Phil Schniter OSU ECE-702

Managing Complexity [Ch. 15]:

Problem:

e Demodulating K bits generally requires O(25)

complexity.
e For send a fixed bit rate, we need O(K,) complexity.

Insights:

e MPSK only needed one filter for K, bits.

~~ linear modulation.

o Gray-coded QPSK demodulated each bit in parallel.
~» orthogonal modulation.
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Linear Modulation:

I=i = x;(t) = di/Eyu(t)
Normalization so that average energy per bit = F:
o [ Ju(t)Pdt=1
o > VM d|>m; = K, (so that avg word energy = K,F)

Example constellations:
Q Q Q

16-QAM 8-PAM 8-PSK
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MLWD for linear modulation (under equal priors):

E = |d|*E,
Ty T,
Vi(T,) = / Y,()zi(t)dt = d'\/E, / Y, (t)u*(t)dt
0 0

J

I = argmiaXRe{Vi(Tp)} — F;/2
= argmax V EyRe{d;Q} — |d;|* E, /2
— argmax—|Q - /Bl
= arg miin‘Q — di\/ﬁb|2 (“minimum distance decoder”)

Q decision
Y. (1) — u* (T, — ¢ s -
( ) “ ( P ) t =1, device [
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Example decision regions:

Q Q
|
16-QAM
Q

8-PSK



Phil Schniter OSU ECE-702

Properties of MLWD with linear modulation:

e Only a single filter required.
e Decision z:i inferred when () € decision region A;.

o Pr(l#ill =i)=Pr(Q ¢ AL = i)

Notice that

/O v (di VEu(t) + Wz(t))u* (1)t
di\/Ey + N.(T,)
Ay = [ NP = N [ uPie = N

— 00

@l

=1

and so Q’I:i ~ CN (d;v/Ey, Ny).
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Exact WEP analysis:

1 M—-1
WEP = — > Pr(Q¢ All=1),

1=0

where
PrQ ¢ AilL=1) = 1-Pr(Q e AL =1)
1 — ) d
/Ai foir(qli) dg.

so we need to integrate the pdf of Q| .~ CN(div/ Ep, No)

over the decision region A;.
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Exact WEP for QPSK:
Z?io_l |dz"27Tz' =Ky, = |dz! — \/§ = diQ,dﬂ = +1.

Qq

Pr(Q ¢ Aog|L =0)

= fQ|I 61’0)

(QQ_\/Eb)2+(Q|_\/Eb)2
~ 1- X daqda.
/ / 7TN0 1Q%4)

Can decouple this double integral...
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Pr(Q ¢ Ao|L =0)

. * _ (qQ—¢/E_b>2 ; o _(a—/Fp)? y
_ e 2(Ng/2) e 2(Ng/2)
/o V27 (No/2) QQ/O V27 (No/2) a

— 1—PI’{QQ>O}2 — 1_(1_FQQ(O))2

1

4
E\ 1 ., [E
— erf =) et b
ote(|[2) - Lesto (/)

= WEP (by symmetry).
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Exact WEP for some simple linear modulations:

1 | E
BPSK 561’&3( ﬁ:;)
E 1 E
QPSK: erfc( FI;>_ZGI{C2< FZ)

3 2L,
4-PAM: Zerfe( /222
1 T C( 5No>
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Exact WEP for some simple linear modulations:

10°

10%

LU
\_—'; 1 0-3
al
10
10°

10

ez IIII'l|

16

10
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Spectral characteristics of linear modulation:

Since z;(t) = d;v/ Eyu(t), we find that
Gx,(f) = |di*EGu(f),

and hence

Dx.(f) = —Z%’Gxi(f)

Note: Energy spectrum depends only on pulse shape u(t).

11
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Summary of linear modulation:

e MLWD: Match-filter via pulse shape u(t) and quantize

output () to nearest constellation point.

e Depending on the decision regions, could still be
O(25%) complexity.

e Possible to derive exact WEP by integrating Gaussian
pdfs over the decision regions.

e Energy spectrum depends only on pulse shape u(t).

(Later, we discuss “good” choices for u(t).)

12
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Orthogonal Modulation:

Decoupled ML Bit Decisions:

e Recall that this happened with Gray-coded QPSK.

e Motivation: gives O(K}) complexity MLWD. (Recall
that we need O(K};) complexity demodulation to

decode a constant-bit-rate stream.)

e Question: Exactly when can MLWD be implemented
using decoupled decisions on each bit?

