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1 Time-Frequency Analysis and Continuous Wavelet Transform

• Why Transforms?: In the field of signal processing we frequently encounter the use of
“transforms.” Transforms are named such because they take a signal and transform it
into another signal, hopefully one which is easier to process or analyze than the origi-
nal. Essentially, transforms are used to manipulate signals such that their most important
characteristics are made plainly evident. To isolate a signal’s important characteristics,
however, one must employ a transform that is well matched to that signal. For example,
the Fourier transform, while well matched to certain classes of signal, does not efficiently
extract information about signals in other classes. This latter fact motivates our develop-
ment of the wavelet transform.

• Limitations of Fourier Analysis: Let’s again consider the Continuous-Time Fourier Trans-
form (CTFT) pair:

X(Ω) =

∫ ∞

−∞
x(t)e−jΩtdt

x(t) =
1

2π

∫ ∞

−∞
X(Ω)ejΩtdΩ,

where we have abbreviated our earlier notation B(jΩ) to B(Ω). The Fourier transform pair
supplies us with our notion of “frequency.” In other words, all of our intuitions regarding
the relationship between the time domain and the frequency domain can be traced to this
particular transform pair.

It will be useful to view the CTFT as a complex-exponential signal expansion. Specifically,
the inverse CTFT equation above says that the time-domain signal x(t) can be expressed
as a weighted “summation” of basis elements {bΩ(t),−∞ < Ω < ∞}, where bΩ(t) := ejΩt

is the basis element corresponding to frequency Ω. Since the number of CTFT basis
elements in uncountably infinite, the summation is accomplished with an integral. Notice
thatX(Ω), which specifies the contribution of bΩ(t) to x(t), can be interpreted as a measure
of the similarity between b∗Ω(t) and x(t).

The Fourier Series (FS) can be considered as a special sub-case of the CTFT that applies
when the time-domain signal x(t) is periodic. Recall that, if x(t) is periodic with period
T , then x(t) can be expressed as a weighted summation of basis elements {bk(t)}∞k=−∞,
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where now bk(t) := ej
2π
T
tk:

x(t) =

∞∑

k=−∞
X[k]ej

2π
T
tk

X[k] =
1

T

∫ T
2

−T
2

x(t)e−j
2π
T
tkdt.

Here, the basis elements come from a countably infinite set and are parameterized by the
discrete frequency index k ∈ Z. The coefficient X[k], which specifies the contribution of
bk(t) to x(t), can be interpreted as a measure of similarity between b∗k(t) and x(t) on the
interval [−T

2 ,
T
2 ).

Though quite popular, Fourier analysis is not always the best tool to analyze a signal whose
characteristics vary with time. For example, consider a signal composed of a periodic
component plus a sharp “glitch” at time t0, illustrated in time- and frequency-domains
below.

x(t)

t

Ω

|X(Ω)|

Ω1 Ω2

t0

. . . . . .

Fourier analysis is successful in reducing the complicated-looking periodic component
into a few simple parameters: the frequencies {Ω1,Ω2} and their corresponding magni-
tudes/phases. The glitch component, described compactly in terms of its time-domain lo-
cation t0 and amplitude, however, is not described efficiently in the frequency domain since
it produces a wide spread of frequency components. Thus, neither time- nor frequency-
domain representations alone give an efficient description of the glitched periodic signal:
each representation distills only certain aspects of the signal.

As another example, consider the “linear chirp” x(t) = sin(Ωt2) illustrated below.

x(t)

t
. . .

Though written using the sin(·) function, the chirp is not described by a single Fourier
frequency. We might try to be clever and write the time-varying phase argument of sin(·)
as ϕ(t) = ∂ϕ(t)

∂t t+ϕ(0), where ∂ϕ(t)
∂t can be interpreted as an “instantaneous frequency.” In

this case, ϕ(t) = Ω(t), which gives the instantaneous frequency Ω(t) := ∂ϕ(t)
∂t = 2Ωt, which

exhibits a simple linear variation in time. But here we must be cautious, since this newly
defined notion of “instantaneous frequency” is not consistent with the Fourier notion of
frequency. Recall that the CTFT says that a signal can be constructed as a superposition
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of fixed-frequency basis elements ejΩt, each spread out uniformly over all time. In other
words, there is nothing “instantaneous” about Fourier frequency.

As a third example, consider a Ω0-frequency sinusoid that is rectangularly windowed to
extract only one period.

x(t)

t
t0 t1

Ω

|X(Ω)|

Ω0

. . . . . .

Here, our instantaneous-frequency argument might claim that

Ω(t) =

{

Ω0 t ∈ window

0 t /∈ window
,

where Ω(t) takes on exactly two values. In contrast, Fourier theory says that rectan-

gular windowing induces frequency-domain spreading with a sin(Ω)
Ω profile, resulting in a

continuum of Fourier frequency components. Here again, we see that our notions of “in-
stantaneous” frequency are not compatible with the standard Fourier notion of frequency.

• Time-Frequency Uncertainty Principle: Recall that Fourier basis bΩ(t) = ejΩt exhibits
poor time resolution—a consequence of the fact that |bΩ(t)| for every fixed Ω is uniformly
spread over all t ∈ (−∞,∞). By “time resolution,” we mean the ability to easily identify
the timing of signal events like the “glitch” described earlier in an example.

At the opposite extreme, a basis composed of shifted Dirac deltas bτ (t) = δ(t − τ) would
have excellent time resolution but terrible “frequency resolution,” since every Dirac basis
element is evenly spread over all Fourier frequencies Ω ∈ (−∞,∞). This can be under-
stood from the fact that |Bτ (Ω)| = |

∫∞
−∞ bτ (t)e

−jΩtdt| = 1 ∀Ω, for every fixed τ . By
“frequency localization,” we mean the ability to easily identify the spectral properties of
signal components that are sinusoidal in nature.

These observations motivate the question: Does there exist a basis that provides simulta-
neously excellent time and frequency resolutions? The answer is “not really”; there is a
fundamental tradeoff between the time and frequency resolutions of any basis. This can be
understood from the fact that no basis element can be simultaneously well concentrated
in the time and frequency domains. This idea is made concrete below.

Consider an arbitrary basis element, or waveform, b(t), whose CTFT will be denoted by
B(Ω) =

∫∞
−∞ b(t)e−jΩt. In some cases it will be convenient to express frequency in Hertz

rather than radians, for which we write Ω = 2πf . We define the temporal and spectral
centers1 as

tc =
1

E

∫ ∞

−∞
t |b(t)|2dt

fc =
1

E

∫ ∞

−∞
f |B(2πf)|2df,

1It may be interesting to note that both 1
E
|b(t)|2 and 1

E
|B(2πf)|2 are non-negative and integrate to one,

thereby satisfying the requirements of probability density functions. The temporal/spectral centers can then be
interpreted as the means (i.e., centers of mass) in the time/frequency domains, respectively.
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and the temporal and spectral widths2 as

∆t =

√

1

E

∫ ∞

−∞
(t− tc)2 |b(t)|2dt

∆f =

√

1

E

∫ ∞

−∞
(f − fc)2 |B(2πf)|2df,

where E denotes the energy of the waveform, i.e.,

E =

∫ ∞

−∞
|b(t)|2dt =

1

2π

∫ ∞

−∞
|B(Ω)|2dΩ =

∫ ∞

−∞
|B(2πf)|2df

via Parseval’s theorem. If the waveform is well-localized in time, then b(t) will be con-
centrated at t = tc and ∆t will be small. If the waveform is well-localized in frequency,
then B(2πf) will be concentrated at f = fc and ∆f will be small. If the waveform is
well-localized in both time and frequency, then ∆t∆f will be small. The quantity ∆t∆f

is known as the “time-bandwidth product.”

From the definitions above one can derive the fundamental properties below. When inter-
preting the properties, it helps to think of the waveform b(t) as a prototype that can be used
to generate an entire basis set. For example, the Fourier basis {bΩ(t),−∞ < Ω <∞} can
be generated by frequency shifts of b(t) = 1, while the Dirac basis {bτ (t),−∞ < τ < ∞}
can be generated by time shifts of b(t) = δ(t).

