Phil Schniter OSU ECE-702

Review:
1. Complex baseband representations.
2. Random variables and random processes.

3. Additive noise model.
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Complex Baseband Representations [Ch. 4]:

Many systems transmit real-valued passband signals:

Br
AN
_fc fc

but modem processing is done at baseband. Hence, a

complex baseband signal representation is very useful.

Br

-




Phil Schniter OSU ECE-702

Baseband signal ( “complex envelope”):
(
| zi(t) € R "in phase”
r(t) = m(t) +jra(t) <

\CC'Q(t) € R “quadrature”
Conversion to passband signal z.(%):
r.(t) = V2R[z,(t)e!* ]
NG [a;. (1) cos(27 f,.t) — xq(t) sin(2n fct)}

0~
2 cos(2m f.t) “quadrature modulator”
z.(t)
2 sin (27 f.t) - “I/Q upconverter”
oY

zq(t)
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Conversion from passband to baseband:

z(t)V2cos(2rfot) = ai(t) + x(t) cos(4n f.t)
— xq(t) sin(4r f.t)
—2.(t)V2sin(2nf.t) = xq(t) — zq(t) cos(4rm f.t)
— x)(t) sin(47 f.t)

LPF to remove double-frequency terms:

LPF ——= xi(1)
V2 cos(2m f.t) “quadrature demodulator”

—\/2sin(2r f.t) “I/Q downconverter”
LPF ——= zq(t)




Phil Schniter OSU ECE-702

Signal spectra:

X.(f) = F{z.(t)} Fourier transform
X.(f)]7 “Energy spectrum”

Q
&
=

i

Note that

Cx.(f) = 2Gx.f~ )+ 5Cx(~f ~ fo
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Filtering of bandpass X.(f):

H(f)_ Br
Yi(f) = H(HXAf), SR IRy

= Yo(f) = He(f)Xe(f) foo ymp e
L,

via “bandpass equivalent” H.(f). fe fe

Translate filter to baseband:
. H.(f)
he(t) = 2R[h,(t)e*™] S S

ha(t) = h(t)+ jho(t) FT
/

to get “baseband equivalent” H,(f).
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Applying the baseband filter to a baseband signal is
equivalent to applying the passband filter to a passband

signal:

Yo(f) = H()Xc(f) & Y.(f) = H(f)X:(f).

In other words, these are all equivalent:

Te(t) == h(t) = y.(t) (1) hu(t) @ yi(t)
- -
hq(t)
xC(t)% hc{t) %yc@) A
ha(t)
&
(1) —={ h.(l) —= (1) 2q(t) hu(t) (£ va(t)
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Random Variables [Ch. 3]:

A RV X (w) maps the sample space €2 to a real number:

X(w) X(wz)  X(ws)  X(wa)

Usually we use the shorthand notation X for the RV.

The value taken by a RV in a particular experiment is called

a ‘sample” or “realization.”
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The cumulative distribution function (CDF) of RV X (w) is

Fx(z) =Pr{w: X(w) <z},

or, in shorthand notation,

Fx(x) =Pr{X <z}

Note:
Fx(—o0) = 0
Fx(oo) = 1
Fx(x) = increasing in x.
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The probability density function (PDF) of X (w)

d

fx(z) = ——Fx(2).

Discrete RVs don't have PDFs, but rather
probability mass functions (PMFs)

px(z) =Pr{X = x}.

We will use px(x) for both PDFs and PMFs (unless there is

a possibility of confusion).

10
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Some properties of the PDF:

[V
-

fx(x)
/ T h(B)ds = 1
/ " (BB = Fx(a)

/ Y (BB = Prim < X < )

11
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Statistics of a RV:

Mean:
E(X) = / rpx(x)der = my
Variance:
B(X —mx)) = [ (@ mx)px(o)ds = o}
In general:

12
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Gaussian (or “normal™) RV:

fx(@) = ﬁ%g(exp [—(5’3;0?)2]

X ~ N(mX, O%()

Though the Gaussian CDF has no closed-form expression,
the erf function is frequently tabulated.

2 R
erf(z) = ﬁ/ e Vdt = 1—erfc(z).
0
I 1

L — 1My
F = — 4 —erf
x(@) 2 2" ( V20 )

13
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Joint CDF:
Fxy(z,y) = Pr{X <uz,Y <y}
Joint PDF:
52
fxy(z,y) = amayFXY(CC,y)
Joint PMF:

pxy(z,y) = Pr{X =2Y =y}

Conditional PDF of Y given that X = z:

pXY(SU, y)
px(z)

pY|X(y X =2x) =

OSU ECE-702
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Total probability:

Bayes rule:

pX|Y(ZU Y =y)py(y)

pyix(y| X =z) = e (2)

RVs X and Y are independent (i.e., X 1Y) when

pxy(z,y) = px(@)py(y)
<~ pY\X(y’Xzﬂf) = py(y)

OSU ECE-702
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Joint Statistics of Two RVs:

cross-correlation:

