ys,...,Y,, are independent and that Y;, ~ N(0,1 + 6s3). Thus,
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So the CRLB is

S
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(c) With s? = 1, the likelihood equation yields the solution
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which is seen to yield a maximum of the likelihood function.

(d) We have
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Similarly, since the Y}s are independent,
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Thus, the MLE is unbiased and the variance of the MLE equals the CRLB. (Hence, the MLE

is an MVUE in this case.)
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2. Poor 4.21:
Recall that
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and that § = e,
(d) To find the maximum likelihood estimator of 6,
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Setting the derivative equal to zero,
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However, if we create the MLE for A directly,
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(e) To determine the CRLB, we first calculate Fisher’s information:
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Finally, the CRLB for the variance of unbiased estimators of 6 is 1/Iy.
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3. Poor 4.23

(a) The log-likelihood is
= km > n
logp(ylA,¢) = Z {yk — Asin(— + (b)} -3 log(2m0?)

and, differentiating with respect to the unknown parameters A and ¢, we obtain the likelihood
equations
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Using the identities sin(a + 3) = sinacosf + cosasin 3 and cos(a + 3) = cosacos3 —
sin asin (3, and defining the quantities
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we find that the likelihood equations can be rewritten as the pair

A
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Ye cos(¢) — ys sin(¢)

For this last step we took advantage of the facts that, for even n,
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Putting the likelihood equations together we find

A% = y2cos®(¢) + y2 sin?(d) + 2ysye cos(d) sin(¢)
= yicos’(9) +yZsin®(9) + y2sin(9) + yZ cos®(9)
= vt
Thus,
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$ = tan*(%)
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(b) The joint MAP estimator of [A, ¢] solves
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We now search for the maximum of logp(y|a,
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®) + logwa(a) by setting the gradient with

respect to [a, @] to zero. Similar to before, we get
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Using the previously mentioned trig identities and definitions of ys and y., we can obtain the

pair of equations
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for @ = 2%;. Putting the previous equations together (as before) we find that
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and a simple application of the quadratic equation yields
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It can be seen quite easily that q@MAP = QBNIL.
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Note that, when 8 — oo, the MAP estimate of A does not approach the ML estimate of A.

However, as n — oo, the MAP estimate does approach the ML estimate.
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