Homework #6

HOMEWORK ASSIGNMENT #6

Due Wed. May 26, 2004 (in class)

- 1. Poor, 4.12
- 2. Poor, 4.21 (a)-(c)
- 3. Assume that X_1, \dots, X_n are i.i.d. random variables that are uniformly distributed on $[0, \theta]$. Assume that θ is unknown, but deterministic.
 - (a) Show that $T(\underline{x}) = \max(x_i)$ is a sufficient statistic for θ . **Hint:** when you write out $p_{\theta}(\underline{x})$ be sure to include the valid regions of support using indicator functions.
 - (b) Find $p_{\theta}(T)$.
 - (c) Is T a complete sufficient statistic?
 - (d) What is the mean of T?
 - (e) Determine the MVUE of θ ; justify why it is the MVUE.
 - (f) What is the variance of the MVUE?

4. Computer Exercise

- (a) Simulate the performance of the MVUE above for $\theta = 4.3$. Consider $n_{\text{max}} = 500$ and average 50 runs for each realization of n samples. Plot the empirical mean and the variance (using semilogy) of the estimator as a function of n. Superimpose the theoretically calculated variance for comparison.
- (b) Simulate the performance of another unbiased estimator for θ by noticing that $E\{\sum_{i=1}^{n} X_i\} =$ $\frac{n}{2}\theta$. Calculate and plot the mean and variance of this estimator as in part (a). Derive and plot the theoretically calculated variance for comparison.
- (c) Comment on the results and explain any differences in performance you observe.

Please include your annotated code.