E[XY] ://ﬂfprY(ﬂfay)dfdy

Cross-covariance:

B =) —my)] = [ [ (@) (y=rmy) pxy (o )ddy
In general:

Elg(X,Y)] Z//g(x,y)pxy(way)daﬁdy

16
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Gaussian random vector (i.e., jointly Gaussian RVs):

N = [Ny,...,N; ]t

Joint pdf:
fv(n) : L0 — my)TCRM 0 — my)
n) = exp |——=(n —m n—im
A v (2m) L det Cy Pl o NA= =N
with mean vector
My = E(M>

and covariance matrix

Cy = E[(N—mN)(M_mN)T]

17
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Complex Gaussian RV:

N
/ = N| —|—]NQ p— — M
Nq
where
152 0
Circular < Cy=["* 7
0 %O%
Can write PDF as
1 2 — myl|?
fZ(Z> — 2 eXp [_| 2 Z| ]
oY, o7,

4~ CN(mz,O'%)

OSU ECE-702
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Random Processes [Ch. 9]:

A RP X (w,t) maps the sample space 2 to a signal:

g\

t

Usually we use the shorthand notation X (t) for the RP.

The waveform taken by a RP in a particular experiment is

called a “sample path” or "realization.”

19
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Properties:
A sample of a RP (e.g., X(0)) is a RV.

A RP is stationary if the joint PDF of any set of samples is

invariant to bulk sampling-time shifts:

— fN(t0+T),N(t1—|—7') ..... N(tM+T)(n17n27"'7nM)7 \v/tlw"atM)T

A RP is wide-sense stationary (WSS) if at least the mean
and autocorrelation are invariant to time shifts:

E[N(t1)] E[N(t2)], V1,1
E|N(t;1)N(t; —7)] = E|[N(t3)N(tes —71)], Vit1,to, T

20
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For a WSS RP we have the (time-invariant) statistics

mean: my = FE[N(t)]

autocorrelation: Ry(7) = FE[N({)N(t —7)]

Note that 0%, = Ry(0) — m3 and Ry (7) = Ry(—7).

A Gaussian RP is one where any collection of samples is

composed of jointly Gaussian RVs.

A stationary Gaussian RP is completely described by its

mean my and autocorrelation Ry (7).

From here on, we assume zero-mean processes!

21
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Power spectral density (PSD) of a WSS RP:

1| /7 | d
S — lim —E N(t)e 7271t dt
n(f) = lim '/T (t)e
or -
Sn(f) = / Ry (1)e 7* 7 dr
Note that

SN(f>€R7 SN(f)ZOv andSN(f):SN(_f)a

and also that

oo

= Rxl0) = [ sw(perrar = [ sx(nar

— 00 — 00
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A white RP has a constant PSD. For example, we will
model white noise W (t) via the “two-sided PSD” (p. 9.20)

implying

Ry () = —-0(7)

Sn(f)df = oo

2
Ow

||
:o
-
S
||
\8

—00

Note: thermal noise is approximately constant for | f| < 10!

Hz, so we often approximate it as white noise.

23
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Linear filtering of RPs:

e A linear combination of Gaussian RVs is a Gaussian RV.

e Linear filtering of a Gaussian RP yields a Gaussian RP.

e LTI filtering of a stationary RP yields a stationary RP.

24
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The Additive Noise Model [Ch. 10]:

passband
Le (t) channel %

W(t)

We assume W (%) is zero-mean stationary Gaussian with

= E{W()W(t—7)} autocorrelation
= F{Rw(r)} power spectrum

5 %
= 3
=2

We also assume a constant PSD (i.e., white noise):

Sw(f) = No/2
Thus

25
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Received noise model:

() +N() | Q= n(t) + Ni(t)
T.(t) —= passband () Hg(f) relt) + et down- | |
channel j/ converter 7a(t) + Na(t)

W(t)

Here Hgr(f) is the receive filter:

f
5, Sn(f)
The passband noise spectrum is | WL f
_‘fc fc
No
Sw.(f) = SIHR(HP

26
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Baseband equivalent noise model:

N,(t) = V2 R[ ()eﬂwfc} 1 B
N.(t) = Ni(t) + jNq(t)

SNc(f) — %SNz(f_fC)+%SNz(_f_fC)

e Say «

e Fitz shows that NV,(t) and Nq(t) are zero-mean, jointly
stationary and jointly Gaussian with

RN| (7') — RNQ(T) and RN|NQ<7_) — —RNlNQ(—T)

o Thus Ryn,(0) =0 = N(t,) AL Nq(t,) for any t,
and SNz(f) = 2 SN|(f) —J2 SNINQ<f)'

even odd

27



Phil Schniter OSU ECE-702

Complex white noise model:

e With flat, unity-gain receive filter and Bg > Br, we
often approximate NV, (t) by circular complex Gaussian

noise W, (t) with statistics given by

Sw.(f) =No & Rw.(7) = Noo(7)

28



