
EE-806 Detection and Estimation Theory Spring 2004

Homework #3 Due Apr. 28, 2004

HOMEWORK SOLUTIONS #3

1. Titanic experiment. My code generated the values

yη PD

empirical 1.091 0.795
theoretical 1.046 0.831

assuming the following NP rule for PF ≤ 0.3.

δ̃(y) =

{

1 |y| ≥ yη

0 |y| < yη

.

The strategy I used was the following. With the assuming that the likelihood test can be equiva-

lently stated as

L(y) ≥ η ⇔ |y| ≥ yη,

I created a vector of thresholds yη and estimated PF and PD for each element in yη as

PF = Pr{|y| ≥ yη|H0} ≈ # data points in column 1 with absolute value greater than yη

200
.

PD = Pr{|y| ≥ yη|H1} ≈ # data points in column 2 with absolute value greater than yη

200
.

then I plotted the resulting vectors PD versus PF . From this plot, yη0
was selected as the threshold

closest to PF = α = 0.3.
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2. Poor 2.20:

The likelihood ratio is given by

L(y) =

∏n
k=1

1√
2πσ1

e−(yk−µ1)2/2σ2
1

∏n
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0

=
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which shows the structure indicated.

Manipulating this function for the special case where µ0 = 0, µ1 = µ > 0 and σ2 = σ2
1 = σ2

2 ,

L(y) = e
µ2

σ2 (
P

n
k=1

yk −n
2 )

Since log(·) is a monotone increasing function, an LRT of the form L(y)>
<η can be manipulated

into an equivalent LRT of the form

n
∑

k=1

yk
>
< yη

with yη = σ2η
µ + µ

2 . Though our rule may appear to be independent of σ, we cannot say for

sure until we derive an expression for yη in terms of false alarm rate α. Noting that yk are i.i.d.

∼ N (0, σ2) under hypothesis H0, their n-fold sum has distribution N (0, nσ2). Thus

PF = α = Pr[

n
∑

k=1

yk > yη|H0]

= 1 − Φ

(

yη√
nσ

)

⇒ yη =
√
nσΦ−1 (1 − α)

Since the decision rule is clearly a function of σ, a UMP test does not exist.

The GLRT is formed by maximizing pi(y) with respect to σ2. A necessary condition for the

maximizer is the property ∂
∂(σ2)pi(y) = 0. Doing this under H1 and H0 we get

σ̂2
1 =

1

n

n
∑

k=1

(yk − µ)2

σ̂2
0 =

1

n

n
∑

k=1

y2
k

It can be shown that pi(y) is convex in σ2, and thus the zero-derivative condition is both necessary

and sufficient. (Alternatively, you could compute the second derivative and verify that it is negative

at this zero-derivative point, implying a maximum.) If we substitute these ML variance estimates

into the likelihood ratio, the resulting GLRT “likelihood ratio” is,

LG(y) =

(

n
P

n
k=1

(yk−µ)2

)
n
2

e−
1
2

(

n
P

n
k=1

y2
k

)
n
2

e−
1
2

=

( ∑n
k=1 y

2
k

∑n
k=1(yk − µ)2

)
n
2

The GLRT then has the form LG(y)≥<η for appropriately chosen threshold η.
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3. Poor 3.3

(a) From Exercise 16 of Chapter II, the optimum test has critical regions:

Γk =

{

y ∈ Rn

∣

∣

∣

∣

pk(y) = max
0≤l≤M−1

pl(y)

}

.

Since pl(y) is the N(sl, σ
2I) density, this reduces to

Γk =

{

y ∈ Rn

∣

∣

∣

∣

‖y − sk‖2 = min
0≤l≤M−1

‖y − sl‖2

}

=

{

y ∈ Rn

∣

∣

∣

∣

sT
k y = max

0≤l≤M−1
sT

l y

}

.