1. ∆t and ∆f are invariant to time and frequency3 shifts.

∆t

(
b(t)
)

= ∆t

(
b(t− t0)

)
∀ t0 ∈ R

∆f

(
B(2πf)

)
= ∆f

(
B(2π(f − f0))

)
∀ f0 ∈ R

This implies that all basis elements constructed from time and/or frequency shifts of
a prototype waveform b(t) will inherit the temporal and spectral widths of b(t).

2. The “time-bandwidth product” ∆t∆f is invariant to time-scaling.4

∆t

(
b(t/a)

)
= |a|∆t

(
b(t)
)

∆f

(
b(t/a)

)
= 1

|a|∆f

(
b(t)
)

}

⇒ ∆t∆f

(
b(t/a)

)
= ∆t∆f

(
b(t)
)
∀ a ∈ R

Observe that time-domain expansion (i.e., |a| > 1) increases the temporal width but
decreases the spectral width, while time-domain contraction (i.e., |a| < 1) does the
opposite. This suggests that time-scaling might be a useful tool for the design of
a basis element with a particular tradeoff between time and frequency resolution.
On the other hand, scaling cannot simultaneously increase both time and frequency
resolution.

3. The time-bandwidth product is lower bounded as follows:

∆t∆f ≥
1

4π

This is known as the “time-frequency uncertainty principle.”

2The quantities ∆2
t and ∆2

f are analogous to variances.
3Keep in mind the fact that b(t) and B(2πf) =

R ∞

−∞
b(t)e−j2πftdt are alternate descriptions of the same

waveform; we could have written ∆f

`

b(t)ej2πf0t
´

in place of ∆f

`

B(2π(f − f0))
´

above.
4The invariance property holds also for frequency scaling, as implied by the Fourier transform property b(t/a) ↔

|a|B(2πaf).
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4. The Gaussian pulse g(t) achieves the minimum time-bandwidth product ∆t∆f = 1
4π .

g(t) =

√
α

π
e−αt

2
, α ∈ R

G(Ω) = e−
Ω2

4α

Note that this waveform is neither bandlimited nor time-limited, but well concen-
trated in both domains (around the points tc = 0 and fc = 0).

Properties 1 and 2 can be easily verified using the definitions above. Properties 3 and 4
follow from the Cauchy-Schwarz inequality (see the proof below).

Since the Gaussian pulse g(t) achieves the minimum time-bandwidth product, it makes
for a good prototype waveform, at least in theory. In other words, we might consider
constructing a basis from time shifted, frequency shifted, time scaled, or frequency scaled
versions of g(t) to give a range of spectral/temporal centers and spectral/temporal res-
olutions. Since the Gaussian pulse has doubly-infinite time-support, though, it is not
very practical. Basis construction from a prototype waveform is the main concept behind
“Short-Time Fourier Analysis” and the “Continuous Wavelet Transform” discussed next.

Proof. Say that q(t) is a unit-energy and time/frequency-centered version of b(t),
i.e.,

q(t) =
1√
E
e−j2πfc(t+tc)b(t+ tc)

Q(2πf) =
1√
E
ej2πftcB(2π(f + fc)).

so that
∫ ∞

−∞
t|q(t)|2dt =

1

E

∫ ∞

−∞
(t− tc)|b(t)|2dt = 0

∫ ∞

−∞
t2|q(t)|2dt =

1

E

∫ ∞

−∞
(t− tc)2|b(t)|2dt = ∆2

t

∫ ∞

−∞
f |Q(2πf)|2df =

1

E

∫ ∞

−∞
(f − fc)|B(2πf)|2df = 0

∫ ∞

−∞
f2|Q(2πf)|2df =

1

E

∫ ∞

−∞
(f − fc)2|B(2πf)|2df = ∆2

f .

The Cauchy-Schwarz inequality says that

∣
∣
∣
∣

∫ ∞

−∞
x(t)y(t)dt

∣
∣
∣
∣

2

≤
∫ ∞

−∞
|x(t)|2dt

∫ ∞

−∞
|y(t)|2dt

with equality when x(t) = ky(t) for scalar k. Choosing x(t) = tq(t) and y(t) =
q′(t), where q′(t) denotes the derivative of q(t), we find that

∫ ∞

−∞
|x(t)|2dt =

∫ ∞

−∞
t2|q(t)|2dt = ∆2

t

∫ ∞

−∞
|y(t)|2dt =

∫ ∞

−∞
|Y (2πf)|2df = (2π)2

∫ ∞

−∞
f2|Q(2πf)|2df = (2π)2∆2

f ,
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where we used Parseval’s equality and the fact that the Fourier transform of q′(t)
equals jΩQ(Ω). Thus, the right side of the Cauchy-Schwarz inequality equals

(2π)2∆2
f∆

2
t . Since q(t)q′(t) = 1

2
∂2q(t)
∂t2

, we find that

∣
∣
∣
∣

∫ ∞

−∞
x(t)y(t)dt

∣
∣
∣
∣

2

=

∣
∣
∣
∣

1

2

∫ ∞

−∞
t
∂2q(t)

∂t2
dt

∣
∣
∣
∣

2

=
1

4

∣
∣
∣
∣
tq2(t)

∣
∣∞
−∞ −

∫ ∞

−∞
q2(t)dt

∣
∣
∣
∣

2

=
1

4
,

assuming that q(t) vanishes faster than 1√
|t|

as t → ±∞. Combining with our

earlier result, we see that

∆t∆f ≥
1

4π
,

with equality when q′(t) = ktq(t) for scalar constant k. This is satisfied by q(t)
of the form q(t) =

√

α/πe−αt
2

for α ∈ R.

• Short-Time Fourier Analysis: We saw earlier that Fourier analysis is not well suited to
describing local changes in “frequency content” because the frequency components defined
by the Fourier transform have infinite (i.e., global) time support. For example, if we
have a signal with periodic components plus a glitch at time t0, we might want accurate
knowledge of both the periodic component frequencies and the glitch time.

x(t)

t

Ω

|X(Ω)|

Ω1 Ω2

t0

. . . . . .

The Short-Time Fourier Transform (STFT) provides a means of joint time-frequency anal-
ysis. The STFT pair can be written

XSTFT(Ω, τ) =

∫ ∞

−∞
x(t)w(t − τ)e−jΩtdt

x(t) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
XSTFT(Ω, τ)w(t− τ)ejΩtdΩdτ

assuming real-valued w(t) for which
∫
|w(t)|2dt = 1. The STFT can be interpreted as a

“sliding window CTFT”: to calculate XSTFT(Ω, τ), slide the center of window w(t) to time
τ , window the input signal, and compute the CTFT of the result. This is illustrated in
the following figure. The idea is to isolate the signal in the vicinity of time τ , and then
perform a CTFT analysis in order to estimate the “local” frequency content at time τ .
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x(t)

t

t

t

τ

w(t− τ)

x(t)w(t− τ)

Essentially, the STFT uses the basis elements

bΩ,τ (t) = w(t− τ)ejΩt

over the range t ∈ (−∞,∞) and Ω ∈ (−∞,∞). This can be understood as time and
frequency shifts of the window function w(t). The STFT basis is often illustrated by a
tiling of the time-frequency plane, where each tile represents a particular basis element:

t
tc

∆t

∆ΩΩc

Ω

The height and width of a tile represent the spectral and temporal widths of the basis
element, respectively, and the position of a tile represents the spectral and temporal centers
of the basis element. Note that, while the tiling diagram above suggests that the STFT
uses a discrete set of time/frequency shifts, the STFT basis is really constructed from a
continuum of time/frequency shifts.

Note that we can decrease spectral width ∆Ω at the cost of increased temporal width ∆t

by stretching basis waveforms in time, although the time-bandwidth product ∆t∆Ω (i.e.,
the area of each tile) will remain constant.

∆t

∆Ω

∆t

∆Ω

b(t) b(t/a)|a| > 1
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Our observations can be summarized as follows:

– The time resolutions and frequency resolutions of every STFT basis element will equal
those of the window w(t). (All STFT tiles have the same shape.)

– The use of a wide window will give good frequency resolution but poor time resolution,
while the use of a narrow window will give good time resolution but poor frequency
resolution. (When tiles are stretched in one direction they shrink in the other.)

