
EE-806 Detection and Estimation Theory Spring 2004

Homework #4 Due May 8, 2004

HOMEWORK SOLUTIONS #4

1. Poor 3.14:

(a) In this case the hypotheses are

H0 : Y ∼ N (0, I)

H1 : Y ∼ N (0, Asst + I)

for known A, and the likelihood ratio test takes the form

ytQy
>

<
η for Q = Asst(I + Asst)−1.

Note that Q is a rank-one matrix because it is the product of a rank-one matrix sst and a full-

rank matrix. Since a rank-one matrix can be written as a vector outer product, say, Q = xxt

for appropriate x, the LRT takes the form (ytx)2 >
< η or |ytx| >

< η′. This is convenient because

we know that ytx is Gaussian, in which case the PF and PD are easy to find. These ideas can

be made concrete using the matrix inversion lemma, which says

(F + BCD)−1 = F−1 − F−1B(DF−1B + C−1)−1DF−1

Setting F = I, B = s, C = A, and D = st, we find

(I + Asst)−1 = I − 1
‖s‖2+A−1 sst

from which it can be shown that

Q = Asst(I + Asst)−1 = A
A‖s‖2+1sst.

It is now evident that the LRT can be stated

|yts| >

<
η′′.

To determine the NP rule, we calculate

PF = Pr{|yts| > η′′ |H0} = 1 − Pr{−η′′ < yts < η′′ |H0}

assuming η′′ ≥ 0. Under H0, we know that yts ∼ N (0, ‖s‖2), implying that PF = 2Φ(−η′′

‖s‖ ).

For PF = α, we then have threshold η′′ = −‖s‖Φ−1(α/2). To conclude, the NP rule is

|yts| >

<
− ‖s‖Φ−1(α/2). (1)

(b) The NP rule for known A is not a function of A, thus (1) is UMP in the case that A is

unknown (for any s).

(c) Since the LMP is equivalent to the UMP when the UMP exists, (1) is LMP.
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2. Poor 3.17:

(a) There are two ways to do this. First the hard way, where we treat the problem as “detection

of a signal with random parameter in white Gaussian noise.” If we condition on Θ = θ, the

hypotheses are of the form

H0 : Y ∼ N (0, σ2I)

H1 : Y |Θ ∼ N (Θs, σ2I)

The (un-conditioned) likelihood ratio then has the form

L(y) =

∫
p1(y|θ)w(θ)dθ

p0(y)
=

∫
p1(y|θ)
p0(y)

w(θ)dθ

=

∫

exp

(

‖y‖2 − ‖y − θs‖2

2σ2

)

w(θ)dθ

=

∫

exp

(

2θyts − θ2‖s‖2

2σ2

)

︸ ︷︷ ︸

Lθ(y)

1√
2πv

exp

(

− (θ − µ)2

2v2

)

dθ

=
1√
2πv

∫

exp

(

2θyts − θ2

2σ2
− θ2 − θµ + µ2

2v2

)

dθ

where we used ‖s‖2 = 1 in the last equation.

Completing the square in the exponent,

2θyts−θ2

2σ2 − θ2−θµ+µ2

2v2 = −σ2+v2

2σ2v2

︸ ︷︷ ︸

A

(

θ −
(

σ2

σ2+v2

)(

µ +
v2sty

σ2

)

︸ ︷︷ ︸

B

)2

+ 1
2v2

(
σ2

σ2+v2

)

︸ ︷︷ ︸

C

(

µ +
v2sty

σ2

)2

+ µ2

2v2

︸︷︷︸

D

which implies that

L(y) = exp

(

C
(

µ +
v2sty

σ2

)2
)

exp(D)√
2πv

∫

exp(A(θ − B)2)dθ

︸ ︷︷ ︸

E

Since the LRT has the form L(y)>
<η and since E > 0 and C > 0, an equivalent LRT is given

by

1
C ln

(
L(y)

E

)

=
(

µ +
v2sty

σ2

)2
>
< η′

Now the easy way. Realize that Y is Gaussian under H1 with mean E{Θs + N} = sE{Θ}+

E{N} = µs and with covariance E{((Θ − µ)s + N)((Θ − µ)s + N)t} = E{(Θ − µ)2}sst +

E{NN t} = v2sst + σ2I, using the uncorrelatedness of Θ and N . Essentially we face the

problem of “detecting a colored Gaussian signal in white Gaussian noise,” where the signal

has autocovariance matrix ΣS = v2sst. From (III.B.84), the log likelihood takes the form

log L(y) =
1

2
yt(σ−2I − (σ2I + v2sst)−1)y + µst(σ2I + v2sst)−1y + C,

Being clever, we use either the Matrix Inversion Lemma (found in many linear algebra or

signal processing books) or a carefully constructed eigendecomposition to find that

(σ2I + v2sst)−1 =
1

σ2
I − v2

(v2 + σ2)σ2
sst.
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Plugging the previous expression into the log likelihood ratio, we find a detector with the

desired form.

