
EE-806 Detection and Estimation Theory Spring 2004

Homework #2 Due Apr. 14, 2004

HOMEWORK SOLUTIONS #2

1. Computer Exercise

τ =
π0(C10 − C00)

π1(C01 − C11)
=

70π0

75(1 − π0)

From the text/notes, we know that

Pj(Γ1) = 1 − Φ

(

log(τ)

d
+ (−1)j d

2

)

where d =
µ1 − µ0

σ
=

6

2
= 3

thus PD = P1(Γ1) = 1 − Φ

(

log(τ)

3
− 3

2

)

PF = P0(Γ1) = 1 − Φ

(

log(τ)

3
+

3

2

)

R1(δ) = C01 + PD(C11 − C01)

R0(δ) = C00 + PF (C10 − C00)

and V (π0) = π0R0(δ) + (1 − π0)R1(δ)

The desired figure is shown below. Matlab says the least favorable prior is πL = 0.101 and the

corresponding conditional risks are R1(δπL
) = R0(δπL

) = 0.259. Thus δπL
is a minimax (equalizer)

decision rule.
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2. [Poor II.2] Recall that the likelihood ratio is given by

L(y) =
3

2(y + 1)
, 0 ≤ y ≤ 1.

(b) With uniform costs, the least-favorable prior will be interior to (0, 1), so we examine the

conditional risks of Bayes rules for an equalizer condition. The critical region for the Bayes

rule δπ0
is given by

Γ1 =

{

y ∈ [0, 1]

∣

∣

∣

∣

L(y) ≥ π0

1 − π0

}

= [0, τ ′],

where

τ ′ =











1 if 0 ≤ π0 ≤ 3
7

1
2

(

3
π0

− 5
)

if 3
7 < π0 < 3

5

0 if 3
7 ≤ π0 ≤ 1

.

Thus, the conditional risks are:

R0(δπ0
) =

∫ τ ′

0

2

3
(y + 1)dy =











1 if 0 ≤ π0 ≤ 3
7

2τ ′

3

(

τ ′

2 + 1
)

if 3
7 < π0 < 3

5

0 if 3
7 ≤ π0 ≤ 1

,

and

R1(δπ0
) =

∫ 1

τ ′

dy =







0 if 0 ≤ π0 ≤ 3
7

1 − τ ′ if 3
7 < π0 < 3

5
1 if 3

7 ≤ π0 ≤ 1
.

By inspection, a minimax threshold τ ′
L is the solution to the equation

2τ ′
L

3

(

τ ′
L

2
+ 1

)

= 1 − τ ′
L,

which yields τ ′
L = (

√
37 − 5)/2. The minimax risk is the value of the equalized conditional

risk; i.e., V (πL) = 1 − τ ′
L.

(c) Since Y is a continuous random variable, the Neyman-Pearson test is given by

δNP (y) =

{

1 if 3
2(y+1) ≥ η

0 if 3
2(y+1) < η

,

where η is chosen to give false-alarm probability α. Since L(y) is monotone decreasing in y,

the above test is equivalent to

δNP (y) =

{

1 if y ≤ η′

0 if y > η′ ,

where η′ = 3
2η − 1. Thus, the false-alarm probability is:

PF (δNP ) = P0(Y < η′) =

∫ η′

0

2

3
(y + 1)dy =











0 if η′ ≤ 0
2η′

3

(

η′

2 + 1
)

if 0 < η′ < 1

1 if η′ ≥ 1

.

The threshold for PF (δNP ) = α is the solution to

2η′

3

(

η′

2
+ 1

)

= α,
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which is η′ = ±
√

1 + 3α−1. Recalling y ∈ [0, 1], then noting that η′ < 0 would yield the trivial

rule δ(y) = 0, we discard the solution η′ = −
√

1 + 3α − 1. So, the α-level Neyman-Pearson

test is

δNP (y) =

{

1 if y ≤
√

1 + 3α − 1
0 if y >

√
1 + 3α − 1

.

The detection probability is

PD(δNP ) =

∫ η′

0

dy = η′ =
√

1 + 3α − 1, 0 < α < 1.

3. [Poor II.6]

Recall that p0(y) = pN(y + s) and p1(y) = pN (y − s), which gave

L(y) =
1 + (y + s)2

1 + (y − s)2
.