– The combined time-frequency resolution of the basis, proportional to 1
∆t∆Ω

, is de-
termined not by window width but by window shape. The shape defined by the
Gaussian window5 w(t) =

√

α/πe−αt
2

(for α ∈ R) gives the highest time-frequency
resolution, although its infinite time-support makes it impossible to implement. (The
Gaussian window results in tiles with minimum area.)

• Continuous Wavelet Transform: The STFT provided a means of (joint) time-frequency
analysis with the property that spectral/temporal widths (or resolutions) were the same
for all basis elements. Let’s now take a closer look at the implications of uniform resolution.

Consider two signals composed of sinusoids with frequency 1 Hz and 1.001 Hz, respectively.
It may be difficult to distinguish between these two signals in the presence of background
noise unless many cycles are observed, implying the need for a many-second observation.
Now consider two signals with pure frequencies of 1000 Hz and 1001 Hz—again, a 0.1%
difference. Here it should be possible to distinguish the two signals in an interval of much
less than one second. In other words, good frequency resolution requires longer observation
times as frequency decreases. Thus, it might be more convenient to construct a basis whose
elements have larger temporal widths at low frequencies.

The previous example motivates a multi-resolution time-frequency tiling of the form:

t

Ω

|a| < 1

|a| = 1

|a| > 1

The Continuous Wavelet Transform (CWT) accomplishes the above multi-resolution tiling
by time-shifting and time-scaling a prototype function ψ(t), often called the “mother
wavelet.” The a-scaled and τ -shifted basis element is given by [1]

ψa,τ (t) =
1

√

|a|
ψ

(
t− τ
a

)

where







a, τ ∈ R
∫∞
−∞ ψ(t)dt = 0

Cψ =
∫∞
−∞

|Ψ(Ω)|2
|Ω| dΩ <∞

5The STFT using a Gaussian window is known as the Gabor Transform (1946).
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The conditions above imply that Ψ(Ω) is bandpass and that ψ(t) is sufficiently smooth.
We assume that ‖ψ(t)‖ = 1, so that the definition above ensures ‖ψa,τ (t)‖ = 1 for all a
and τ . In this case, the CWT is defined by the transform pair

XCWT(a, τ) =

∫ ∞

−∞
x(t)ψ∗

a,τ (t) dt

x(t) =
1

Cψ

∫ ∞

−∞

∫ ∞

−∞
XCWT(a, τ)ψa,τ (t)

dτ da

a2

In basic terms, the CWT says that a waveform can be decomposed into a collection of
shifted and stretched versions of the mother wavelet ψ(t). As such, it is usually said that
wavelets perform a “time-scale” analysis rather than a time-frequency analysis.

The Morlet wavelet is a classic example of the CWT. It employs a windowed complex
exponential as the mother wavelet [1]:

ψ(t) =
1√
2π
ejΩ0te−t

2/2

Ψ(Ω) = e−(Ω+Ω0)2/2

where it is typical to select Ω0 = π
√

2
log 2 . (See illustration below.) While this wavelet

does not exactly satisfy the conditions established earlier, it nearly satisfies them since
Ψ(0) ≈ 7× 10−7 6= 0. Since the correction is minor, in practice it is often ignored.
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0.2
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0.4

0.5

0.6

0.7

0.8

0.9
imag 

real 

ψ(t) |Ψ(Ω)|

While the CWT discussed above is an interesting theoretical and pedagogical tool, the
discrete wavelet transform (DWT) is much more practical. Before shifting our focus to
the DWT, we take a step back and review some of the basic concepts from the branch
of mathematics known as Hilbert Space theory. These concepts will be essential in our
development of the DWT. In fact, Hilbert Space theory is the mathematical foundation
for nearly all of signal processing, so it may be interesting to see what this foundation
provides for us.
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2 An Introduction to Hilbert Space Theory

Hilbert spaces provide the mathematical foundation for signal processing theory. In this section
we attempt to clearly define some key Hilbert space concepts like vectors, norms, inner products,
subspaces, orthogonality, orthonormal bases, and projections. The intent is not to bury you in
mathematics, but to familiarize you with the terminology, provide intuition, and leave you with
a “lookup table” for future reference.

• Vector Space:

– A vector space consists of the following four components:

1. A set of vectors V ,

2. A field of scalars F (where, for our purposes, F is either R or C),

3. The operation of vector addition “+” (i.e., + : V × V → V )

4. The operation of scalar multiplication “•” (i.e, • : F× V → V )

for which the following properties hold. (Assume x,y, z ∈ V and α, β ∈ F.)

a) x + y = y + x (commutativity)

b) (x + y) + z = x + (y + z) (associativity)
(αβ) • x = α • (β • x)

c) α • (x + y) = α • x + α • y (distributivity)
(α+ β) • x = α • x + β • x

d) ∀x ∈ V, ∃0 ∈ V s.t. x + 0 = x (additive identity)

e) ∀x ∈ V, ∃(−x) ∈ V s.t. x + (−x) = 0 (additive inverse)

f) ∀x ∈ V, 1 • x = x (multiplicative identity)

Important examples of vector spaces include

i) V = R
N , F = R (real N -vectors)

ii) V = C
N , F = C (complex N -vectors)

iii) V =
{
{x[n]} s.t.

∑∞
n=−∞ |x[n]|p <∞

}
, F = C (sequences in “ℓp”)

iv) V =
{
f(t) :

∫∞
−∞ |f(t)|pdt <∞

}
, F = C (functions in “Lp”)

where we have assumed the usual definitions of addition and multiplication. From
now on, we will denote the arbitrary vector space (V,F,+, •) by the shorthand V
and assume the usual selection of (F,+, •). We will also suppress the “•” in scalar
multiplication, so that α • x becomes αx.

– A subspace of V is a vector space defined from the subset M ⊂ V for which

1. ∀x,y ∈M, x + y ∈M
2. ∀x ∈M and ∀α ∈ F, αx ∈M

(Note that every subspace must contain 0, and that V is a subspace of itself.)

– The span of a set S ⊂ V is the subspace of V containing all linear combinations of
vectors in S. When S = {x0, . . . ,xN−1},

span(S) :=

{
N−1∑

i=0

αixi : αi ∈ F

}
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– A subset of linearly-independent vectors {x0, . . . ,xN−1} ⊂ V is called a basis for V
when its span equals V . In such a case, we say that V has dimension N . We say that
V is infinite-dimensional6 if it contains an infinite number of linearly independent
vectors.

– V is a direct sum of two subspaces M and N , written V = M ⊕N , iff every x ∈ V
has a unique representation x = m + n for m ∈ M and n ∈ N . (Note that this
requires M ∩N = {0}.)

• Normed Vector Space: Now we equip a vector space V with a notion of “size.”

– A norm is a function (‖·‖ : V → R) such that the following properties hold (∀x,y ∈ V
and ∀α ∈ F):

1. ‖x‖ ≥ 0 with equality iff x = 0,

2. ‖αx‖ = |α| · ‖x‖,
3. ‖x + y‖ ≤ ‖x‖ + ‖y‖, (the triangle inequality).

In simple terms, the norm measures the size of a vector. Adding the norm operation
to a vector space yields a normed vector space. Important examples include:

i) V = R
N ,

∥
∥[x0, . . . , xN−1]

t
∥
∥ :=

√
∑N−1

i=0 x2
i =
√

xtx.

ii) V = C
N ,

∥
∥[x0, . . . , xN−1]

t
∥
∥ :=

√
∑N−1

i=0 |xi|2 =
√

xHx.

ii) V = ℓp, ‖{x[n]}‖ :=
(
∑∞

n=−∞ |x[n]|p
) 1

p
.

iv) V = Lp, ‖f(t)‖ :=
(∫∞

−∞ |f(t)|pdt
) 1

p
.

• Inner-Product Space: Next we equip a normed vector space V with a notion of “direction.”