(b) Using Pd to denote probability of detection, the equal priors assumption yields

Pe = 1 − Pd = 1 − 1

M

M−1
∑

k=0

Pk(Γk)

where

Pk(Γk) = Pr
{

sT
k y ≥ sT

0 y, s
T
k y ≥ sT

1 y, . . . , s
T
k y ≥ sT

M−1y | Hk

}

Denoting ti = sT
i y, and recalling that Y = sk +N under Hk, we find

p(ti|Hk) ∼
{

N (0, ‖s‖2σ2) i 6= k

N (‖s‖2, ‖s‖2σ2) i = k

and that Ti are independent (under Hk) due to the orthogonality of {sk}. Then

Pk(Γk) = Pr{tk ≥ t0, tk ≥ t1, . . . , tk ≥ tM−1 | Hk}

=

∫

Pr {x ≥ t0, x ≥ t1, . . . , x ≥ tM−1 | Hk} pTk
(x)dx

=

∫





∏

i6=k

Pr {x ≥ ti | Hk}



 pTk
(x)dx

=

∫ [

Φ

(

x

‖s‖σ

)]M−1
1√

2π‖s‖σ
e
− 1

2‖s‖2σ2 (x−‖s‖2)2

dx

=

∫

[Φ(y)]M−1 1√
2π
e−

1
2
(y− ‖s‖

σ
)2dy

Noting that the right side above does not depend on k, we conclude that

Pe = 1 − P0(Γ0) = 1 − 1√
2π

∫

[Φ(y)]M−1e−
1
2
(y−‖s‖

σ
)2dy
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4. Poor 3.9:

(a) Consider H1,

p1(y|θ = 1) ∼ N (As(1), I)

p1(y|θ = 0) ∼ N (As(0), I)

p1(y) =
1

2
p1(y|θ = 1) +

1

2
p1(y|θ = 0)

Note that (as in problem 3.7) the pdf of Y |H1 is a Gaussian mixture density, which is the

sum of two Gaussian pdf’s. Note that adding densities is very different from adding random

variables (i.e., convolving densities)! We first form the likelihood ratio

L(y) =
p(y|H1)

p(y|H0)
=

∫

p(y|H1, θ)w(θ|H1)dθ
∫

p(y|H0, θ)w(θ|H0)dθ
=

1
2p(y|H1, θ = 1) + 1

2p(y|H1, θ = −1)

p(y|H0)

=
1

2
exp

(

1

2

[

2As(1)T y −A2‖s(1)‖2
]

)

+
1

2
exp

(

1

2

[

2As(0)
T

y −A2‖s(0)‖2
]

)

and since ‖s(i)‖2 = 1

=

(

1

2
exp(−A2/2)

)

×
{

exp
[

As(1)T y
]

+ exp
[

As(0)T y
]}

(b) If A > 0 is unknown, we have a composite test. We form the locally optimal likelihood ratio

function,

d

dA
LA(y)

∣

∣

∣

∣

A=0

=
d

dA

(

1

2
exp(−A2/2)

)

×
{

exp
[

As(1)T y
]

+ exp
[

As(0)T y
]}

∣

∣

∣

∣

A=0

= −A
(

exp(−A2/2)
)

×
{

exp
[

As(1)T y
]

+ exp
[

As(0)T y
]}

+
(

1

2
exp(−A2/2)

)

×
{

s(1)T y exp
[

As(1)T y
]

+ s(0)
T

y exp
[

As(0)
T

y
]}

∣

∣

∣

∣

A=0

=
1

2
yT
(

s(1) + s(0)
)

Thus the locally optimal test has the form

δ(y) =

{

1 if yT
(

s(1) + s(0)
)

≥ η
0 < η

since the density of Y is continuous, implying no need for randomization.

