Autumn 2000

Homework #4

Oct. 20, 2000

HOMEWORK ASSIGNMENT #4

Due Fri. Oct. 27, 2000 (in class)

1. Consider the random variables X, Y with joint pdf

$$f_{X,Y}(x,y) = \begin{cases} 2e^{-(x+2y)}, & x,y > 0 \\ 0, & \text{else.} \end{cases}$$

Let Z = X + Y and U = X/Y. Find the joint pdf of Z, U.

2. Say X is a vector of N zero-mean jointly Gaussian random variables with (positive definite symmetric) covarance matrix R. In other words, the joint pdf of X is:

$$f_{\boldsymbol{X}}(\boldsymbol{x}) = \frac{1}{(2\pi)^{N/2} |\boldsymbol{R}|^{1/2}} e^{-\frac{1}{2} \boldsymbol{x}^t \boldsymbol{R}^{-1} \boldsymbol{x}}.$$

- (a) Say the elements of X are dependent. Find a matrix W so that Y = WX contains N independent random variables with equal variance σ^2 . (Hint: consider the eigendecomposition of R.)
- (b) Find **W** when N=2, $\sigma=1$, and

$$\mathbf{R} = \begin{pmatrix} 5 & -\sqrt{3} \\ -\sqrt{3} & 7 \end{pmatrix}.$$

3. Define the subset A as the region of the unit square included between the curves $y = x^2$ and $y = \sqrt{x}$. Consider the random variables X, Y with joint pdf

$$f_{XY}(x,y) = \begin{cases} 3, & (x,y) \in A \\ 0, & \text{else.} \end{cases}$$

(This should look familiar.)

- (a) Find E(X) and E(Y).
- (b) Find var(X) and var(Y).
- (c) Find $\rho_{X,Y}$.
- 4. Say that $X Y^{10}$ is independent of Y. Prove $E(X|Y) = Y^{10} + c$, where c is some constant, and evaluate c.
- 5. Prove that if E(X|Y,Z) = E(X|Y) then E(XZ|Y) = E(X|Y)E(Z|Y).
- 6. Say that $\{X_i\}_{i=1}^n$ are independent identically distributed Bernoulli random variables with parameter p. Find a closed-form expression for the pmf of $Y = \sum_{i=1}^n X_i$. (Hint: Use the characteristic function.)

P. Schniter, 2000

7. A popular expansion of the characteristic function is

$$\log \Phi_X(\omega) = \sum_{n=0}^{\infty} C_{X,n} \frac{(j\omega)^n}{n!}$$

where $\mathcal{C}_{X,n}$ is called the n^{th} cumulant of X. Cumulants have many important uses in signal processing, communication theory, and many other fields. Find an expression for the n^{th} cumulant of $Y = \sum_{i=1}^{m} a_i X_i$, where $\{X_i\}$ are independent identically distributed and a_i are real constants.

8. Prove the chain rule for pdfs, which is useful in many problems:

$$f_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = f_{X_1|X_2,...,X_n}(x_1|x_2,...,x_n) f_{X_2|X_3,...,X_n}(x_2|x_3,...,x_n) f_{X_3|X_4,...,X_n}(x_3|x_4,...,x_n) \cdots f_{X_n}(x_n).$$