– An inner product is a function (〈·, ·〉 : V ×V → C) such that the following properties
hold (∀x,y, z ∈ V and ∀α ∈ F):

1. 〈x,y〉 = 〈y,x〉∗,
2. 〈x, αy〉 = α 〈x,y〉 . . . implying that 〈αx,y〉 = α∗ 〈x,y〉,
3. 〈x,y + z〉 = 〈x,y〉 + 〈x, z〉,
4. 〈x,x〉 ≥ 0 with equality iff x = 0.

In simple terms, the inner product measures the relative alignment between two vec-
tors. Adding an inner product operation to a vector space yields an inner product space.
Important examples include:

i) V = R
N , 〈x,y〉 := xty.

ii) V = C
N , 〈x,y〉 := xHy.

iii) V = ℓ2, 〈{x[n]}, {y[n]}〉 :=
∑∞

n=−∞ x∗[n]y[n]

iv) V = L2, 〈f(t), g(t)〉 :=
∫∞
−∞ f∗(t)g(t)dt.

The inner products above are the “usual” choices for those spaces.

The inner product naturally defines a norm:

‖x‖ :=
√

〈x,x〉,
though not every norm can be defined from an inner product.7 Thus, an inner product

6The definition of an infinite-dimensional basis would be complicated by issues relating to the convergence of
infinite series. Hence we postpone discussion of infinite-dimensional bases until the Hilbert Space section.

7An example for inner product space L2 would be any norm ‖f‖ := p

q

R ∞

−∞
|f(t)|pdt such that p > 2.
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space can be considered as a normed vector space with additional structure. Assume,
from now on, that we adopt the inner-product norm when given a choice.

– The Cauchy-Schwarz inequality says

| 〈x,y〉 | ≤ ‖x‖ · ‖y‖ with equality iff ∃α ∈ F s.t. x = αy

When 〈x,y〉 ∈ R, the inner product can be used to define an “angle” between vectors:

cos(θ) =
〈x,y〉
‖x‖ · ‖y‖

– Vectors x and y are said to be orthogonal, denoted as x ⊥ y, when 〈x,y〉 = 0. The
Pythagorean theorem says:

‖x + y‖2 = ‖x‖2 + ‖y‖2 when x ⊥ y.

Vectors x and y are said to be orthonormal when x ⊥ y and ‖x‖ = ‖y‖ = 1.

– x ⊥ S means x ⊥ y for all y ∈ S. S is an orthogonal set if x ⊥ y for all x,y ∈
S s.t. x 6= y. An orthogonal set S is an orthonormal set if ‖x‖ = 1 for all x ∈ S.
Some examples of orthonormal sets are

i) R
3 : S =

{[
1
0
0

]

,
[

0
1
0

]}

,

ii) C
N : Subsets of columns from unitary matrices,

iii) ℓ2 : Subsets of shifted Kronecker delta sequences S ⊂
{
{δ[n − k]} : k ∈ Z

}
,

iv) L2 : S =
{

1√
T
pT (t−nT ) : n ∈ Z

}

for T -wide pulse pT (t) =
(
u(t)− u(t−T )

)
and

unit step u(t).

where in each case we assume the usual inner product.

• Hilbert Space: Now we consider inner product spaces with nice convergence properties
that allow us to define countably-infinite orthonormal bases.

– A Hilbert space is a complete inner product space. A complete space8 is one where
all Cauchy sequences converge to some vector within the space. For sequence {xn}
to be Cauchy , the distance between its elements must eventually become arbitrarily
small:

∀ǫ > 0, ∃Nǫ s.t. ∀n,m ≥ Nǫ, ‖xn − xm‖ < ǫ

For a sequence {xn} to be convergent to x, the distance between its elements and x

must eventually become arbitrarily small:

∀ǫ > 0, ∃Nǫ s.t. ∀n ≥ Nǫ, ‖xn − x‖ < ǫ

Examples are listed below (assuming the usual inner products):

i) V = R
N ,

ii) V = C
N ,

8The rational numbers provide an example of an incomplete set. We know that it is possible to construct a
sequence of rational numbers which approximate an irrational number arbitrarily closely. It is easy to see that
such a sequence will be Cauchy. However, the sequence will not converge to any rational number, and so the
rationals cannot be complete.
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iii) V = ℓ2 (i.e., square summable sequences),

iv) V = L2 (i.e., square integrable functions).

– We will always deal with separable Hilbert spaces, which are those that have a count-
able9 orthonormal (ON) basis. A countable orthonormal basis for V is a countable
orthonormal set S = {xk} such that every vector in V can be represented as a linear
combination of elements in S:

∀y ∈ V, ∃{αk} s.t. y =
∑

k

αkxk.

Due to the orthonormality of S, the basis coefficients are given by

αk = 〈xk,y〉 .

We can see this via:

〈xk,y〉 =

〈

xk, lim
n→∞

n∑

i=0

αixi

〉

= lim
n→∞

〈

xk,
n∑

i=0

αixi

〉

= lim
n→∞

n∑

i=0

αi 〈xk,xi〉
︸ ︷︷ ︸

δ[k−i]

= αk

(where the second equality invokes the continuity of the inner product).

In finite n-dimensional spaces (e.g., R
n or C

n), any n-element ON set constitutes an
ON basis. In infinite-dimensional spaces, we have the following equivalences concern-
ing an orthonormal set {x0,x1,x2, . . . } ∈ V :

a) {x0,x1,x2, . . . } is an ON basis for V .

b) If 〈xi,y〉 = 0 for all i, then y = 0.

c) ∀y ∈ V, ‖y‖2 =
∑

i

∣
∣〈xi,y〉

∣
∣2. (Parseval’s Equality)

d) Every y ∈ V is a limit of some sequence of vectors in span ({x0,x1,x2, . . . }).
Examples of countable ON bases for various Hilbert spaces include:

i) R
N : {e0, . . . , eN−1} for ei = [0, . . . , 0, 1, 0, . . . , 0]t with “1” in the ith position,

ii) C
N : the columns of any unitary N ×N matrix.

iii) ℓ2:
{
{δi[n]} : i ∈ Z

}
, for δi[n] := δ[n− i] (all shifts of the Kronecker sequence)

iv) L2: to be constructed using the DWT. . .

– Say S is a subspace of Hilbert space V . The orthogonal complement of S in V , de-

noted S⊥, is the subspace defined by the set {x ∈ V : x ⊥ S}. Assuming that S is
closed, we can write V = S ⊕ S⊥.

– The orthogonal projection of y onto S, where S is a closed subspace of V , is

ŷ =
∑

i

〈xi,y〉 xi s.t. {xi} is an ON basis for S.

Orthogonal projection yields the best approximation of y in S:

ŷ = arg min
x∈S
‖y − x‖.

9A countable set is a set with at most a countably-infinite number of elements. Finite sets are countable, as are
any sets whose elements can be organized into an infinite list. Continuums (e.g., intervals of R) are uncountably
infinite.
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The approximation error e := y − ŷ obeys the orthogonality principle:

e ⊥ S.

We illustrate this concept using V = R
3 below but stress that the same geometrical

interpretation applies to any Hilbert space.

y

ŷ

e

S

A proof of the orthogonality principle is:

e ⊥ S
⇔ 〈e,xi〉 = 0 ∀i
⇔ 〈y − ŷ,xi〉 = 0 ∀i
⇔ 〈y,xi〉 = 〈ŷ,xi〉 ∀i

=
〈
∑

j 〈xj ,y〉xj ,xi
〉

∀i
=

∑

j 〈xj ,y〉
∗ 〈xj ,xi〉 ∀i

=
∑

j 〈y,xj〉 δj−i ∀i
= 〈y,xi〉 ∀i
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3 Discrete Wavelet Transform

