TOTAL - 38 points AVERAGE - 35.8 points MEDIAN - 36 points

1 (5 points total)

We use Bayes formula for probability density functions:

$$f_{X|Y}(x|y) = \frac{f_{Y|X}(y|x)f_X(x)}{f_Y(y)}$$

Using Stark and Woods notation:

$$\begin{split} f_X(x) &= \frac{1}{2}\mathrm{rect}\left(\frac{x}{2}\right) \\ f_Y(y) &= \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx \\ &= \int_{-\infty}^{\infty} f_{Y|X}(y|x) f_X(x) dx \\ &= \int_{-1}^{1} \frac{1}{2\sigma\sqrt{2\pi}} \exp\left(-\frac{(y-x)^2}{2\sigma^2}\right) dx \\ \mathrm{let} \ \beta &= \frac{x-y}{\sigma} \\ &= \frac{1}{2} \int_{\frac{-1-y}{\sigma}}^{\frac{1-y}{\sigma}} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\beta^2}{2}\right) d\beta \\ &= \frac{1}{2} \left[\mathrm{erf}\left(\frac{1-y}{\sigma}\right) - \mathrm{erf}\left(\frac{-1-y}{\sigma}\right) \right] \end{split}$$

combining with the prior information:

$$f_{X|Y}(x|y) = rac{rac{1}{\sigma\sqrt{2\pi}}\exp\left(-rac{(y-x)^2}{2\sigma^2}
ight)\operatorname{rect}\left(rac{x}{2}
ight)}{\operatorname{erf}\left(rac{1-y}{\sigma}
ight)-\operatorname{erf}\left(rac{-1-y}{\sigma}
ight)}$$

- 2. (5 points total)
 - (a) To solve for c;

$$1 = \int_{-\infty}^{\infty} f_X(x) dx$$

$$= c \int_{0}^{\infty} e^{-2x} dx = \frac{c}{2} \int_{0}^{\infty} e^{-u} du = \frac{c}{2}$$

$$\to c = 2$$

$$P[X \ge x + a] = 2 \int_{x+a}^{\infty} e^{-2u} du = e^{-2(x+a)}$$

for x > 0, a > 0.

(c)

$$\begin{split} P[X \geq x + a | X > a] &= \frac{P[X \geq x + a, X > a]}{P[X > a]} \\ \text{but } P[X \geq x + a, X > a] &= P[X \geq x + a] \\ &\rightarrow P[X \geq x + a | X > a] &= \frac{P[X \geq x + a]}{P[X > a]} = \frac{e^{-2(x + a)}}{e^{-2a}} = e^{-2x} \end{split}$$

Thus this conditional probability is **independent** of a. This why the exponential density is considered to be memoryless.

3 (5 points)

The cumulative distribution function for a standard Gaussian random variable $(\mathcal{N}(0,1))$ is given by

$$\Phi(x) = P[X < x] = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp{-\frac{y^2}{2}} dy$$

The error function is defined as,

$$\operatorname{erf}(x) = \int_0^x \frac{2}{\sqrt{\pi}} \exp{-y^2} dy$$

for $x \geq 0$

$$\begin{split} \Phi(x) &= \int_{-\infty}^{0} \frac{1}{\sqrt{2\pi}} \exp{-\frac{y^2}{2}} dy + \int_{0}^{x} \frac{1}{\sqrt{2\pi}} \exp{-\frac{y^2}{2}} dy \\ &= \frac{1}{2} + \int_{0}^{\frac{x}{\sqrt{2}}} \sqrt{2} \frac{1}{\sqrt{2\pi}} \exp{-z^2} dz \\ &= \frac{1}{2} + \frac{1}{2} \int_{0}^{\frac{x}{\sqrt{2}}} \frac{2}{\sqrt{\pi}} \exp{-z^2} dz \\ &= \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{x}{\sqrt{2}}\right) \right] \end{split}$$

for x < 0

$$\begin{split} \Phi(x) &= \int_{-\infty}^{0} \frac{1}{\sqrt{2\pi}} \exp{-\frac{y^2}{2}} dy - \int_{x}^{0} \frac{1}{\sqrt{2\pi}} \exp{-\frac{y^2}{2}} dy \\ &= \frac{1}{2} - \int_{\frac{x}{\sqrt{2}}}^{0} \sqrt{2} \frac{1}{\sqrt{2\pi}} \exp{-z^2} dz \\ &= \frac{1}{2} - \frac{1}{2} (-1) \int_{0}^{\frac{x}{\sqrt{2}}} \frac{2}{\sqrt{\pi}} \exp{-z^2} dz \\ &= \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{x}{\sqrt{2}}\right) \right] \end{split}$$

- 4 (8 points total)
 - (a) Let \underline{X} be a random vector (of dimension $N \times 1$) with the Gaussian density, $\mathcal{N}(\underline{m},C)$. What is the mean vector and covariance matrix of $A\underline{X} + \underline{b}$, where A is a constant matrix of dimension $N \times N$ and \underline{b} is a constant vector of dimensions $N \times 1$.