With equal priors and uniform costs, the critical region for Bayes testing was Γ1 = {L(y) ≥ 1} =
{

1 + (y + s)2 ≥ 1 + (y − s)2
}

= {2sy ≥ −2sy} = [0,∞). Thus, the Bayes test was

δB(y) =

{

1 if y ≥ 0
0 if y < 0

and the minimum Bayes risk was

r(δB) =
1

2

∫ ∞

0

1

π [1 + (y + s)2]
dy +

1

2

∫ 0

−∞

1

π [1 + (y − s)2]
dy =

1

2
− tan−1(s)

π
.

(b) Because of the symmetry of this problem with uniform costs, we can guess that 1/2 is the

least-favorable prior. To confirm this, we recall from part (a) that this choice gives an equalizer

rule:

R0(δ1/2) =

∫ ∞

0

1

π [1 + (y + s)2]
dy =

∫ 0

−∞

1

π [1 + (y − s)2]
dy = R1(δ1/2).

(c) Consider the likelihood ratio test for choosing H1

1 + (y + s)2

1 + (y − s)2
> τ

1 + (y + s)2 > τ + τ(y − s)2

(1 − τ)y2 − 2ys(1 + τ) > τ − 1 + (τ − 1)s2

If τ < 1 then we can complete the square of the LHS as follows (considering τ > 1 is done

similarly).

(

y − s(1 + τ)

1 − τ

)2

> τ ′ =
4s2τ

(1 − τ)2
− 1

So we can determine the decision regions from this

Γ1 =

(

−∞,
s(1 + τ)

1 − τ
−
√

τ ′

)

∪
(

s(1 + τ)

1 − τ
+
√

τ ′,∞
)

The value of the threshold is found by solving

α =

∫

Γ1

1

π

1

1 + (y − s)2
dy
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4. [Poor II.16] We have M hypotheses H0, H1 . . . , HM−1, where Y has distribution Pi and density

pi under hypothesis Hi. A decision rule δ is a partition of the observation set Γ into regions

Γ0, Γ1, . . . , ΓM−1, where δ chooses hypothesis Hi when we observe y ∈ Γi. Equivalently, a decision

rule can be viewed as a mapping from Γ to the set of decisions {0, 1, . . . , M − 1}, where δ(y) is the

index of the hypothesis accepted when we observe Y = y.

On assigning costs Cij to the acceptance of Hi when Hj is true, for 0 ≤ i, j ≤ (M−1), we can define

conditional risks, Rj(δ), j = 0, 1, . . . , M − 1, for a decision rule δ, where Rj(δ) is the conditional

expected cost given that Hj is true. We have

Rj(δ) =

M−1
∑

i=0

CijPj(Γi).

Assuming priors πj = P (Hj), j = 0, 1, . . . , M − 1, we can define an overall average risk or Bayes

risk as

r(δ) =

M−1
∑

j=0

πjRj(δ).

A Bayes decision rule will minimize the Bayes risk.

We can write

r(δ) =
M−1
∑

j=0

M−1
∑

i=0

πjCijPj(Γi) =
M−1
∑

i=0





M−1
∑

j=0

πjCijPj(Γi)





=
M−1
∑

i=0





M−1
∑

j=0

πjCij

∫

Γi

pj(y)dy



 =
M−1
∑

i=0

∫

Γi





M−1
∑

j=0

πjCijpj(y)



 dy.

Thus, by inspection, we see that the Bayes rule has decision regions given by

Γi =







y ∈ Γ

∣

∣

∣

∣

∣

∣

M−1
∑

j=0

πjCijpj(y) = min
0≤k≤M−1

M−1
∑

j=0

πjCkjpj(y)







.

Comments:

If you can compute the minimax threshold or worst-case prior analytically, you should do so. Several

of you tried very hard to write out the risk in terms of π0, which can be very complicated. Often, the

easiest thing to do is to calculate the worst-case effective threshold (what we call τ ′) rather than πL

directly. Once you have the threshold, you can compute πL. Also, if you discard solutions, be very

explicit as to why you are doing that (i.e., an equation may have two solutions where only one is valid).
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