• Main Concepts: The discrete wavelet transform (DWT) is a representation of a signal
x(t) ∈ L2 using an orthonormal basis consisting of a countably-infinite set of wavelets.
Denoting the wavelet basis as {ψk,n(t) : k, n ∈ Z}, the DWT transform pair is

x(t) =

∞∑

k=−∞

∞∑

n=−∞
dk,nψk,n(t)

dk,n = 〈ψk,n(t), x(t)〉 =

∫ ∞

−∞
ψ∗
k,n(t)x(t)dt

where {dk,n} are the wavelet coefficients. Note the relationship to Fourier series and to
the sampling theorem: in both cases we can perfectly describe a continuous-time signal
x(t) using a countably-infinite (i.e., discrete) set of coefficients. Specifically, Fourier series
enabled us to describe periodic signals using Fourier coefficients {X[k] : k ∈ Z}, while
the sampling theorem enabled us to describe bandlimited signals using signal samples
{x[n] : n ∈ Z}. In both cases, signals within a limited class are represented using a
coefficient set with a single countable index. The DWT can describe any signal in L2

using a coefficient set parameterized by two countable indices: {dk,n : k, n ∈ Z}.
Wavelets are orthonormal functions in L2 obtained by shifting and stretching a “mother
wavelet” ψ(t) ∈ L2. For example,

ψk,n(t) = 2−k/2ψ(2−kt− n), k, n ∈ Z

defines a family of wavelets {ψk,n(t) : k, n ∈ Z} related by power-of-two (or “dyadic”)
stretches. As k increases, the wavelet stretches by a factor two; as n increases, the wavelet
shifts right. Note that when ‖ψ(t)‖ = 1, the normalization ensures that ‖ψk,n(t)‖ = 1 for
all k, n ∈ Z. Power-of-two stretching is a convenient, though somewhat arbitrary, choice.
In our treatment of the discrete wavelet transform, however, we will focus on this choice.
Even with power-of-two stretches, there are various possibilities for ψ(t), each giving a
different flavor of DWT.

Wavelets are constructed so that {ψk,n(t) : n ∈ Z} (i.e., the set of all shifted wavelets
at fixed scale k) describes a particular level of “detail” in the signal. As k becomes
smaller (i.e., closer to −∞), the wavelets become more “fine grained” and the level of
detail increases. In this way, the DWT can give a multi-resolution description of a signal,
very useful in analyzing “real-world” signals. Essentially, the DWT gives us a discrete
multi-resolution description of a continuous-time signal in L2.

In the modules that follow, these DWT concepts will be developed “from scratch” using
Hilbert space principles. To aid the development, we make use of the so-called “scaling
function” φ(t) ∈ L2, which will be used to approximate the signal up to a particular level
of detail. Like with wavelets, a family of scaling functions can be constructed via shifts
and power-of-two stretches

φk,n(t) = 2−k/2φ(2−kt− n), k, n ∈ Z

given mother scaling function φ(t). The relationships between wavelets and scaling func-
tions will be elaborated upon below via theory and example. See [1, Ch. 4] for a slightly
different development.
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Note that the inner-product expression for dk,n above is written for the general complex-
valued case. In our treatment of the discrete wavelet transform, however, we will assume
real-valued signals and wavelets, for simplicity. For this reason, we omit the complex
conjugations in the remainder of our DWT discussions.

• Example: The Haar System: The Haar basis is perhaps the simplest example of a DWT
basis, and we will frequently refer to it in our DWT development. Keep in mind, however,
that the Haar basis is only an example; there are many other ways of constructing a DWT
decomposition.

For the Haar case, the mother scaling function is defined by

φ(t) =

{

1 0 ≤ t < 1

0 else
.

1

0 1

φ(t)

t

From the mother scaling function, we define a family of shifted and stretched scaling
functions {φk,n(t)} according to

φk,n(t) = 2−k/2φ(2−kt− n), k, n ∈ Z,

= 2−k/2φ
(

1
2k (t− n2k)

)
,

0

2−k/2

n2k (n+1)2k

φk,n(t)

t

which are illustrated below for various k and n. The second equation above makes clear
the principle that incrementing n by one shifts the pulse one place to the right. Observe
from the figures that {φk,n(t) : n ∈ Z} is orthonormal for each k (i.e., along each row of
figures).

φ1,0(t) φ1,1(t) φ1,2(t)

φ0,0(t) φ0,1(t) φ0,2(t)

φ−1,0(t) φ−1,1(t) φ−1,2(t)

1
√

2
1
√

2
1
√

2

√
2

√
2

√
2

111

00

0

0

00

0

0

0

1
2

1
2

1

1

1

1 3
2

22

2 2

3

44 6

tt

t

tt

t

t

t

t
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• A Hierarchy of Detail: Given a mother scaling function φ(t) ∈ L2—the choice of which
will be discussed later—we construct scaling functions at “coarseness-level k” and “shift
n” as follows:

φk,n(t) := 2−k/2φ(2−kt− n).

We then use Vk to denote the subspace defined by linear combinations of scaling functions
at the kth level:

Vk := span{φk,n(t) : n ∈ Z}.
In the Haar system, for example, V0 and V1 consist of signals with the characteristics of
x0(t) and x1(t) illustrated below, respectively.

−2

−2

−1

−1

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

x0(t)

x1(t)

t

t

We assume that φ(t) ensures the following nesting property is satisfied:

· · · V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 · · ·
coarse←− −→ detailed

In other words, any signal in Vk can be constructed as a linear combination of “more
detailed” signals in Vk−1. (The Haar system gives proof that at least one such φ(t) exists.)

The nesting property can be depicted using the set-theoretic diagram below, where V−1

is represented by the contents of the largest egg (which includes the smaller two eggs), V0

is represented by the contents of the medium-sized egg (which includes the smallest egg),
and V1 is represented by the contents of the smallest egg.

V−1V0V1

Furthermore, we will assume that

lim
k→−∞

Vk = L2 (i.e., contains all signals)

lim
k→+∞

Vk = {0} (i.e, contains only the zero signal)

{φ(t− n) : n ∈ Z} = an orthonormal set.
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Essentially, limk→−∞ Vk = L2 means that, for any x(t) ∈ L2 and any maximally tolerable
error ǫ > 0, we can find an approximation level k such that

∫∞
−∞ |x(t)−xk(t)|2dt < ǫ. Note

that, while it might at first seem that limk→∞ Vk should contain all non-zero constant
signals (e.g., x(t) = a for a ∈ R), the only constant signal in L2, the space of square-
integrable signals, is the zero signal.

Note that orthonormal {φ0,n(t) : n ∈ Z} implies orthonormal {φk,n(t) : n ∈ Z} for all
k ∈ Z. Since {φk,n(t) : n ∈ Z} is an orthonormal basis for Vk, the best (in L2 norm)
approximation of x(t) ∈ L2 at coarseness-level k (i.e., in Vk) is given by the orthogonal
projection

xk(t) =

∞∑

n=−∞
ck,nφk,n(t)

ck,n = 〈φk,n(t), x(t)〉

x(t)

xk(t)
Vk

• Haar Approximation in Vk: It is instructive to consider the approximation of signal x(t) ∈
L2 at coarseness-level k of the Haar system. For the Haar case, projection of x(t) ∈ L2

onto Vk is accomplished using the basis coefficients

ck,n =

∫ ∞

−∞
φk,n(t)x(t)dt

=

∫ (n+1)2k

n2k

2−k/2x(t)dt

giving the approximation

xk(t) =
∞∑

n=−∞
ck,nφk,n(t)

=

∞∑

n=−∞

(
∫ (n+1)2k

n2k

2−k/2x(t)dt

)

φk,n(t)

=
∞∑

n=−∞

(

1

2k

∫ (n+1)2k

n2k

x(t)dt

)

︸ ︷︷ ︸

average value of x(t) in interval

2k/2φk,n(t)
︸ ︷︷ ︸

height = 1 ∀k

.

This corresponds to taking the average value of the signal in each interval of width 2k and
approximating the function by a constant over that interval. (See below.)
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xk(t)x(t)

t

2k

• The Scaling Equation: Consider the level-1 subspace and its orthonormal basis:

V1 = span{φ1,n(t) : n ∈ Z}
φ1,n(t) = 1√

2
φ(1

2 t− n)

Since V1 ⊂ V0 (i.e., V0 is more detailed than V1) and since φ1,0(t) ∈ V0, there must exist
coefficients {h[n] : n ∈ Z} such that

φ1,0(t) =

∞∑

n=−∞
h[n]φ0,n(t)

⇔ 1√
2
φ(1

2t) =

∞∑

n=−∞
h[n]φ(t− n)

⇔ φ(t) =
√

2

∞∑

n=−∞
h[n]φ(2t − n)

This is known as the “scaling equation.” To be a valid scaling function, φ(t) must obey
the scaling equation for some coefficient set {h[n]}.