$$\mathbf{E}\{A\underline{X} + \underline{b}\} = A\underline{m} + \underline{b}$$

$$\mathbf{Cov}\{AX\} = ACA^{T}$$

(b) Let $p_i(\underline{Y})$ be the Gaussian multivariate density $\mathcal{N}(\underline{s}_i, \Sigma)$ where i=1,2. Determine the ratio of the two densities : $\frac{p_1(\underline{Y})}{p_2(\underline{Y})}$. Simplify the expression as much as possible. Assume that $\underline{s}_1 \neq \underline{s}_2$.

$$\frac{p_1(\underline{Y})}{p_2(\underline{Y})} = \frac{\frac{1}{(2\pi)^{\frac{N}{2}}|\Sigma|^{\frac{1}{2}}} \exp{-\frac{1}{2}(\underline{y} - \underline{s}_1)^T \Sigma^{-1}(\underline{y} - \underline{s}_1)}}{\frac{1}{(2\pi)^{\frac{N}{2}}|\Sigma|^{\frac{1}{2}}} \exp{-\frac{1}{2}(\underline{y} - \underline{s}_2)^T \Sigma^{-1}(\underline{y} - \underline{s}_2)}}$$

$$= \frac{\exp{-\frac{1}{2}(\underline{y} - \underline{s}_1)^T \Sigma^{-1}(\underline{y} - \underline{s}_1)}}{\exp{-\frac{1}{2}(\underline{y} - \underline{s}_2)^T \Sigma^{-1}(\underline{y} - \underline{s}_2)}}$$

$$= \exp{-\frac{1}{2}\left[(\underline{y} - \underline{s}_1)^T \Sigma^{-1}(\underline{y} - \underline{s}_1) - (\underline{y} - \underline{s}_2)^T \Sigma^{-1}(\underline{y} - \underline{s}_2)\right]}$$

$$= \exp{-\frac{1}{2}\left[-2y^T \Sigma^{-1}\underline{s}_1 + \underline{s}_1^T \Sigma^{-1}\underline{s}_1 + 2y^T \Sigma^{-1}\underline{s}_2 - \underline{s}_2^T \Sigma^{-1}\underline{s}_2\right]}$$

$$= \exp{\left[y^T \Sigma^{-1}(\underline{s}_1 - \underline{s}_2) + \frac{1}{2}(\underline{s}_2^T \Sigma^{-1}\underline{s}_2 - \underline{s}_1^T \Sigma^{-1}\underline{s}_1)\right]}$$

$$= \exp{\left[\left(y^T - \frac{1}{2}(\underline{s}_1^T + \underline{s}_2^T)\right) \Sigma^{-1}(\underline{s}_1 - \underline{s}_2)\right]}$$

I really wanted this as simplified as possible and so I took off a point if you didn't simplify the expression enough.

5. (7 points) Assume you had a likelihood ratio test of the form:

$$(y-7)^2 \ge \tau \to \mathsf{choose}\ H_1 \qquad -\infty \le y \le \infty$$

Describe the decision regions Γ_1 and Γ_0 as functions of subsets of the real line.

Note that we need to consider all possible values of τ :

if
$$\tau < 0 \rightarrow \Gamma_0 = \emptyset$$
 and $\Gamma_1 = \mathcal{R}$

$$\begin{split} \text{if} \ \ \tau \geq 0 \rightarrow \Gamma_1 &= \ \{y: (y-7)^2 \geq \tau\} \\ &= \ \{y: -\sqrt{\tau} + 7 \geq y \ \text{ or } \ y \geq \sqrt{\tau} + 7\} \\ &= \ (-\infty, -\sqrt{\tau} + 7] \cup [\sqrt{\tau} + 7, \infty) \\ \text{and} \ \ \Gamma_0 &= \ \Gamma_1^C = (-\sqrt{\tau} + 7, \sqrt{\tau} + 7) \end{split}$$

Now consider

$$ln(y-7) \ge \tau \to choose H_1 \qquad -\infty \le qy \le \infty$$

In this case we know that \ln is a monotonic function of its arguement and that we do not need to distinguish between $\tau>0$ and $\tau<0$ (both values are valid). However, we do note that \ln is not defined for negative arguments. This will impose a limit on the decision regions.

$$\begin{array}{rcl} \Gamma_1 & = & \{y : \ln(y - 7) \geq \tau\} \\ & = & \{y : y \geq e^{\tau} + 7\} = [e^{\tau} + 7, \infty) \\ \text{but } \Gamma_0 & = & \{y : 7 \leq y < e^{\tau} + 7\} = [7, e^{\tau} + 7) \end{array}$$

You do need to concern yourself with which set the end-points get assigned. That is, for example, $e^{\tau} + 7$ cannot belong to Γ_1 and Γ_0 simultaneously.

- 6. (3 points) The important topics from EE 804 are:
 - manipulating probability density functions
 - conditional and joint probability density functions
 - functions of random variables
 - multi-dimensional Gaussian variables

7 (5 points)

Two Hypothesis Testing problems.

I was, in general, very pleased with these. Most of you wrote up very interersting background statements and devised interesting hypothesis testing problems. Neat!

Remember to distinguish between estimation problems (the unknown θ is drawn from a continuous set) versus detection problems (the unknown θ is drawn from a discrete set).