
EE-806 Detection and Estimation Theory Spring 2004

Homework #6 Due May 26, 2004

HOMEWORK SOLUTIONS #6

1. Poor 4.12

The joint density of the n observations is,

pθ(y) =

{

(θ − 1)n
∏n

k=1 y−θ
k yk ≥ 1 ∀ k

0 else

=

{

(θ − 1)n exp (−θ
∑n

k=1 log yk) yk ≥ 1 ∀ k

0 else

let C(θ) = (θ − 1)n

Q(θ) = −θ

T (y) =

n∑

k=1

log yk

h(y) = 1

Thus, it is clear that pθ(y) is drawn from an exponential family. Using the Completeness Theorem

for Exponential Families, we know that T (y) =
∑n

k=1 log yk is a complete sufficient statistic.

2. Poor 4.21:

(a) First we write out the pdf’s of our two observations:

pλ(yi) =

{
λyi e−λ

yi!
yi ∈ {0, 1, 2, 3, . . .}

0 else
for i = 1, 2

The two observations are independent and thus,

pλ(y) = pλ(y1)pλ(y2) =
λ(y1+y2)e−2λ

y1!y2!
I{y1≥0, y2≥0}

Using the factorization for an exponential family, let θ′ = log λ

pλ(y) = eθ′(y1+y2)
e−2eθ′

y1!y2!

⇒ T (y) = y1 + y2

h(y) =
1

y1!y2!
I{y1≥0, y2≥0}

C(θ′) = e−2eθ′

Clearly T (y) = y1 +y2 is a complete sufficient statistic for θ′. Since θ and θ′ are in one-to-one

correspondence, sufficient for θ′ implies sufficient for θ.
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(b) Recall that we want to estimate θ = e−λ.

Eθ

{

θ̂(Y )
}

=
1

2
Eθ {f(Y1) + f(Y2)}

=
1

2

∞∑

y1=0

f(y1)
λy1e−λ

y1!
+

1

2

∞∑

y2=0

f(y2)
λy2e−λ

y2!

=
1

2

λ0e−λ

0!
+

1

2

λ0e−λ

0!

=
1

2
e−λ +

1

2
e−λ = θ

Thus the estimator is unbiased.

(c) Using the Rao-Blackwell Theorem,

g̃(y) = Eθ

{
1

2
[f(Y1) + f(Y2)]

∣
∣
∣T (Y ) = y1 + y2

}

In order to determine this MVUE we need the conditional pdfs pλ(yi|T = t) for i = 1, 2.

Using Bayes rule,

pλ(y1|t) =
qλ(t|y1)pλ(y1)

qλ(t)
=

Prλ{Y2 = t − y1}pλ(y1)

qλ(t)

=
λ(t−y1)e−λ

(t − y1)!
×

λ(y1)e−λ

(y1)!
×

t!

(2λ)te−2λ

=

(
1

2

)t
t!

(t − y1)! y1!

⇒ Eλ {f(Y1)|t} =
∞∑

y1=0

f(y1)pλ(y1|t) =

(
1

2

)t
t!

(t − 0)! 0!
=

(
1

2

)t

Eλ {f(Y2)|t} =

(
1

2

)t

by same method.

⇒ g̃(T (y)) =

(
1

2

)(y1+y2)

By the Rao-Blackwell theorem we know that g̃ is unbiased, and since g̃ is a function of a

complete sufficient statistic we know that it must be MVUE. Verifying the unbiasedness (for

fun):

Eλ {g̃(T )} =

∞∑

t=0

(2λ)te−2λ

t!

(
1

2

)t

= e−2λ
∞∑

t=0

λt

t!
= e−2λeλ = e−λ = θ

3. Uniform I.I.D. MVUE problem:

(a)

pθ(x) = θ−n
n∏

k=1

I{xk∈[0,θ]} = θ−nI{(max(x)≤θ}
︸ ︷︷ ︸

gθ(T (x))

I{min(x)≥0}
︸ ︷︷ ︸

h(x)

Thus, by the Neyman-Fisher factorization theorem, T (x) = max(x) is a sufficient statistic.
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(b) We determine the cumulative distribution function, then differentiate:

Prθ[T ≤ t] = Prθ[X1, · · · , Xn ≤ t]

=

n∏

i=1

Prθ[Xi ≤ t]

=







0 t < 0
(

t
θ

)n
t ∈ [0, θ]

1 t > θ

⇒ qθ(t) =
d

dt
Prθ[T ≤ t]

=

{
ntn−1

θn t ∈ [0, θ]

0 else

(c) Would like to show that E{f(T )} = 0 ∀θ > 0 ⇒ f(T ) = 0 w.p. 1. Say that

E{f(T )} =
n

θn

∫ θ

0

f(t)tn−1dt = 0 ∀θ > 0

Then

∂

∂θ

{

n

θn

∫ θ

0

f(t)tn−1dt

}

=
nf(θ)θn−1

θn
= 0 ∀θ > 0

⇒ f(θ) = 0 ∀θ > 0

⇒ f(T ) = 0 w.p. 1

Hence, by definition, the sufficient statistic is complete.

(d)

Eθ{T } =

∫ θ

0

ntn

θn
dt =

n

n + 1
θ

(e) The MVUE is then θ̂ = n+1
n max(x) since the estimator is unbiased and a function of the

complete sufficient statistic.

(f)

Varθ(θ̂MVUE) = Eθ{θ̂
2
MVUE

} − θ2

=

∫ θ

0

(
n + 1

n

)2

t2
ntn−1

θn
dθ

=
θ2

n(n + 2)

4. Computer Exercise

To determine the (theoretical) variance of the alternative unbiased estimator, notice that for i.i.d.

{Xk}
n
k=1 ∼ U [0, θ],

Varθ

(

1

n

n∑

k=1

Xk

)

=
1

n2
E

{
∑

i

∑

k

XiXk

}

− E2

{

1

n

∑

k

Xk

}

=
1

n2






∑

i

E{X2
i }

︸ ︷︷ ︸

θ2/3

+
∑

i

∑

k 6=i

E{Xi}
︸ ︷︷ ︸

θ/2

E{Xk}
︸ ︷︷ ︸

θ/2




−

(
θ

2

)2

=
θ2

12n
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Thus Varθ(θ̂UE) = θ2/3n.

Running 50 experiments with θ = 4.3 for each value of n between 1 and 500, the mean and variance

of the two estimators were empirically generated. The plots below demonstrate the findings, which

concur with the theory above: the MVUE and UE appear to be unbiased, and their variances

appear to track the theoretical quantities derived earlier. The MVUE is clearly superior to the UE

in terms of variance (and thus MSE).
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