• The Wavelet Scaling Equation: The difference in detail between Vk and Vk−1 will be
described using Wk, defined as the orthogonal complement of Vk in Vk−1:

Vk−1 = Vk ⊕Wk.

At times it will be convenient to write Wk = V ⊥
k . This concept is illustrated in the

set-theoretic diagram below.

V−1V0V1

W0W1

Suppose now, that there exists10 a “mother wavelet” ψ(t) ∈ L2 such that {ψ(t−n) : n ∈ Z}
constitutes an orthonormal basis for W0. Because every Vk has an orthonormal basis

10Unfortunately, proving the existence of this ψ(t), in the case of general φ(t), is outside the scope of this course;
the interested reader is referred to [2, pp. 134-135] for these details. It should be noted that, while such ψ(t) do
exist, they are not unique.
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{φk,n(t) : n ∈ Z} constructed from shifts and stretches of the mother scaling function φ(t),
it is easily shown that every Wk will have an orthonormal basis {ψk,n(t) : n ∈ Z} whose
elements are constructed from shifts and stretches of the mother wavelet:

ψk,n(t) = 2−k/2ψ(2−kt− n).

The Haar system will soon provide us with a concrete example.

Let’s focus, for the moment, on the specific case k = 1. Since W1 ⊂ V0, there must exist
{g[n] : n ∈ Z} such that

ψ1,0(t) =

∞∑

n=−∞
g[n]φ0,n(t)

⇔ 1√
2
ψ(1

2 t) =
∞∑

n=−∞
g[n]φ(t− n)

⇔ ψ(t) =
√

2

∞∑

n=−∞
g[n]φ(2t − n)

This is known as the “wavelet scaling equation.” To be a valid scaling-function/wavelet
pair, φ(t) and ψ(t) must obey the wavelet scaling equation for some coefficient set {g[n]}.

• Conditions on {h[n]} and {g[n]}: Here we derive sufficient conditions on the coefficients
{h[n]} and {g[n]} used in the scaling equation and wavelet scaling equation to ensure,
for every k ∈ Z, that the sets {φk,n(t) : n ∈ Z} and {ψk,n(t) : n ∈ Z} have the de-
sired orthonormality properties previously discussed. We will make repeated use of our
requirement that {φ(t− n) : n ∈ Z} is an orthonormal set.

For {φk,n(t) : n ∈ Z} to be orthonormal at all k, we clearly need orthonormality when
k = 1. This is equivalent to

δ[m] = 〈φ1,0(t), φ1,m(t)〉

=

〈
∑

n

h[n]φ(t− n),
∑

ℓ

h[ℓ]φ(t − ℓ− 2m)

〉

=
∑

n

h[n]
∑

ℓ

h[ℓ] 〈φ(t− n), φ(t− ℓ− 2m)〉
︸ ︷︷ ︸

δ[n−(ℓ+2m)]

⇔ δ[m] =

∞∑

n=−∞
h[n]h[n − 2m]

Above we used the fact that φ1,m(t) = 1√
2
φ(1

2 t −m) = 1√
2
φ(1

2 (t − 2m)) = φ1,0(t − 2m).

So, given orthonormality at level k = 0, we have just derived a condition on {h[n]} which
is necessary and sufficient for orthonormality at level k = 1. Yet the same condition is
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necessary and sufficient for orthonormality at level k = 2:

δ[m] = 〈φ2,0(t), φ2,m(t)〉

=

〈
∑

n

h[n]φ1,n(t),
∑

ℓ

h[ℓ]φ1,ℓ+2m(t)

〉

=
∑

n

h[n]
∑

ℓ

h[ℓ] 〈φ1,n(t), φ1,ℓ+2m(t)〉
︸ ︷︷ ︸

δ[n−(ℓ+2m)]

=
∞∑

n=−∞
h[n]h[n − 2m].

Using induction, we conclude that the previous condition will be necessary and sufficient
for orthonormality of {φk,n(t) : n ∈ Z} for all k ∈ Z.

There is an interesting frequency-domain interpretation of this condition. If we define

p[m] = h[m] ∗ h[−m] =
∑

n

h[n]h[n −m]

then we see that our condition is equivalent to p[2m] = δ[m]. In the z-domain, this yields
the pair of conditions







P (z) = H(z)H(z−1)

1 = 1
2

1∑

i=0

P (z1/2ej
2π
2
i) = 1

2P (z1/2) + 1
2P (−z1/2)

Putting these together,

2 = H(z1/2)H(z−1/2) +H(−z1/2)H(−z−1/2)

⇔ 2 = H(z)H(z−1) +H(−z)H(−z−1)

⇔ 2 = |H(ejω)|2 + |H(ej(π−ω))|2

where the last property invokes the fact that h[n] ∈ R and that real-valued impulse re-
sponses yield conjugate-symmetric DTFTs. Thus we find that {h[n]} is the impulse re-
sponse of a power-symmetric filter. Recall that this property was also shared by the
analysis filters in an orthogonal perfect-reconstruction FIR filterbank.

To find conditions on {g[n]} ensuring that the set {ψk,n(t) : n ∈ Z} is orthonormal at every
k, we can repeat the steps above but with g[n] replacing h[n], ψ1,n(t) replacing φ1,n(t),
and the wavelet-scaling equation replacing the scaling equation. This yields

δ[m] =

∞∑

n=−∞
g[n]g[n − 2m]

⇔ 2 = G(z)G(z−1) +G(−z)G(−z−1)

Next we derive a condition which guarantees that Wk ⊥ Vk, as required by our definition
Wk = V ⊥

k , for all k ∈ Z. Note that, for any k ∈ Z, Wk ⊥ Vk is guaranteed by {ψk,n : n ∈
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Z} ⊥ {φk,n : n ∈ Z} which is equivalent to

∀m, 0 = 〈ψk+1,0(t), φk+1,m(t)〉

=

〈
∑

n

g[n]φk,n(t),
∑

ℓ

h[ℓ]φk,ℓ+2m(t)

〉

=
∑

n

g[n]
∑

ℓ

h[ℓ] 〈φk,n(t), φk,ℓ+2m(t)〉
︸ ︷︷ ︸

δ[n−(ℓ+2m)]

=
∑

n

g[n]h[n − 2m].

In other words, a 2-downsampled version of g[n] ∗ h[−n] must consist only of zeros. This
necessary and sufficient condition can be restated in the frequency domain as

0 = ↓2
{
G(z)H(z−1)

}

⇔ 0 =
1

2

1∑

p=0

G(z1/2e−j
2π
2
p)H(z−1/2ej

2π
2
p)

⇔ 0 = G(z1/2)H(z−1/2) +G(−z1/2)H(−z−1/2)

⇔ 0 = G(z)H(z−1) +G(−z)H(−z−1).

The choice
G(z) = ±z−PH(−z−1) for odd P

is sufficient (but perhaps not necessary) to satisfy our condition, since

G(z)H(z−1) +G(−z)H(−z−1) = ±z−PH(−z−1)H(z−1)∓ z−PH(z−1)H(−z−1)

= 0.

In the time domain, the condition on G(z) and H(z) can be expressed

g[n] = ± (−1)nh[P − n] for odd P .

Recall that this property was satisfied by the analysis filters in an orthogonal perfect
reconstruction FIR filterbank.

Finally, note that the two conditions 2 = H(z)H(z−1) + H(−z)H(−z−1) and G(z) =
±z−PH(−z−1) for odd P imply 2 = G(z)G(z−1) + G(−z)G(−z−1), and thus the latter
condition on G(z) is redundant. To conclude,

G(z) = ±z−PH(−z−1) for odd P

2 = H(z)H(z−1) +H(−z)H(−z−1)

are sufficient to ensure that both {φk,n(t) : n ∈ Z} and {ψk,n(t) : n ∈ Z} are orthonormal
for all k and that Wk ⊥ Vk for all k.

