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Managing Complexity [Ch. 15]:

Problem:

• Demodulating Kb bits generally requires O(2Kb)

complexity.

• For send a fixed bit rate, we need O(Kb) complexity.

Insights:

• MPSK only needed one filter for Kb bits.

❀ linear modulation.

• Gray-coded QPSK demodulated each bit in parallel.

❀ orthogonal modulation.
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Linear Modulation:

I = i ⇒ xi(t) = di
√

Ebu(t)

Normalization so that average energy per bit = Eb:

•
∫∞
−∞ |u(t)|2dt = 1

• ∑M−1
i=0 |di|2πi = Kb (so that avg word energy = KbEb)

Example constellations:

QQQ Q

III

16-QAM 8-PAM 8-PSK
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MLWD for linear modulation (under equal priors):

Ei = |di|2Eb

Vi(Tp) =

∫ Tp

0

Yz(t)x
∗
i (t)dt = d∗i

√

Eb

∫ Tp

0

Yz(t)u
∗(t)dt

︸ ︷︷ ︸

Q
Î = argmax

i
Re{Vi(Tp)} − Ei/2

= argmax
i

√

Eb Re{d∗iQ} − |di|2Eb/2

= argmax
i

−
∣
∣Q− di

√

Eb

∣
∣
2

= argmin
i

∣
∣Q− di

√

Eb

∣
∣
2

(“minimum distance decoder”)

Yz(t) u∗(Tp − t)
t = Tp

Q decision
device

Î
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Example decision regions:

Q

QQ

QQ

I

II

I

16-QAM 4-PAM

8-PSK 8-ARY ?
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Properties of MLWD with linear modulation:

• Only a single filter required.

• Decision Î = i inferred when Q ∈ decision region Ai.

• Pr
(
Î 6= i|I = i

)
= Pr

(
Q /∈ Ai|I = i

)

Notice that

Q
∣
∣
I=i

=

∫ Tp

0

(

di
√

Ebu(t) +Wz(t)
)

u∗(t)dt

= di
√

Eb +Nz(Tp)

σ2
Nz(Tp) =

∫ ∞

−∞
N0|U(f)|2df = N0

∫ ∞

−∞
|u(t)|2dt = N0,

and so Q
∣
∣
I=i

∼ CN (di
√
Eb, N0).
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Exact WEP analysis:

WEP =
1

M

M−1∑

i=0

Pr(Q /∈ Ai|I = i),

where

Pr(Q /∈ Ai|I = i) = 1− Pr(Q ∈ Ai|I = i)

= 1−
∫

Ai

fQ|I(q|i) dq,

so we need to integrate the pdf of Q
∣
∣
I=i

∼ CN (di
√
Eb, N0)

over the decision region Ai.
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Exact WEP for QPSK:
∑M−1

i=0 |di|2πi = Kb ⇒ |di| =
√
2 ⇒ diQ, diI = ±1.

QQ

QI
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1

Pr(Q /∈ A0|I = 0)

= 1−
∫

A0

fQ|I(q|0)dq

= 1−
∫ ∞

0

∫ ∞

0

1

πN0

e

[

− (qQ−

√
Eb)

2+(qI−
√

Eb)
2

N0

]

dqQdqI.

Can decouple this double integral...
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Pr(Q /∈ A0|I = 0)

= 1−
∫ ∞

0

1√
2π(N0/2)

e
− (qQ−

√
Eb)

2

2(N0/2) dqQ

∫ ∞

0

1√
2π(N0/2)

e
− (qI−

√
Eb)

2

2(N0/2) dqI

= 1− Pr{QQ > 0}2 = 1−
(
1− FQQ

(0)
)2

= 1−
[
1

2
− 1

2
erf

(
0−√

Eb√
2
√

N0/2

)]2

= 1− 1

4

[

1 + erf

(√

Eb

N0

)]2

= 1− 1

4

[

2− erfc

(√

Eb

N0

)]2

= erfc

(√

Eb

N0

)

− 1

4
erfc2

(√

Eb

N0

)

= WEP (by symmetry).
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Exact WEP for some simple linear modulations:

BPSK:
1

2
erfc

(√

Eb

N0

)

QPSK: erfc

(√

Eb

N0

)

− 1

4
erfc2

(√

Eb

N0

)

