Homework #2

Oct. 6, 2000

1

HOMEWORK ASSIGNMENT #2

Due Fri. Oct. 13, 2000 (in class)

- 1. Let $\Omega = [0,1] \times [0,1]$, the unit square. Assume that for any event A, P[A] is equal to the area of A. Can you specify A, B, C, three subsets of Ω , that are pairwise independent but for which $P[ABC] \neq P[A]P[B]P[C]$?
- 2. Consider $\Omega = \{1, 2, ..., n\}$. The set of events of interest is given by $\mathcal{F} = \{\emptyset, \Omega, \{1, 2\}, \{3, 4, ..., n\}\}$. Construct a nonmeasurable function $f : \Omega \to \mathbb{R}$.
- 3. Suppose you flip a coin four times, and each time you observe the face of the coin.
 - (a) Define the sample space Ω and a random variable X that counts the number of heads.
 - (b) Calculate the CDF $F_X(x)$ for an unfair coin with P[heads] = 0.8.
 - (c) Generalize (b) for n flips.
- 4. Consider the sample space $\Omega = \{(a, b) \in \mathbb{R}^2 : a^2 + b^2 \leq 1\}$. For any subset $A \in \mathcal{F}$, we define its probability as the normalized area of A, or

$$P[A] = \frac{\text{area of } A}{\pi}.$$

Consider the random variable X defined by $X(a,b) = \sqrt{a^2 + b^2}$.

- (a) Illustrate graphically the subset of Ω that corresponds to the event $\{X \leq x\}$.
- (b) Calculate and plot the CDF of X.
- 5. The arrival time of a professor to his office is a continuous r.v. uniformly distributed over the hour between 8am and 9am. Define the events:

$$A = \{ \text{ the prof has not arrived by 8:30am} \},$$

 $B = \{ \text{ the prof will arrive by 8:31am} \},$

Find

- (a) P[B|A].
- (b) P[A|B].
- 6. Let $\Omega = [-10, 10]$.
 - (a) Specify a continuous r.v. X on this sample space.
 - (b) Specify a discrete r.v. Y.
 - (c) Specify a mixed r.v. Z.

Don't forget that you need to specify \mathcal{F} in each case.

P. Schniter, 2000

7. Define the subset A as the region of the unit square included between the curves $y=x^2$ and $y=\sqrt{x}$. Consider the random variables X,Y with joint pdf

$$f_{XY}(x,y) = \begin{cases} 3, & (x,y) \in A \\ 0, & \text{else.} \end{cases}$$

- (a) Plot the joint pdf.
- (b) Find and plot the marginal densities of X and Y.
- 8. Consider a Gaussian r.v. X with parameters $\mu = -1, \sigma^2 = 2$. Calculate the following probabilities
 - (a) $P[X \ge 0]$.
 - (b) P[X < -0.3].
 - (c) $P[|X| \le 0.5]$.
 - (d) P[|X| > 10].

Hint: use either erf or erfc in MATLAB, but first use the help command to see how they are specified.

9. Show that for all x > 0,

$$\frac{x}{1+x^2}e^{-\frac{x^2}{2}} \ < \ \int_x^\infty e^{-\frac{y^2}{2}}dy \ < \ \frac{1}{x}e^{-\frac{x^2}{2}}.$$