• Values of {g[n]} and {h[n]} for the Haar System: The scaling equation was originally writ-
ten as

φ1,0(t) =
∑

n

h[n]φ0,n(t).
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The previous equation leads to a clever trick:

〈φ0,m(t), φ1,0(t)〉 =

〈

φ0,m(t),
∑

n

h[n]φ0,n(t)

〉

=
∑

n

h[n] 〈φ0,m(t), φ0,n(t)〉
︸ ︷︷ ︸

δ[n−m]

= h[m].

In other words, we have a way to calculate the coefficients {h[m]} if we know φ(t).

In the Haar case

h[m] =

∫ ∞

−∞
φ0,m(t)φ1,0(t)dt

=

∫ m+1

m
φ1,0(t)dt

=

{
1√
2

m ∈ {0, 1}
0 else

since φ1,0(t) = 1√
2

in the interval [0, 2) and zero otherwise. Then, choosing P = 1 in

g[n] = (−1)nh[P − n], we find that

g[n] =







1√
2

n = 0

− 1√
2

n = 1

0 else

for the Haar system. From the wavelet scaling equation

ψ(t) =
√

2
∑

n

g[n]φ(2t− n) = φ(2t) − φ(2t− 1)

we can see that the Haar mother wavelet and scaling function look like:

11

−1 −1

0 0
1
21 1

φ(t) ψ(t)

tt

In the Haar case, it is now easy to see, since V−1 = V0 ⊕W0, how integer shifts of the
mother wavelet describe the differences between signals in V−1 and V0:
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x−1(t) ∈ V−1

x0(t) ∈ V0

t

t

Note also that, as k decreases towards −∞, the Haar system can be used to describe more
and more detailed signals. In fact, any signal in L2 can be represented arbitrarily closely
(in terms of the L2 norm) by choosing −k large enough. In the limit k → −∞, the Haar
system can be used to represent any signal in L2.

• Wavelets: A Countable Orthonormal Basis for L2: Recall that Vk = Wk+1 ⊕ Vk+1 and
that Vk+1 = Wk+2 ⊕ Vk+2. Putting these together and extending the idea yields

Vk = Wk+1 ⊕Wk+2 ⊕ Vk+2

= Wk+1 ⊕Wk+2 ⊕ · · · ⊕Wℓ ⊕ Vℓ, ℓ > k + 2

= Wk+1 ⊕Wk+2 ⊕Wk+3 ⊕ · · ·

=

∞⊕

i=k+1

Wi

If we take the limit as k → −∞, we find that

V−∞ := lim
k→∞

Vk =

∞⊕

i=−∞
Wi

Moreover,
W1 ⊥ V1 and Wk≥2 ⊂ V1 ⇒ W1 ⊥Wk≥2

W2 ⊥ V2 and Wk≥3 ⊂ V2 ⇒ W2 ⊥Wk≥3
...

...
...

from which it follows that
Wk ⊥Wj 6=k,

or, in other words, all subspaces Wk are orthogonal to one another. Since the functions
{ψk,n(t) : n ∈ Z} form an orthonormal basis for Wk, the results above imply that

{ψk,n(t) : n, k ∈ Z} constitutes an orthonormal basis for V−∞.

Given our assumptions about φ(t), we will have V−∞ = L2, in which case

{ψk,n(t) : n, k ∈ Z} constitutes an orthonormal basis for L2
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so that, for any x(t) ∈ L2, we can write

x(t) =
∞∑

k=−∞

∞∑

n=−∞
dk[n]ψk,n(t)

dk[n] = 〈ψk,n(t), x(t)〉 .

This is the key idea behind the orthogonal DWT system that we have been developing!

• Relationship to Filterbanks: Assume that we start with a signal x(t) ∈ L2. Denote the

best approximation at the 0th level of coarseness by x0(t). (Recall that x0(t) is the or-
thogonal projection of x(t) onto V0.) Our goal, for the moment, is to decompose x0(t)
into scaling coefficients and wavelet coefficients at higher levels. Since x0(t) ∈ V0 and
V0 = V1 ⊕W1, there exist coefficients {c0[n]}, {c1[n]}, and {d1[n]} such that

x0(t) =
∑

n

c0[n]φ0,n(t)

=
∑

n

c1[n]φ1,n(t) +
∑

n

d1[n]ψ1,n(t).

Using the fact that {φ1,n(t) : n ∈ Z} is an orthonormal basis for V1, in conjunction with
the scaling equation,

c1[n] = 〈x0(t), φ1,n(t)〉

=

〈
∑

m

c0[m]φ0,m(t), φ1,n(t)

〉

=
∑

m

c0[m] 〈φ0,m(t), φ1,n(t)〉

=
∑

m

c0[m]

〈

φ(t−m),
∑

ℓ

h[ℓ]φ(t− ℓ− 2n)

〉

=
∑

m

c0[m]
∑

ℓ

h[ℓ] 〈φ(t−m), φ(t− ℓ− 2n)〉
︸ ︷︷ ︸

δ[m−ℓ−2n]

=
∑

m

c0[m]h[m− 2n].

The previous expression indicates that {c1[n]} results from convolving {c0[m]} with a
time-reversed version of h[m] then downsampling by factor two.

H(z−1)c0[m] c1[n]↓2

Using the fact that {ψ1,n(t) : n ∈ Z} is an orthonormal basis for W1, in conjunction with

c©P. Schniter, 2002 25



the wavelet scaling equation,

d1[n] = 〈x0(t), ψ1,n(t)〉

=

〈
∑

m

c0[m]φ0,m(t), ψ1,n(t)

〉

=
∑

m

c0[m] 〈φ0,m(t), ψ1,n(t)〉

=
∑

m

c0[m]

〈

φ(t−m),
∑

ℓ

g[ℓ]φ(t − ℓ− 2n)

〉

=
∑

m

c0[m]
∑

ℓ

g[ℓ] 〈φ(t−m), φ(t− ℓ− 2n)〉
︸ ︷︷ ︸

δ[m−ℓ−2n]

=
∑

m

c0[m]g[m− 2n].

The previous expression indicates that {d1[n]} results from convolving {c0[m]} with a
time-reversed version of g[m] then downsampling by factor two.

G(z−1)c0[m] d1[n]↓2

Putting these two operations together, we arrive at what looks like the analysis portion of
an FIR filterbank:

H(z−1)

G(z−1)

c0[m]

c1[n]

d1[n]↓2

↓2

We can repeat this process at the next higher level of coarseness. Since V1 = W2 ⊕ V2,
there exist coefficients {c2[n]} and {d2[n]} such that

x1(t) =
∑

n

c1[n]φ1,n(t)

=
∑

n

d2[n]ψ2,n(t) +
∑

n

c2[n]φ2,n(t)

Using the same steps as before, we find that

c2[n] =
∑

m

c1[m]h[m− 2n]

d2[n] =
∑

m

c1[m]g[m − 2n]

which gives a cascaded analysis filterbank:
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H(z−1)

H(z−1) G(z−1)

G(z−1)c0[ℓ]

c1[m] c2[n]

d2[n]

d1[m]

↓2

↓2

↓2

↓2

If we use V0 = W1 ⊕W2 ⊕W3 ⊕ · · · ⊕Wk ⊕ Vk to repeat this process up to the kth level,
we get the iterated analysis filterbank below.

H(z−1)

H(z−1)

H(z−1)

H(z−1)

G(z−1)

G(z−1)

G(z−1)

G(z−1)c0[ℓ]

c1[m]

c2[n]

ck−1[q] ck[s]

d1[m]

d2[n]

d3[p]

dk[r]

.

.

.

.
.

.

↓2

↓2

↓2

↓2

↓2

↓2

↓2

↓2

As we might expect, signal reconstruction can be accomplished using cascaded two-channel
synthesis filterbanks. Using the same assumptions as before, we have:

c0[m] = 〈x0(t), φ0,m(t)〉

=

〈
∑

n

c1[n]φ1,n(t) +
∑

n

d1[n]ψ1,n(t), φ0,m(t)

〉

=
∑

n

c1[n] 〈φ1,n(t), φ0,m(t)〉
︸ ︷︷ ︸

h[m−2n]

+
∑

n

d1[n] 〈ψ1,n(t), φ0,m(t)〉
︸ ︷︷ ︸

g[m−2n]

=
∑

n

c1[n]h[m− 2n] +
∑

n

d1[n]g[m− 2n]

which can be implemented using the block diagram below.

