Hypothesis Testing Neyman-Pearson Rule

What if we can't assign the priors (π_j) and costs (C_{ij}) ? Idea: Tradeoff between P_F (prob of false alarm) and P_D (prob of detection).

- 1. Terminology/Formulae:
 - (a) power of the test: P_D = probability of detection = $P_1(\Gamma_1)$
 - (b) significance or level of the test: α = the maximum allowable probability of false alarm, $P_F = P_0(\Gamma_1) =$ actual probability of false alarm
 - (c) receiver operating characteristic (ROC): The plot of P_D vs. P_F for a given rule.
 - (d) <u>power function</u>: The plot of P_D vs. d for fixed α , where d is the "separation to noise ratio." For the location testing problem, recall $d = \frac{\mu_1 - \mu_0}{\sigma}$.
 - (e) randomized decision rule:

This is a generalization of the decision rule concept. The output of the function $\delta(\cdot)$ is the **probability** that the argument is assigned to H_1 .

$$\tilde{\delta}(y) = \begin{cases} 1 & \text{if } L(y) > \eta \\ \gamma & \text{if } L(y) = \eta \\ 0 & \text{if } L(y) < \eta \end{cases}$$

With this formulation,

$$P_{F}(\tilde{\delta}) = E_{0}\{\tilde{\delta}(Y)\} = \int_{\Gamma} \tilde{\delta}(y)p_{0}(y)\mu(dy) = P_{0}[L(Y) > \eta] + \gamma P_{0}[L(Y) = \eta]$$
$$P_{D}(\tilde{\delta}) = E_{1}\{\tilde{\delta}(Y)\} = \int_{\Gamma} \tilde{\delta}(y)p_{1}(y)\mu(dy) = P_{1}[L(Y) > \eta] + \gamma P_{1}[L(Y) = \eta]$$

(f) Neyman-Pearson rule:

The NP rule is a likelihood ratio test where the threshold η_0 and the randomization γ_0 are chosen such that $P_F = \alpha$ exactly.

- 2. Method for determining the rule:
 - (a) Determine the LRT $L(y) \geq \eta$.
 - (b) If L(Y) is a continuous random variable:
 - i. convert $L(y) > \eta$ into a simple relationship between y and some threshold y_{η}
 - ii. calculate $P_F = P_0(\Gamma_1)$ as a function of y_η
 - iii. find y_{η} such that $P_F = \alpha$
 - iv. calculate the resulting $P_D = P_1(\Gamma_1)$
 - (c) If L(Y) is not a continuous random variable:
 - i. plot $P_0[L(Y) > \eta]$ versus η
 - ii. determine the discontinuities
 - iii. determine if randomization is necessary for the desired α ; if not, treat as continuous-L(Y) case above.
 - iv. determine $\eta_0,$ the smallest η such that $P_0[L(Y)>\eta]<\alpha$
 - v. calculate the randomization: $\alpha P_0[L(Y) > \eta_0]$

$$\gamma_0 = \frac{\alpha - \Gamma_0[L(T) > \eta_0]}{P_0[L(Y) = \eta_0]}$$
 vi. calculate the resulting $P_D = P_1(\Gamma_1)$

- 3. Caveats:
 - (a) Even when L(Y) is a continuous random variable, Γ_1 may be the union of **disjoint** sets.
 - (b) The relationship between the threshold (η_0) and the level of the test (α) may not be a single function for all values of α , *i.e.* for $\alpha \in [0, 0.3], \eta = f_1(\alpha)$ and for $\alpha \in (0.3, 1], \eta = f_2(\alpha)$.
 - (c) Always doublecheck whether you need to randomize.
 - (d) Note: a **complete solution** to a Neyman-Pearson detection problem includes the explicit statement of the decision rule and/or critical region **and** calculation of the probability of detection achieved by the rule.