4-PAM:
3

4
erfc

(√

2Eb

5N0

)
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Exact WEP for some simple linear modulations:
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Spectral characteristics of linear modulation:

Since xi(t) = di
√
Ebu(t), we find that

GXi
(f) = |di|2EbGU(f),

and hence

DXz(f) =
1

Kb

M−1∑

i=0

πiGXi
(f)

=
Eb

Kb

GU(f)
M−1∑

i=0

|di|2πi

︸ ︷︷ ︸

Kb

= EbGU(f)

Note: Energy spectrum depends only on pulse shape u(t).
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Summary of linear modulation:

• MLWD: Match-filter via pulse shape u(t) and quantize

output Q to nearest constellation point.

• Depending on the decision regions, could still be

O(2Kb) complexity.

• Possible to derive exact WEP by integrating Gaussian

pdfs over the decision regions.

• Energy spectrum depends only on pulse shape u(t).

(Later, we discuss “good” choices for u(t).)
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Orthogonal Modulation:

Decoupled ML Bit Decisions:

• Recall that this happened with Gray-coded QPSK.

• Motivation: gives O(Kb) complexity MLWD. (Recall

that we need O(Kb) complexity demodulation to

decode a constant-bit-rate stream.)

• Question: Exactly when can MLWD be implemented

using decoupled decisions on each bit?
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Say that I = [I(1), I(2), . . . , I(Kb)]. Furthermore, say that

I = i ⇔ I = [m1,m2, . . . ,mKb
].

Claim: If the ML metrics {Ti} can be written in the form

Ti =

Kb∑

k=1

T (k)
mk

,

then MLWD is implementable with Kb decoupled decisions.

I.e., Ti is maximized by maximizing each T
(k)
mk separately:

Î = argmax
i

Ti ⇔ Î =
[
argmax

m1

T (1)
m1

, . . . , argmax
mKb

T (Kb)
mKb

]
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Example: Gray Coded QPSK:

Bit-to-symbol mapping

di = dm1 + jdm2

I = 0 ⇔ [0, 0]I = 1 ⇔ [1, 0]

I = 2 ⇔ [1, 1] I = 3 ⇔ [0, 1]

QI

QQ

implies that

Ti =
√

Eb Re{d∗iQ} − Eb (from p. 3)

=
√

Eb Re{(dm1 − jdm2)(QI + jQQ)} − Eb

=
√

Eb dm1QI −
Eb

2
︸ ︷︷ ︸

T (1)
m1

+
√

Eb dm2QQ − Eb

2
︸ ︷︷ ︸

T (2)
m2

.
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Generic Orthogonal Modulation:

The kth bit chooses between the waveforms in {x(k)0 (t), x
(k)
1 (t)},

where {x(k)0 (t), x
(k)
1 (t)} ⊥ {x(l)0 (t), x

(l)
1 (t)} for k 6= l, and then

the sum of waveforms for bits k ∈ {1, . . . ,Kb} is transmitted.

In other words, if I = i = [m1,m2, . . . ,mKb
], then

xi(t) =

Kb∑

k=1

x(k)
mk

(t), where

0 = Re

∫ ∞

−∞
x(k)
mk

(t)x(l)∗
ml

(t)dt ∀mk,ml, k 6= l.

Can show that this guarantees decoupled ML metrics. . .
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Ti = Re

∫ Tp

0

Yz(t)x
∗
i (t)dt−

1

2

∫ Tp

0

|xi(t)|2dt

= Re

∫ Tp

0

Yz(t)

( Kb∑

k=1

x(k)∗
mk

(t)

)

dt− 1

2

∫ Tp

0

∣
∣
∣
∣

Kb∑

k=1

x(k)
mk

(t)

∣
∣
∣
∣

2

dt

=

Kb∑

k=1

Re

∫ Tp

0

Yz(t)x
(k)∗
mk

(t)dt− 1

2

Kb∑

k=1

Kb∑

l=1

∫ Tp

0

x(k)
mk

(t)x(l)∗
ml

(t)dt

=

Kb∑

k=1

[

Re

∫ Tp

0

Yz(t)x
(k)∗
mk

(t)dt− 1

2

∫ Tp

0

|x(k)
mk

(t)|2dt
]

︸ ︷︷ ︸

T (k)
mk

Note: This specifies exactly how to generate {T (k)
mk } for

orthogonal modulations.
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WEP for orthogonal modulation:

We just saw that M -ary MLWD decouples into Kb MLBDs.