(c) For A= known constant, we next determine the receiver operating characteristics for the

receiver above. We consider the statistics of the test statistic under both hypotheses,

T (y) = yT
(

s(1) + s(0)
)

T (y)|H0 = nT
(

s(1) + s(0)
)

→ T (Y )|H0 ∼ Gaussian

E{T (Y )|H0} = E{N}T
(

s(1) + s(0)
)

= 0

Var{T (Y )|H0} =
(

s(1) + s(0)
)T

E{NNT }
(

s(1) + s(0)
)

= ‖s(1)‖2 + 2s(1)
T
s(0) + ‖s(0)‖2 = 1 + 0 + 1 = 2

→ T (Y )|H0 ∼ N (0, 2)
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It is straightforward to determine the threshold for PF = α,

P0[Γ1] = 1 − Φ

(

η√
2

)

= α

→ η =
√

2Φ−1(1 − α)

Given this threshold, we next determine the probability of detection. We begin by considering

the conditional statistics of T (Y )|H1,Θ = θ:

T (Y )|H1,Θ = θ =
(

N +A(1 − θ)s(0) +Aθs(1)
)T (

s(1) + s(0)
)

= NT
(

s(1) + s(0)
)

+ A(1 − θ) +Aθ

= NT
(

s(1) + s(0)
)

+ A

→ T (Y )|H1,Θ = θ ∼ N (A, 2)

Therefore,

p1(y|θ = 1) = p1(y|θ = 0)

→ p1(y) = N (A, 2)

Since the statistics of T (Y ) are Gaussian and independent of Θ, the detection probability is

PD = P1(Γ1) = 1 − Φ

(

η −A√
2

)

= 1 − Φ

(

Φ−1(1 − α) − A√
2

)

5. Poor 3.11:

Here we aim to calculate

Pe =
1

2
P0(Γ1) +

1

2
P1(Γ0) = P0(Γ1),

where the latter equality follows from the symmetry of the problem. From the form of the LRT

(III.B.81), we know that

P0(Γ1) = Pr{Y 2
c1 + Y 2

s1 > Y 2
c0 + Y 2

s0 | H0}

=

∫ ∫

R2

Pr{Y 2
c1 + Y 2

s1 > y2
c0 + y2

s0 | H0}pYc0,Ys0|H0
(yc0, ys0)dx,

where, for j ∈ {1, 2},
ycj =

∑n
k=1 ajkyk cos[(k − 1)ωcTS ]

ysj =
∑n

k=1 ajkyk sin[(k − 1)ωcTS]

The statistics of Ycj and Ysj must be investigated further. Observe that, using the identity

sin(a) cos(b) = 1
2 sin(a + b) + 1

2 sin(a − b) and assumption that the “double frequency sine term”

equals zero for any θ, as stated previous to (III.B.82),

ycj|Hj , θ =
∑

k

ajk cos[(k − 1)ωcTS]
(

ajk sin[(k − 1)ωcTS + θ] + nk

)

=
∑

k

a2
jk

(1

2
sin[2(k − 1)ωcTS + θ] +

1

2
sin(θ)

)

+
∑

k

ajknk cos[(k − 1)ωcTS ]
)

=
1

2

∑

k

a2
jk sin(θ) +

∑

k

ajknk cos[(k − 1)ωcTS ]
)

⇒
{

E{Ycj | Hj , θ} = na2

2 sin(θ)

var{Ycj | Hj , θ} = na2

2 σ2
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where in the last statement we have used the assumption that the “double frequency term” (i.e.,

the rightmost term in (III.B.67)) equals zero. The same procedure applied to ysj yields

ysj |Hj , θ =
1

2

∑

k

a2
jk cos(θ) +

∑

k

ajknk sin[(k − 1)ωcTS ]
)

⇒
{

E{Ysj | Hj , θ} = na2

2 cos(θ)

var{Ysj | Hj , θ} = na2

2 σ2

Observing that ycj |Hj , θ ∼ N , the statistical characterization of these variables is completed by

cov{Ycj , Ysj | Hj , θ} = E

{

∑

k

ajknk cos[(k − 1)ωcTS ]
∑

l

ajlnl sin[(l − 1)ωcTS ]

