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Review:

1. Complex baseband representations.

2. Random variables and random processes.

3. Additive noise model.
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Complex Baseband Representations [Ch. 4]:

Many systems transmit real-valued passband signals:

f
fc−fc

BT

but modem processing is done at baseband. Hence, a

complex baseband signal representation is very useful.

f
0

BT
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Baseband signal (“complex envelope”):

xz(t) = xI(t) + jxQ(t)







xI(t) ∈ R “in phase”

xQ(t) ∈ R “quadrature”

Conversion to passband signal xc(t):

xc(t) =
√
2R

[
xz(t)e

j2πfct
]

=
√
2
[

xI(t) cos(2πfct)− xQ(t) sin(2πfct)
]

xI(t)

xQ(t)

xc(t)

×

×

+
−

√
2 cos(2πfct)

√
2 sin(2πfct)

“quadrature modulator”

“I/Q upconverter”
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Conversion from passband to baseband:

xc(t)
√
2 cos(2πfct) = xI(t) + xI(t) cos(4πfct)

− xQ(t) sin(4πfct)

−xc(t)
√
2 sin(2πfct) = xQ(t)− xQ(t) cos(4πfct)

− xI(t) sin(4πfct)

LPF to remove double-frequency terms:

xI(t)

xQ(t)

xc(t)

×

× LPF

LPF
√
2 cos(2πfct)

−
√
2 sin(2πfct)

“quadrature demodulator”

“I/Q downconverter”
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Signal spectra:

Xz(f) := F{xz(t)} Fourier transform

GXz
(f) := |Xz(f)|2 “Energy spectrum”

Note that

GXc
(f) =

1

2
GXz

(f − fc) +
1

2
GXz

(−f − fc)
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Filtering of bandpass Xc(f):

Yc(f) = H(f)Xc(f),

⇒ Yc(f) = Hc(f)Xc(f)

via “bandpass equivalent” Hc(f).

f

f

fc

fc

fc

fc

H(f)

Hc(f)

BT

Translate filter to baseband:

hc(t) = 2R
[
hz(t)e

j2πfct
]

hz(t) = hI(t) + jhQ(t)

to get “baseband equivalent” Hz(f).
f

Hz(f)

BT
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Applying the baseband filter to a baseband signal is

equivalent to applying the passband filter to a passband

signal:

Yc(f) = Hc(f)Xc(f) ⇔ Yz(f) = Hz(f)Xz(f).

In other words, these are all equivalent:

hI(t)

hI(t)

hQ(t)

hQ(t)

+

+
−

xI(t)

xQ(t)

yI(t)

yQ(t)hz(t)

xc(t)

xc(t) yc(t)

yc(t)hc(t)

h(t)

xz(t) yz(t)

⇔

⇔

⇔
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Random Variables [Ch. 3]:

A RV X(ω) maps the sample space Ω to a real number:

Ω

ω1

ω2

ω3

ω4

X(ω1) X(ω2) X(ω3) X(ω4)

Usually we use the shorthand notation X for the RV.

The value taken by a RV in a particular experiment is called

a “sample” or “realization.”
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The cumulative distribution function (CDF) of RV X(ω) is

FX(x) = Pr{ω : X(ω) ≤ x},
or, in shorthand notation,

FX(x) = Pr{X ≤ x}.
Note:

FX(−∞) = 0

FX(∞) = 1

FX(x) = increasing in x.
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The probability density function (PDF) of X(ω)

fX(x) =
d

dx
FX(x).

Discrete RVs don’t have PDFs, but rather

probability mass functions (PMFs)

pX(x) = Pr{X = x}.

We will use pX(x) for both PDFs and PMFs (unless there is

a possibility of confusion).
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Some properties of the PDF:

fX(x) ≥ 0

∫ ∞

−∞

fX(β)dβ = 1

∫ x

−∞

fX(β)dβ = FX(x)

∫ x2

x1

fX(β)dβ = Pr{x1 < X ≤ x2}
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Statistics of a RV:

Mean:

E(X) =

∫ ∞

−∞

x pX(x)dx = mX

Variance:

E((X −mX)
2) =

∫ ∞

−∞

(x−mX)
2 pX(x)dx = σ2

X

In general:

E(g(X)) =

∫ ∞

−∞

g(x) pX(x)dx
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Gaussian (or “normal”) RV:

fX(x) =
1

√

2πσ2
X

exp

[

−(x−mX)
2

2σ2
X

]

X ∼ N (mX , σ
2
X)

Though the Gaussian CDF has no closed-form expression,

the erf function is frequently tabulated.

erf(z) =
2√
π

∫ z

0

e−t2dt = 1− erfc(z).

FX(x) =
1

2
+

1

2
erf

(
x−mX√

2σX

)
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Joint CDF:

FXY (x, y) = Pr{X ≤ x, Y ≤ y}

Joint PDF:

fXY (x, y) =
∂2

∂x∂y
FXY (x, y)

Joint PMF:

pXY (x, y) = Pr{X = x, Y = y}

Conditional PDF of Y given that X = x:

pY |X(y |X = x) =
pXY (x, y)

pX(x)
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Total probability:

pY (y) =

∫ ∞

−∞

pXY (x, y)dx

Bayes rule:

pY |X(y |X = x) =
pX|Y (x |Y = y)pY (y)

pX(x)

RVs X and Y are independent (i.e., X ⊥⊥ Y ) when

pXY (x, y) = pX(x)pY (y)

⇔ pY |X(y |X = x) = pY (y)
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Joint Statistics of Two RVs:

cross-correlation:

E[XY ] =

∫ ∫

x y pXY (x, y)dxdy

cross-covariance:

E[(X−mX)(Y −mY )] =

∫ ∫

(x−mX)(y−mY ) pXY (x, y)dxdy

In general:

