Hypothesis Testing Neyman-Pearson Rule

What if we can't assign the priors (π_j) and costs (C_{ij}) ? Idea: Tradeoff between P_F (prob of false alarm) and P_D (prob of detection).

- 1. Terminology/Formulae:
	- (a) power of the test: P_D = probability of detection = $P_1(\Gamma_1)$
	- (b) significance or level of the test: $\alpha =$ the maximum allowable probability of false alarm, $P_F = P_0(\Gamma_1) =$ actual probability of false alarm
	- (c) receiver operating characteristic (ROC): The plot of P_D vs. P_F for a given rule.
	- (d) power function: The plot of P_D vs. d for fixed α , where d is the "separation to noise ratio." For the location testing problem, recall $d = \frac{\mu_1 - \mu_0}{\sigma}$.
	- (e) randomized decision rule:

This is a generalization of the decision rule concept. The output of the function $\delta(\cdot)$ is the **probability** that the argument is assigned to H_1 .

$$
\begin{array}{rcl} \tilde{\delta}(y) & = & \left\{ \begin{array}{cl} 1 & \text{if} \;\; L(y) > \eta \\ \gamma & \text{if} \;\; L(y) = \eta \\ 0 & \text{if} \;\; L(y) < \eta \end{array} \right. \end{array}
$$

With this formulation,

$$
P_F(\tilde{\delta}) = E_0\{\tilde{\delta}(Y)\} = \int_{\Gamma} \tilde{\delta}(y) p_0(y) \mu(dy) = P_0[L(Y) > \eta] + \gamma P_0[L(Y) = \eta]
$$

$$
P_D(\tilde{\delta}) = E_1\{\tilde{\delta}(Y)\} = \int_{\Gamma} \tilde{\delta}(y) p_1(y) \mu(dy) = P_1[L(Y) > \eta] + \gamma P_1[L(Y) = \eta]
$$

(f) Neyman-Pearson rule:

The NP rule is a likelihood ratio test where the threshold η_0 and the randomization γ_0 are chosen such that $P_F = \alpha$ exactly.

- 2. Method for determining the rule:
	- (a) Determine the LRT $L(y) \geq \eta$.
	- (b) If $L(Y)$ is a continuous random variable:
		- i. convert $L(y) > \eta$ into a simple relationship between y and some threshold y_n
		- ii. calculate $P_F = P_0(\Gamma_1)$ as a function of y_η
		- iii. find y_{η} such that $P_F = \alpha$
		- iv. calculate the resulting $P_D = P_1(\Gamma_1)$
	- (c) If $L(Y)$ is not a continuous random variable:
		- i. plot $P_0[L(Y) > \eta]$ versus η
		- ii. determine the discontinuities
		- iii. determine if randomization is necessary for the desired α ; if not, treat as continuous- $L(Y)$ case above.
		- iv. determine η_0 , the smallest η such that $P_0[L(Y) > \eta] < \alpha$
		- v. calculate the randomization: $\gamma_0 = \frac{\alpha P_0[L(Y) > \eta_0]}{P_0[L(Y) = \eta_0]}$

vi. calculate the resulting
$$
P_D = P_1(\Gamma_1)
$$

- 3. Caveats:
	- (a) Even when $L(Y)$ is a continuous random variable, Γ_1 may be the union of **disjoint** sets.
	- (b) The relationship between the threshold (η_0) and the level of the test (α) may not be a single function for all values of α , i.e. for $\alpha \in [0, 0.3], \eta = f_1(\alpha)$ and for $\alpha \in (0.3, 1], \eta = f_2(\alpha)$.
	- (c) Always doublecheck whether you need to randomize.
	- (d) Note: a complete solution to a Neyman-Pearson detection problem includes the explicit statement of the decision rule and/or critical region and calculation of the probability of detection achieved by the rule.