}

=
σ2

2

∑

k

a2
jk sin[2(k − 1)ωcTS] = 0

where again we use the “double frequency term” assumption. To conclude,

[

Ycj

Ysj

]∣

∣

∣

∣

Hj , θ ∼ N
(

na2

2

[

sin(θ)
cos(θ)

]

,
na2

2
σ2I

)

Repeating essentially the same steps, but incorporating the orthogonality between {a1k} and {ajk},
we find that

[

Ycj

Ysj

]∣

∣

∣

∣

H1−j , θ ∼ N
(

0,
na2

2
σ2I

)

Note that the preceding pdfs are conditioned on both Hi and θ, while we are interested in pdfs

conditioned only on Hi. Because
[

Ycj

Ysj

]

|Hi−j , θ has no θ dependence, we conclude that

[

Ycj

Ysj

]∣

∣

∣

∣

Hi−j ∼ N
(

0,
na2

2
σ2I

)

For
[

Ycj

Ysj

]∣

∣

∣Hj , however, we must average over θ:

pYcj,Ysj |Hj
(ycj , ysj) =

1

2π

∫ 2π

0

pYcj ,Ysj |Hj ,θ(ycj , ysj |θ)dθ

We now can use these pdfs for performance evaluation. Repeating the argument in (III.B.72), we

find that

Pr{Y 2
c1 + Y 2

s1 > x | H0} =

∫ ∫

y2
c1+y2

s1
>x

1

πnσ2a2
e
−y2

c1+y2
s1

nσ2a2 dyc1dys1

=
1

πnσ2a2

∫ 2π

0

∫ ∞

x

re
− r2

nσ2a2 drdψ

= exp

(

− x

nσ2a2

)
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Then, with the substitution x = y2
c0 + y2

s0,

Pe =

Z Z

R2

exp

„

−
y2

c0 + y2

s0

nσ2a2

«»
1

2π

Z
2π

0

pYcj ,Ysj |Hj ,θ(ycj , ysj |θ)dθ

–

dyc0dys0

=
1

2π

Z
2π

0

»Z Z

R2

exp

„

−
y2

c0 + y2

s0

nσ2a2

«

pYcj ,Ysj |Hj ,θ(ycj , ysj |θ)dyc0dys0

–

dθ

=
1

2π

Z
2π

0

"Z Z

R2

exp

„

−
y2

c0 + y2

s0

nσ2a2

«
1

πnσ2a2
exp

 

−
(yc0 −

na2

2
sin θ)2 + (ys0 −

na2

2
cos θ)2

nσ2a2

!

dyc0dys0

#

dθ

=
1

2π

Z
2π

0

2

6
6
6
6
4

1

2
exp

„

−
na2

8σ2

«Z Z

R2

1

πnσ2a2/2
exp

 

−
(yc0 −

na2

4
sin θ)2 + (ys0 −

na2

4
cos θ)2

nσ2a2/2

!

dyc0dys0

| {z }

=1

3

7
7
7
7
5

dθ

=
1

2
exp

„

−
na2

8σ2

«

where the second to last equality follows from completion of the square.

6. Poor 3.12:

Transmission of DPSK using a modulated sinusoidal carrier in a white Gaussian noise environment
can be modelled using the same setup as Problem 3.11 under the special case that

send “zero” : a0k =

{

bk k = 1...n2
bk−n

2
k = n

2 + 1...n

send “one” : a1k =

{

bk k = 1...n2
−bk−n

2
k = n

2 + 1...n

Here, {bk, k = 1...n2 } is the pulse shape applied to each transmission, whereas the receiver uses
two subsequent pulse-intervals to make a decision. Note that {a0k} is orthogonal to {a1k}, a key

assumption in problem 3.11, and the energy used to transmit a single bit is Eb = n
2 b

2 = n
2 a

2
0 = n

2 a
2
1.

From 3.11 we know that the detector has the form

choose “zero” : r21 ≤ r20

choose “one” : r21 > r20

and acheives error probability

Pe =
1

2
exp

(

−na
2
0

8σ2

)

=
1

2
exp

(

− Eb

4σ2

)
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