E[g(X, Y )] =

∫ ∫

g(x, y)pXY (x, y)dxdy
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Gaussian random vector (i.e., jointly Gaussian RVs):

N = [N1, . . . , NL]
T

Joint pdf:

fN(n) =
1

√

(2π)L detCN

exp

[

−1

2
(n−mN)

T
C

−1
N (n−mN)

]

with mean vector

mN = E(N)

and covariance matrix

CN = E[(N −mN)(N −mN)
T ]

17



Phil Schniter OSU ECE-702

Complex Gaussian RV:

Z = NI + jNQ ⇔




NI

NQ



 = N

where

Circular ⇔ CN =





1
2
σ2
Z 0

0 1
2
σ2
Z





Can write PDF as

fZ(z) =
1

πσ2
Z

exp

[

−|z −mZ |2
σ2
Z

]

Z ∼ CN (mZ , σ
2
Z)
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Random Processes [Ch. 9]:

A RP X(ω, t) maps the sample space Ω to a signal:

Ω

ω1

ω2

ω3

ω4

X(ω1, t)

X(ω2, t)

X(ω3, t)

X(ω4, t)

t

Usually we use the shorthand notation X(t) for the RP.

The waveform taken by a RP in a particular experiment is

called a “sample path” or ”realization.”
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Properties:

A sample of a RP (e.g., X(0)) is a RV.

A RP is stationary if the joint PDF of any set of samples is

invariant to bulk sampling-time shifts:

fN(t0),N(t1),...,N(tM )(n1, n2, . . . , nM)

= fN(t0+τ),N(t1+τ),...,N(tM+τ)(n1, n2, . . . , nM), ∀ t1, . . . , tM , τ

A RP is wide-sense stationary (WSS) if at least the mean

and autocorrelation are invariant to time shifts:

E[N(t1)] = E[N(t2)], ∀ t1, t2
E[N(t1)N(t1 − τ)] = E[N(t2)N(t2 − τ)], ∀ t1, t2, τ
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For a WSS RP we have the (time-invariant) statistics

mean: mN = E[N(t)]

autocorrelation: RN(τ) = E[N(t)N(t− τ)]

Note that σ2
N = RN(0)−m2

N and RN(τ) = RN(−τ).

A Gaussian RP is one where any collection of samples is

composed of jointly Gaussian RVs.

A stationary Gaussian RP is completely described by its

mean mN and autocorrelation RN(τ).

From here on, we assume zero-mean processes!
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Power spectral density (PSD) of a WSS RP:

SN(f) = lim
T→∞

1

2T
E

[∣
∣
∣
∣

∫ T

−T

N(t)e−j2πftdt

∣
∣
∣
∣

2
]

or

SN(f) =

∫ ∞

−∞

RN(τ)e
−j2πfτdτ

Note that

SN(f) ∈ R, SN(f) ≥ 0, and SN(f) = SN(−f),

and also that

σ2
N = RN(0) =

∫ ∞

−∞

SN(f)e
j2πf0df =

∫ ∞

−∞

SN(f)df.
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A white RP has a constant PSD. For example, we will

model white noise W (t) via the “two-sided PSD” (p. 9.20)

SW (f) =
N0

2
,

implying

RW (τ) =
N0

2
δ(τ)

σ2
W = RW (0) =

∫ ∞

−∞

SN(f)df = ∞

Note: thermal noise is approximately constant for |f | < 1012

Hz, so we often approximate it as white noise.
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Linear filtering of RPs:

• A linear combination of Gaussian RVs is a Gaussian RV.

• Linear filtering of a Gaussian RP yields a Gaussian RP.

• LTI filtering of a stationary RP yields a stationary RP.

X(t) H(f) Y (t)

SY (f) = |H(f)|2SX(f)
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The Additive Noise Model [Ch. 10]:

W (t)

xc(t) +
passband
channel

We assume W (t) is zero-mean stationary Gaussian with

RW (τ) = E
{
W (t)W (t− τ)

}
autocorrelation

SW (f) = F
{
RW (τ)

}
power spectrum

We also assume a constant PSD (i.e., white noise):

SW (f) = N0/2

Thus

RW (τ) =
No

2
δ(τ), σ2

W = RW (0) = ∞
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Received noise model:

W (t)

xc(t) HR(f)
rI(t) +NI(t)

rQ(t) +NQ(t)

rc(t) +Nc(t)
+

I/Q
down-

converter

passband
channel

Here HR(f) is the receive filter:
f

fc−fc

HR(f)
BTBR

The passband noise spectrum is
f

fc−fc

SNc
(f)

BR

SNc
(f) =

No

2
|HR(f)|2
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Baseband equivalent noise model:

• Say







Nc(t) =
√
2R

[

Nz(t)e
j2πfct

]

Nz(t) = NI(t) + jNQ(t) f

SNz
(f)

BR

SNc
(f) = 1

2
SNz

(f − fc) +
1
2
SNz

(−f − fc)

• Fitz shows that NI(t) and NQ(t) are zero-mean, jointly

stationary and jointly Gaussian with

RNI
(τ) = RNQ

(τ) and RNINQ
(τ) = −RNINQ

(−τ)

• Thus RNINQ
(0) = 0 ⇒ NI(to) ⊥⊥ NQ(to) for any to

and SNz
(f) = 2SNI

(f)
︸ ︷︷ ︸

even

−j2SNINQ
(f)

︸ ︷︷ ︸

odd

.
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Complex white noise model:

• With flat, unity-gain receive filter and BR > BT , we

often approximate Nz(t) by circular complex Gaussian

noise Wz(t) with statistics given by

SWz
(f) = No ⇔ RWz

(τ) = Noδ(τ)

f f

SNz
(f) SWz

(f)

⇔
BT BT

BR
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