(b) False alarm probability is

PF = Pr
{

|µ + v2

σ2 stY | >
√

η′
∣
∣ H0

}

= Pr
{

µ + v2

σ2 stY >
√

η′
∣
∣ H0

}

+ Pr
{

µ + v2

σ2 stY < −√
η′
∣
∣ H0

}

= Pr
{

stY >
√

η′−µ
v2/σ2

∣
∣ H0

}

+ Pr
{

stY < −
√

η′−µ
v2/σ2

∣
∣ H0

}

Under H0 we know stY ∼ N (0, ‖s‖2σ2) where ‖s‖2 = 1, thus, under H0,

stY ∼ N (0, σ2)

and so

PF = 1 − Φ
(√η′ − µ

v2/σ

)

+ Φ
(−√

η′ − µ

v2/σ

)

Using the same arguments, detection probability is

PD = Pr
{

stY >
√

η′−µ
v2/σ2

∣
∣ H1

}

+ Pr
{

stY < −√
η′−µ

v2/σ2

∣
∣ H1

}

Under H1 we know stY = Θ + stN ∼ N (µ, v2 + σ2), leveraging the fact that ‖s‖2 = 1. So,

PD = 1 − Φ





√
η′−µ

v2/σ2 − µ
√

v2 + σ2



+ Φ





−√
η′−µ

v2/σ2 − µ
√

v2 + σ2





3. Poor 3.20

We note that, Pe = π0PF + π1PM . Since we have a Bayesian problem, we do not need to consider

randomization and we define Γ1 = {y : log L(y) ≥ τ} and Γ0 = Γc
1 = {y : log L(y) < τ}. (Note the

typographical error in the text.) Then,

Pe = π0

∫

Γ1

p0(y)dy + π1

∫

Γ0

p1(y)dy

For any s ≥ 0

Γ1 = {y : es log L(y) ≥ esτ}
= {y : Ls(y) ≥ esτ}
= {y : Ls(y)e−sτ ≥ 1}

Similarly, for any t ≤ 0

Γ0 = {y : et log L(y) ≥ etτ}
= {y : Lt(y) ≥ etτ}
= {y : Lt(y)e−tτ ≥ 1}

Then, for t ≤ 0 and s ≥ 0,

Pe = π0

∫

Γ1

p0(y)dy + π1

∫

Γ0

p1(y)dy

≤ π0

∫

Γ1

e−sτLs(y)p0(y)dy + π1

∫

Γ0

e−tτLt(y)p1(y)dy

= π0e
−sτ

∫

Γ1

Ls(y)p0(y)dy + π1e
−tτ

∫

Γ0

L(t+1)(y)p0(y)dy
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Thus for 0 ≤ s ≤ 1

Pe ≤ π0e
−sτ

∫

Γ1

Ls(y)p0(y)dy + π1e
(1−s)τ

∫

Γ0

Ls(y)p0(y)dy

4. Poor 3.21

From (II.B.24) we know that the minimum probability of error is min{λ, 1 − λ}. Using (III.C.18)

we have, for the equal prior case,

Pe ≤
(

1

2

)1−s(
1

2

)s

eµT,0(s) =
1

2
E0 [Ls(Y )]

Since the observations live in the set {0, 1},

E0 [Ls(Y )] =

1∑

y=0

(
p1(y)

p0(y)

)s

p0(y) =

1∑

y=0

(p0(y))1−s(p1(y))s

= (1 − λ)1−sλs + λ1−s(1 − λ)s

This quantity is minimized for some s ∈ (0, 1). By symmetry, we see that s0 = 1
2 .

min
s∈(0,1)

E0 [Ls(Y )] = 2
√

λ(1 − λ)

The Chernoff bound is

Pe ≤ 1

2
E0 [Ls(Y )] =

√

λ(1 − λ)

which happens to be the Bhattacharya bound (III.C.22).
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