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Hypothesis Testing
Composite Hypothesis Tests

What if the distribution of Y under H0 and/or H1 depends on an unknown parameter?

1. Terminology/Formulae/Concepts/Caveats:

(a) composite hypothesis:

H0 : Y ∼ p(y|θ, H0) θ ∈ Λ0

H1 : Y ∼ p(y|θ, H1) θ ∈ Λ1
θ unknown!

(b) Bayesian approach:

Say θ is random with density w(θ|Hj) under Hj . Then since

pj(y) =

∫
Λj

p(y|θ, Hj)w(θ|Hj)dθ

we can apply the Bayesian decision rule developed earlier (assuming known costs Cij and priors πj):
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(c) uniformly most powerful (UMP) test:

When θ is treated as an unknown deterministic variable, we might try a NP-like criterion. Say that

max
δ

PD(δ, θ) s.t. PF (δ, θ) ≤ α

is solved assuming fixed known θ, and the resulting rule can be expressed in a way that is not dependent
on θ. Since such a rule is NP-optimal for all θ, it is called a “uniformly most powerful” (UMP) test. In
many problems, however, a UMP test does not exist. (Caution: Derive the NP rule explicitly in terms of
α and reduce it to the simplest form before claiming a UMP test doesn’t exist!)

(d) locally most powerful (LMP) test:

If the UMP test does not exist but the hypotheses take the form

H0 : Y ∼ p(y|θ) θ = θ0

H1 : Y ∼ p(y|θ) θ ∈ (θ0,∞) θ deterministic and unknown (1)

it may be worthwhile to adopt an NP-optimal strategy assuming that θ ≈ θ0, i.e., the “low-SNR” region.
This is called the “locally most powerful” (LMP) test. Using a Taylor-series expansion of PD(δ, θ) around
the point θ = θ0, we found that the LMP test has the form
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If the UMP test exists, since it is optimal for all θ, it must be optimal for θ ≈ θ0 and thus must be
equivalent to the LMP test.

(e) generalized likelihood ratio test (GLRT)

Sometimes the UMP doesn’t exist and the LMP is not practical. For example, the hypotheses may not
be of the form (??), or the LMP may behave very poorly when the hypotheses satisfy (??) and θ ' θ0.
An alternate strategy is to first estimate θ based on the observation y, then form a LRT based on these
estimates. This strategy, when using “maximum likelihood” estimates, is known as the GLRT:
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θ̂1(y) = arg maxθ∈Λ1
p(y|θ)

θ̂0(y) = arg maxθ∈Λ0
p(y|θ)

While not optimal in a Bayesian or NP sense, the GLRT typically yields good PD-vs.-PF performance.


