EFE 806 Mitra, Spring 1996
Quiz 1 - Solutions

TOTAL - 38 points

AVERAGE - 35.8 points

MEDIAN - 36 points

1. (5 points total)

We use Bayes formula for probability density functions:

Ixy(zly) = fYX(}UJf;{)((:C)

Using Stark and Woods notation:

fx(z) = 1rect (f)
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combining with the prior information:

fXIY(ﬂy) = orf (1;) —erf(_l_y)

2. (5 points total)

(a) To solve for c;



PIX>x+a = 2/ e 2 dy = e~ 2et)
T+a

for x > 0,a > 0.
(c)
PX>z+a,X >d
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Thus this conditional probability is independent of a. This why the exponential density is
considered to be memoryless.

3. (5 points)

The cumulative distribution function for a standard Gaussian random variable (AV(0,1)) is given
by
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The error function is defined as,

erf(z) = /w 2 exp —y°dy
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4. (8 points total)

(a) Let X be a random vector (of dimension N x 1) with the Gaussian density, N'(m, C). What is
the mean vector and covariance matrix of AX + b, where A is a constant matrix of dimension
N x N and b is a constant vector of dimensions N x 1..

E{AX+b} = Am+b
Cov{AX} = ACAT

(b) Let p;(Y) be the Gaussian multivariate density N (s;,X) where i = 1,2. Determine the
ratio of the two densities : i&. Simplify the expression as much as possible. Assume that
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| really wanted this as simplified as possible and so | took off a point if you didn’t simplify
the expression enough.

5. (7 points) Assume you had a likelihood ratio test of the form:
(y — 7)? > 7 — choose H; —co<y<oo

Describe the decision regions I'y and I'y as functions of subsets of the real line.

Note that we need to consider all possible values of 7:

IfT<0—>F0:® and I'1 =R

ifr>0-0 = {y:(y="72>7}
= {y:=VT+T7>y or y> 747}
= (=00, =T+ TJUNT +7,00)
and Ty = I'V=(—vVT+T7,V/7+7)



Now consider

In(y — 7) > 7 — choose H, —o00<qy <0

In this case we know that In is a monotonic function of its arguement and that we do not need to
distinguish between 7 > 0 and 7 < 0 (both values are valid). However, we do note that In is not
defined for negative arguments. This will impose a limit on the decision regions.

I = {y:In(y-7) > 7}
{yry>e" + 7 =" +7,00)
but Ty = {y:7T<y<e" +7}=[7,+7)

You do need to concern yourself with which set the end-points get assigned. That is, for example,
e” + 7 cannot belong to I'y and I'y simultaneously.

. (3 points) The important topics from EE 804 are:

manipulating probability density functions

conditional and joint probability density functions

functions of random variables

multi-dimensional Gaussian variables

. (5 points)
Two Hypothesis Testing problems.

| was, in general, very pleased with these. Most of you wrote up very interersting background
statements and devised interesting hypothesis testing problems. Neat!

Remember to distinguish between estimation problems (the unknown 6 is drawn from a contin-
uous set) versus detection problems (the unknown @ is drawn from a discrete set).