For the kth MLBD, we know that

BEP(k) =
1

2
erfc

(
√

∆
(k)
E (1, 0)

4N0

)

≥ 1

2
erfc

(√

Eb

No

)

,

where ∆
(k)
E (1, 0) =

∫ Tp

0
|x(k)

1 − x
(k)
0 |2dt.

Since the probability of a correct word decision equals the

probability of Kb simultaneously correct bit decisions,

WEP = 1−
Kb∏

k=1

(
1− BEP(k)

)
≥ 1−

[

1− 1
2
erfc

(√
Eb

No

)]Kb
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Summary of M -ary orthogonal modulation:

• MLWD decouples into Kb MLBDs.

• MLWD implementable with O(Kb) complexity.

• WEP analysis reduces to BEP analysis.

• Performance is, at best, equal to binary antipodal

signaling, which was far from Shannon’s bound!

Can construct orthogonal waveforms by time-division,

frequency-division, or “code-division”. . .
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Example 1: Orthogonal Frequency Division Multiplexing:

For the case of one bit per subcarrier,

s(l)(t) =







√
1
Tp

exp
(
j2πfd(2l −Kb − 1)t

)
t ∈ [0, Tp]

0 t /∈ [0, Tp]

Xz(t) =

Kb∑

l=1

D(l)
z

√

Ebs
(l)(t)

︸ ︷︷ ︸

x
(l)

I(l)
(t)

using BPSK: D
(l)
z = a(I(l)), i.e., a(0) = 1, a(1) = −1.

For orthogonality (i.e., Re
∫∞
−∞ x

(l)
ml(t)x

(k)∗
mk (t) = 0), generally

need fd =
1

2Tp
, though fd =

1
4Tp

suffices for real-valued

constellations. Still, we focus on fd =
1

2Tp
.
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Binary OFDM demodulator:

Yz(t)

s(1)∗(Tp − t)

s(2)∗(Tp − t)

s(Kb)∗(Tp − t)

Q(1)

Q(2)

Q(Kb)

t = Tp

t = Tp

t = Tp

...
...

...
...

...

Re(·) Î=0
>
<

Î=1

0

Re(·) Î=0
>
<

Î=1

0

Re(·) Î=0
>
<

Î=1

0 Î(1)

Î(2)

Î(Kb)

BEP identical to that of BPSK. Spectral efficiency is

Wb =
Kb

Tp
bits/sec,

BT ≈ 2fdKb, fd =
1

2Tp
Hz






⇒ ηB ≈ 1 bit/sec/Hz
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Example 2: Orthogonal Code Division Multiplexing:

For the case of one bit per spreading waveform,

Xz(t) =

Kb∑

l=1

D(l)
z

√

Eb s
(l)(t)

using BPSK D
(l)
z = a(I(l)), i.e., a(0) = 1, a(1) = −1. The

spreading waveforms {s(l)(t)}Kb
l=1 are orthonormal on [0, Tp]:

√
1
Tp

√
1
Tp

−
√

1
Tp

−
√

1
Tp

s(1)(t)

s(2)(t)

s(3)(t)

s(4)(t)

Tp

TpTp

Tp
t

t

Walsh
codes:
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Binary OCDM demodulator:

Yz(t)

s(1)∗(Tp − t)

s(2)∗(Tp − t)

s(Kb)∗(Tp − t)

Q(1)

Q(2)

Q(Kb)

t = Tp

t = Tp

t = Tp

...
...

...
...

...

Re(·) Î=0
>
<

Î=1

0

Re(·) Î=0
>
<

Î=1

0

Re(·) Î=0
>
<

Î=1

0 Î(1)

Î(2)

Î(Kb)

BEP identical to that of BPSK. Spectral efficiency is

Wb =
Kb

Tp
bits/sec,

BT ≥ Kb

Tp
Hz






⇒ ηB ≤ 1 bit/sec/Hz
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Example 3: Binary Stream Modulation:

Could be called “orthogonal time-division multiplexing.”

