Hypothesis Testing

Minimax Risk and Rule

Now what if we don't know the priors (π_j) ? Consider the **worst** conditional risk for a given rule; consider the **worst case** set of priors.

- 1. Terminology/Formulae:
 - (a) risk (vs. π_0):

$$r(\pi_0, \delta) = \pi_0 R_0(\delta) + (1 - \pi_0) R_1(\delta) = (R_0(\delta) - R_1(\delta)) \pi_0 + R_1(\delta)$$

Note that $r(\pi_0, \delta)$ is linear in π_0 .

(b) minimum risk (vs. π_0):

$$\delta_{\pi_0} = \arg \min_{\delta} r(\pi_0, \delta)$$

 $V(\pi_0) = \min_{\delta} r(\pi_0, \delta) = \min$ Bayes risk for π_0

 $V(\pi_0)$ is concave down and continuous, and $V(0) = C_{11}, V(1) = C_{00}$. (c) <u>minimax risk</u>:

$$\min_{\delta} \max_{\pi_0} r(\pi_0, \delta) = \max_{\pi_0} \min_{\delta} r(\pi_0, \delta)$$

$$= \max_{\pi_0} V(\pi_0)$$

$$= \min_{\delta} \max\{R_0(\delta), R_1(\delta)\}$$

The minimax rule is the Bayes rule for the "least favorable prior" π_L , where

$$\pi_L = \arg\max_{\pi_0} V(\pi_0)$$

Once again we a have a likelihood ratio test.

- 2. Method for determining the rule:
 - (a) Determine Bayes LRT assuming known prior π_0 .
 - (b) Derive $R_0(\delta_{\pi_0})$ and $R_1(\delta_{\pi_0})$.
 - (c) Solve for π_L (and/or τ_L) that yield $R_0(\delta_{\pi_L}) = R_0(\delta_{\pi_L})$, or solve for π_L (and/or τ_L) that yield $\frac{dV(\pi_0)}{d\pi_0} = 0$.
- 3. Randomization: Necessary only if $V(\pi_0)$ is not differentiable at π_L .

Gives conditional risk $R_j(\tilde{\delta}_{\pi_L}) = qR_j(\delta^+_{\pi_L}) + (1-q)R_j(\delta^-_{\pi_L})$, where

$$q = \frac{R_0(\delta_{\pi_L}^+) - R_1(\delta_{\pi_L}^+)}{R_0(\delta_{\pi_L}^+) - R_1(\delta_{\pi_L}^+) + R_1(\delta_{\pi_L}^-) - R_0(\delta_{\pi_L}^-)}$$

= $\frac{V'(\pi_L^+)}{V'(\pi_L^+) - V'(\pi_L^-)}$ denoting derivatives by $(\cdot)'$

Notes:

- There is no need to randomize when any of the following hold:
 - $-V(\pi)$ is differentiable for all $\pi \in (0,1)$.
 - $P_0[L(y) = \tau] = P_1[L(y) = \tau] = 0 \ \forall \tau.$
 - -L(Y) is a continuous random variable.
- When problem is symmetric, often have $\pi_L = \frac{1}{2}$.
- Note: a **complete solution** to a minimax detection problem includes the explicit statement of the decision rule and/or critical region **and** a calculation of the risk incurred by the rule.