13
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Say that [ = [IM, 1) JU)]  Furthermore, say that

l:”& = l: [ml,mg,...,me].

Claim: If the ML metrics {7;} can be written in the form

Ky
- k
ne S
k=1

then MLWD is implementable with K decoupled decisions.

l.e., T} is maximized by maximizing each Tﬁfg separately:

K
.., argmax T?s,LKbb)}

I= argmax1; < I= [argmaxT,,(nll),.
( m1 Mgy,

14
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Example: Gray Coded QPSK:

Bit-to-symbol mapping £:1@[1’(}/\§:0@[0’O]
di = dpm, + jdm, @
I=21,1] I=3<10,1]

implies that
T, = +/E,Re{d'Q} — E, (from p. 3)
= VERe{(dm, — jdun,)(Qi + 7Qa)} — By
= \/Ebdlel — %+ \/EbdszQ — %

7(1) T(2)

m1 ma2

15
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Generic Orthogonal Modulation:

The k" bit chooses between the waveforms in {ZE‘(()k) (t),:cgk) (1)},
where {z8”(#), 2\ ()} L {2 #), 2" (#)} for k # 1, and then

the sum of waveforms for bits k € {1,..., K} is transmitted.

In other words, if I =1¢ = |my,ma,...,mg,|, then

Ky
r;(t) = waﬁi(t), where
k=1

0 = Re/ xq(,,]ji(t)x%*(t)dt Vmy, my, k # 1.

— 00

Can show that this guarantees decoupled ML metrics. ..

16
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Ky

2 7 ()

T — Re/OTpYz(t)x;‘(t)dt—%/OTp 2, (0) 2t
re [ (S o) [

Ky T, Ky
— Re/ Y (t)z!k mk dt——ZZ/ mk mz (t)dt
k=1 0 k=1 I=1
- r k L[
— [Re/ Y.(t)x ()*( t)dt — 5/ ]x,,g,“)c(t)]?dt]
k=1 0 0 ],
T (k)
mp

Note: This specifies exactly how to generate {T,Sf,)} for
orthogonal modulations.
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WEP for orthogonal modulation:

We just saw that M-ary MLWD decouples into K, MLBDs.
For the k' MLBD, we know that

1 A¥(1,0) 1 E
(k) — E ! > _b
BEP > erfc(\/ N, > 2 5 erfc( N())’

where AW (1,0) = [ 2" — 2{"|2at.

Since the probability of a correct word decision equals the

probability of K simultaneously correct bit decisions,

K, .
WEP = 1-[](1-BEP®) > 1—[1—Lerfe( /)] b
k=1

18
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Summary of M-ary orthogonal modulation:

e MLWD decouples into K; MLBDs.
e MLWD implementable with O(K}) complexity.
e WEP analysis reduces to BEP analysis.

e Performance is, at best, equal to binary antipodal
signaling, which was far from Shannon's bound!

Can construct orthogonal waveforms by time-division,

frequency-division, or “code-division™ . ..

19
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Example 1: Orthogonal Frequency Division Multiplexing:

For the case of one bit per subcarrier,

1 . ) ]
SO = 7 exp(2mfa(2l = Ky —1)t) € [0,T;)
! t¢[0,T,
Ky
X.(t) = Y DVVEsY ()
=t 0
T ()

using BPSK: DY) = o(1®), i.e., a(0) = 1, a(1) = —1.
For orthogonality (i.e., Re [° erg@)l ()2 () = 0), generally
need f; = 2T , though f; = = sufflces for real-valued
1

constellations. Still, we focus on f; = T
p

20
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Binary OFDM demodulator:

QU :
sWHT, — 1) —={Re()) 2 0= jO)

A

0= 7@

2) -
s@ (1, _ ) | | Re()

7§ Q(Kb) ; X
L S(Kb)*(Tp — 1) 7 Tﬁ Re(-) 1200 —= J(Kb)

BEP identical to that of BPSK. Spectral efficiency is

Wy = b bits/sec,

Tr = np ~ 1 bit/sec/Hz
Br

N
(N
=
3
=
|
L
N

21
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Example 2: Orthogonal Code Division Multiplexing:

