
EE-806 Detection and Estimation Theory Spring 2004

Homework #7 Due June 4, 2004

HOMEWORK SOLUTIONS #7

1. Poor 4.20:

(a) Note that Y1, Y2, . . . , Yn, are independent and that Yk ∼ N (0, 1 + θs2
k). Thus,
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from which the likelihood equation becomes
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So the CRLB is
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(c) With s2
k = 1, the likelihood equation yields the solution
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which is seen to yield a maximum of the likelihood function.

(d) We have
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Similarly, since the Y ′
ks are independent,
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Thus, the MLE is unbiased and the variance of the MLE equals the CRLB. (Hence, the MLE

is an MVUE in this case.)
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2. Poor 4.21:

Recall that

pλ(y) = pλ(y1)pλ(y2) =
λ(y1+y2)e−2λ

y1!y2!
I{y1≥0, y2≥0}

and that θ = e−λ.

(d) To find the maximum likelihood estimator of θ,
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Setting the derivative equal to zero,
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note that 2
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≈ 0.7869

However, if we create the MLE for λ directly,

∂
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λ
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⇒ λ̂ML(y) =
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(e) To determine the CRLB, we first calculate Fisher’s information:

Iθ = Eθ

{
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log pθ(Y )

}
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Eθ {Y1 + Y2} = 2λ = −2 log θ

⇒ Iθ = − 2

θ2 log θ

Finally, the CRLB for the variance of unbiased estimators of θ is 1/Iθ.
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3. Poor 4.23

(a) The log-likelihood is

log p(y|A, φ) = − 1

2σ2

n∑

k=1
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]2
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and, differentiating with respect to the unknown parameters A and φ, we obtain the likelihood

equations
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Using the identities sin(α + β) = sin α cosβ + cosα sin β and cos(α + β) = cosα cosβ −
sin α sin β, and defining the quantities
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we find that the likelihood equations can be rewritten as the pair

Â = ys cos(φ̂) + yc sin(φ̂)

0 = yc cos(φ̂) − ys sin(φ̂)

For this last step we took advantage of the facts that, for even n,
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Putting the likelihood equations together we find
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P. Schniter, 2004 3



(b) The joint MAP estimator of [A, φ] solves

{ÂMAP, φ̂MAP} = arg max
a,φ

w(a, φ|y)

= arg max
a,φ

log w(a, φ|y)

= arg max
a,φ

log
p(y|a, φ)wA(a)wΦ(φ)

p(y)

= arg max
a,φ

log p(y|a, φ) + log wA(a) + log wΦ(φ)

= arg max
a, φ∈[−π,π)

log p(y|a, φ) + log wA(a)

We now search for the maximum of log p(y|a, φ) + log wA(a) by setting the gradient with

respect to [a, φ] to zero. Similar to before, we get
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Using the previously mentioned trig identities and definitions of ys and yc, we can obtain the

pair of equations

Â(1 + α) − 2σ2

nÂ
= ys cos(φ̂) + yc sin(φ̂)

0 = yc cos(φ̂) − ys sin(φ̂)

for α = 2σ2

nβ2 . Putting the previous equations together (as before) we find that
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nÂ
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and a simple application of the quadratic equation yields
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√

Â2
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n

2(1 + α)

It can be seen quite easily that φ̂MAP = φ̂ML.

(c) Note that, when β → ∞, the MAP estimate of A does not approach the ML estimate of A.

However, as n → ∞, the MAP estimate does approach the ML estimate.
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