Xz(t) =

Kb∑

l=1

D(l)
z

√

Eb u
(
t− (l − 1)T

)

using BPSK D
(l)
z as before. (Note: Tp = Tu + (Kb − 1)T .)

The pulse waveform u(t) is orthogonal to its T -shifts.

√
1
Tu

√
1
Tu

u(t)

u(t− T )

u(t− 2T )

u(t− 3T ) Tu

T

T

T

T 2T

2T2T

2T 3T

3T3T

3T 4T

4T4T

4T
t

t
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Binary stream demodulator:

Yz(t) u∗(Tu − t)
t = Tu + (k−1)T

Q(k)

Re(·) Î=0
>
<

Î=1

0 Î(k)

for k ∈ {1, . . . , Kb}.
BEP identical to that of BPSK. Spectral efficiency is

Wb =
1
T
bits/sec,

BT ≥ 1
T
Hz






⇒ ηB =

Wb

BT

≤ 1 bit/sec/Hz

Note: In practice, Linear/OFDM/OCDM modulations are

combined with stream modulation.
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Combined Orthogonal & Linear Modulation:

Say we have Kb bits to send over L orthogonal waveforms:

Xz(t) =
L∑

l=1

D(l)
z

√

Ebs
(l)(t)

where {s(l)(t)}Ll=1 are orthonormal and D
(l)
z is 2

Kb
L -ary for

each l. We will assume that

E{D(l)
z D(k)∗

z } =







Kb

L
k = l

0 k 6= l

which means that the symbols used on different waveforms

are uncorrelated. It also guarantees an energy-per-bit of Eb.
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Spectral Characteristics:

DXz(f) =
1

Kb

E

{∣
∣
∣

∫ ∞

−∞
Xz(t)e

−j2πftdt
∣
∣
∣

2
}

=
1

Kb

E

{∣
∣
∣

∫ ∞

−∞

L∑

l=1

D(l)
z

√

Ebs
(l)(t)e−j2πftdt

∣
∣
∣

2
}

=
Eb

Kb

E

{∣
∣
∣

L∑

l=1

D(l)
z S(l)(f)

∣
∣
∣

2
}

=
Eb

Kb

L∑

l=1

L∑

k=1

E
{
D(l)

z D(k)∗
z

}
S(l)(f)S(k)∗(f)

=
Eb

L

L∑

l=1

GS(l)(f)
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WEP Analysis:

Since we assume an identical constellation on each

waveform,

WEP = 1−
(
1−WEP(l)

)L

where WEP(l) denotes the per-waveform WEP.
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Example 1: 2
Kb
L -ary Stream Modulation

Time-multiplexing of L symbols with Kb/L bits per symbol:

Xz(t) =
L∑

l=1

D(l)
z

√

Eb u
(
t− (l − 1)T

)
.

As before, the pulse waveform u(t) is orthogonal to its

T -shifts. But now Tp = Tu + (L− 1)T and D
(l)
z is a symbol

from a generic 2
Kb
L -ary constellation (e.g., QAM, PAM,

PSK).
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Example 2: 2
Kb
L -ary OFDM

L subcarriers with Kb/L bits per subcarrier:

s(l)(t) =







√
1
Tp

exp
(
j2πfd(2l − L− 1)t

)
t ∈ [0, Tp]

0 t /∈ [0, Tp]

Xz(t) =
L∑

l=1

D(l)
z

√

Ebs
(l)(t)

︸ ︷︷ ︸

x
(l)

I(l)
(t)

Here, D
(l)
z is a symbol from a generic 2

Kb
L -ary constellation

(e.g., QAM, PAM, PSK).
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For example, there are several ways to transmit 6 bits using

OFDM:

• 6 sub-carriers with BPSK and fd =
1

4Tp

• 3 sub-carriers with QPSK and fd =
1

2Tp

• 2 sub-carriers with 8-PSK and fd =
1

2Tp

What do you expect for the spectral efficiencies?

What about the relative WEP performance?
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Example 3: Streamed M -ary OFDM

In modern practical systems, the concepts of time

multiplexing (i.e., streaming), frequency multiplexing, and

linear modulation are often combined.

For example, a 1 Mbit block could be transmitted using

1024 consecutive OFDM frames of 256 subcarriers with

16-QAM (i.e., 4 bits) on each subcarrier.
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