For the case of one bit per spreading waveform,

Ky
X.(t) = » DY\E,s"(t)
=1

using BPSK DY = q(I®), ie., a(0) =1, a(1) = —1. The

spreading waveforms {s()(¢)} /%, are orthonormal on [0, T},]:

s () s®(t)
T t
Walsh /% :
codes: JE s@(t) s (t)
Tp Tp
t
*\/TI,,*

22
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Binary OCDM demodulator:

A

—= (1)

A

—= [(2)

—= [(K3)

> = np < 1 bit/sec/Hz

)
s, —py 7 O
t=T,
2)
}/z(t) t="1,
L S(Kb)*(Tp —t) j ﬂ
t=T,
BEP identical to that of BPSK. Spectral efficiency is
)
Wy, = éf—;’ bits/sec,
Ky
BT Z T, Hz )

OSU ECE-702
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Example 3: Binary Stream Modulation:

Could be called “orthogonal time-division multiplexing.”

X.(t) = i DY/ Eyu(t— (1 —1)T)

using BPSK DY as before. (Note: T, =T, + (K, — 1)T".)
The pulse waveform wu(t) is orthogonal to its T-shifts.

u(t) Tu(t — 2T

L
Ty

. . I I I I =
T 27T 31T 4T | T 27T 31T 4T
— pu(t=T) u(t — 37) 1y
| I I I | I I —={
T 27T 31T 4T T 27T 31T 4T

24
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Binary stream demodulator:

Y.(t) —=| u"(T, — 1) AL Re(-)'=0

for ke {1,..., K}

BEP identical to that of BPSK. Spectral efficiency is

\

W, = = bits/sec, W
b T / > :>nB:_b§1 bit/SeC/HZ
Br > 7 Hz br

Note: In practice, Linear/OFDM/OCDM modulations are
combined with stream modulation.

25
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Combined Orthogonal & Linear Modaulation:

Say we have K bits to send over L orthogonal waveforms:
L
X.(t) = > DY\EsY(t)
=1

where {s)(¢)}£, are orthonormal and DY is 2%—ary for

each [. We will assume that

Lo =1
B{DY DI} =
0 k#I

which means that the symbols used on different waveforms
are uncorrelated. It also guarantees an energy-per-bit of Ej.

26
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Spectral Characteristics:

1 () [ . 2
Dx.(f) = 7 Bs / Xz(t)e_ﬂ”ftdt‘ }
1 (] [ <& 2
— — Ex / DY Es(”te_ﬂ”ftdt‘ }
5 2\ _OO; ps' (1)
Eb r L 9
— —E<‘ DJOAY }
al Zj (£)
E L L
I L ERGERNT)
b =1 k=1
L
E
— beGS<l>(f)
[=1

27
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WEP Analysis:

Since we assume an identical constellation on each

waveform,
WEP = 1 — (1 — WEP®)"

where WEPY denotes the per-waveform WEP.

28
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Example 1: 2%—ary Stream Modulation

Time-multiplexing of L symbols with K,/L bits per symbol:

L

X)) = 3 DOVt - (- 1T).

[=1

As before, the pulse waveform u(t) is orthogonal to its
T-shifts. But now T, = T;, + (L — 1)T" and DY is a symbol
from a generic 2%—ary constellation (e.g., QAM, PAM,
PSK).

29
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Example 2: 2%—ary OFDM

L subcarriers with K,/ L bits per subcarrier:

sO@) = 4

\
L

X.(t) = Y DVVEsY(t)
[=1

lv
ng()l) (t)

K
Here, DY is a symbol from a generic 2Tb—ary constellation

(e.g., QAM, PAM, PSK).

f\/TIpeXp(j%rfd(Ql—L—l)t) tel
0 t& |

OSU ECE-702

0,7,
0,7

30



Phil Schniter OSU ECE-702

For example, there are several ways to transmit 6 bits using
OFDM:

e 6 sub-carriers with BPSK and f; = -
e 3 sub-carriers with QPSK and f; = -+

e 2 sub-carriers with 8-PSK and f; = -+~

What do you expect for the spectral efficiencies?
What about the relative WEP performance?

31
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Example 3: Streamed M-ary OFDM

In modern practical systems, the concepts of time
multiplexing (i.e., streaming), frequency multiplexing, and

linear modulation are often combined.

For example, a 1 Mbit block could be transmitted using
1024 consecutive OFDM frames of 256 subcarriers with
16-QAM (i.e., 4 bits) on each subcarrier.
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