H(z)

G(z)

+ c0[m]

c1[n]

d1[n] ↑2

↑2

The same procedure can be used to derive

c1[m] =
∑

n

c2[n]h[m− 2n] +
∑

n

d2[n]g[m− 2n],

from which we get the diagram:
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H(z)

H(z)

G(z)

G(z)

c0[ℓ]

c1[m]

c2[n]

d2[n]

d1[m] +

+

↑2

↑2↑2

↑2

To reconstruct from the kth level, we can use the iterated synthesis filterbank:

H(z)

H(z)

H(z)

H(z)

G(z)

G(z)

G(z)

G(z) c0[ℓ]

c1[m]

c2[n]

ck−1[q]

ck[s]

d1[m]

d2[n]

d3[p]

dk[r]

.

.

.

. . .

+

+

+

+

↑2

↑2

↑2

↑2

↑2

↑2

↑2

↑2

The table below makes a direct comparison between wavelets and the two-channel orthog-
onal PR-FIR filterbanks.

Discrete Wavelet Transform 2-Channel Orthogonal PR-FIR Filterbank

Analysis LPF: H(z−1) H0(z)
Power Symmetry: H(z)H(z−1) +H(−z)H(−z−1) = 2 H0(z)H0(z

−1) +H0(−z)H0(−z−1) = 1
Analysis HPF: G(z−1) H1(z)

Spectral Reverse: G(z) = ±z−PH(−z−1), P odd H1(z) = ±z−(N−1)H0(−z−1), N even

Synthesis LPF: H(z) G0(z) = 2z−(N−1)H0(z
−1)

Synthesis HPF: G(z) G1(z) = 2z−(N−1)H1(z
−1)

From the table above, we see that the discrete wavelet transform that we have been
developing is identical to two-channel orthogonal PR-FIR filterbanks in all but a couple
details.

1. Orthogonal PR-FIR filterbanks employ synthesis filters with twice the gain of the
analysis filters, whereas in the DWT the gains are equal.

2. Orthogonal PR-FIR filterbanks employ causal filters of length N , whereas the DWT
filters are not constrained to be causal.

For convenience, however, the wavelet filters H(z) and G(z) are usually chosen to be
causal. For both to have even impulse response length N , we require that P = N − 1.

• Initialization of the Wavelet Transform: The filterbanks developed in the last section start
with the signal representation {c0[n] : n ∈ Z} and break the representation down into
wavelet coefficients and scaling coefficients at lower resolutions (i.e., higher levels k). Of
course, we could easily start at a non-zero level K and break the representation down from
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there; K = 0 just leads to simple notation. The question remains, though: how do we get
the initial coefficients {c0[n]}?
From their definition, we see that the scaling coefficients can be written using a convolution:

c0[n] = 〈φ(t− n), x(t)〉 =

∫ ∞

−∞
φ(t− n)x(t)dt = φ(−t) ∗ x(t)∣∣

t=n
,

which suggests that the proper initialization of the wavelet transform is accomplished by
passing the continuous-time input x(t) through an analog filter with impulse response
φ(−t) and sampling its output at integer times.

H(z−1)

G(z−1)

c0[m]
x(t) φ(−t)

t = m

c1[n]

d1[n]↓2

↓2

Practically speaking, however, it is very difficult to build an analog filter with impulse
response φ(−t) for typical choices of scaling function.

The most often-used approximation is to set c0[n] = x[n]. This initialization would be
exact if x(t) was bandlimited to 1

2 Hz and CTFT Φ(Ω) = 1 for Ω ∈ (−π, π] rad/s, but it
is not exact in general. (A similar property could be stated if we started the DWT at a
non-zero level K.) However, if we regard the wavelet transform primarily as a discrete-time
multi-resolution analysis/synthesis tool, then the initialization (or continuous-to-discrete
conversion) stage is not so important.

• Regularity Conditions, Compact Support, and Daubechies’ Wavelets: Up until now we
have been somewhat vague about the requirements for the conditions V−∞ = L2 and
〈φ(t− n), φ(t)〉 = δ[n]. As we shall soon see, the conditions on {h[n]} and {g[n]} devel-
oped thus far are not enough to yield φ(t) satisfying these conditions! In this section,
therefore, we will take a closer look at what happens when k → −∞ and arrive at a popu-
lar family of filter coefficients h[n] and g[n] which give continuous φ(t) and ψ(t) that satisfy
our desired wavelet system properties. These are known as “Daubechies’ Wavelets.”

Recall the iterated synthesis filterbank. Applying the Noble identities, we can move the
up-samplers before the filters, as illustrated below.

G(z)

G(z2)H(z)

G(z4)H(z2)H(z)

G(z2i−1

)
∏i−2

k=0H(z2k

)

∏i−1
k=0H(z2k

)ci[q]

c0[ℓ]

d1[m]

d2[n]

d3[p]

di[q]

...
...

... +

↑2

↑4

↑8

↑2i

↑2i
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The properties of the i-stage cascaded lowpass filter

H (i)(z) =
i−1∏

k=0

H(z2k

), i ≥ 1

in the limit i → ∞ give an important characterization of the wavelet system. But how
do we know that limi→∞H (i)(ejω) converges to a response in L2? In fact, there are some
rather strict conditions on H(ejω) that must be satisfied for this convergence to occur.
Without such convergence, we might have a finite-stage perfect reconstruction filterbank,
but we will not have a countable wavelet basis for L2. Below we present some “regularity
conditions” on H(ejω) that ensure convergence of the iterated synthesis lowpass filter.
(Note that convergence of the lowpass filter implies convergence of all other filters in the
bank.)

Let us denote the impulse response of H (i)(z) by h(i)[n]. Writing

H (i)(z) = H(z2i−1
)H (i−1)(z)

in the time domain, we have

h(i)[n] =
∑

k

h[k]h(i−1)[n− 2i−1k].

Now define the function

φ(i)(t) = 2i/2
∑

n

h(i)[n]p[ n

2i ,
n+1

2i )(t),

where p[a,b)(t) denotes the height-1 pulse with support on the interval [a, b):

p[a,b)(t) =

{

1 t ∈ [a, b)

0 t /∈ [a, b)

The definition of φ(i)(t) implies

h(i)[n] = 2−i/2φ(i)(t), t ∈ [ n
2i ,

n+1
2i )

h(i−1)[n− 2i−1k] = 2−(i−1)/2φ(i−1)(2t− k), t ∈ [ n
2i ,

n+1
2i )

and plugging the two previous expressions into the equation for h(i)[n] yields

φ(i)(t) =
√

2
∑

k

h[k]φ(i−1)(2t− k).

Thus, if φ(i)(t) converges pointwise to a continuous function, then the limiting function
must satisfy the scaling equation, so that limi→∞ φ(i)(t) = φ(t). Daubechies [2] showed
that, for pointwise convergence of φ(i)(t) to a continuous function in L2, it is sufficient that
H(ejω) can be factored as

H(ejω) =
√

2

(
1 + ejω

2

)P

R(ejω), P ≥ 1,
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for R(ejω) such that
sup
ω
|R(ejω)| < 2P−1.

Here P denotes the number of zeros that H(ejω) has at ω = π. Such conditions are called
“regularity” conditions because they ensure the regularity, or “smoothness,” of φ(t). In
fact, if we make the previous condition stronger:

sup
ω
|R(ejω)| < 2P−1−ℓ, ℓ ≥ 1,

then limi→∞ φ(i)(t) = φ(t) for φ(t) that is ℓ-times continuously differentiable.

There is an interesting and important by-product of the preceding analysis. If h[n] is a
causal length-N filter, it can be shown that h(i)[n] is causal with length N (i) = (2i−1)(N−
1)+1. By construction, then, φ(i)(t) will be zero outside the interval [0, (2i−1)(N−1)+1

2i ).
Assuming that the regularity conditions are satisfied so that limi→∞ φ(i)(t) = φ(t), it
follows that φ(t) must be zero outside the interval [0, N −1]. In this case we say that
φ(t) has “compact support.” Finally, the wavelet scaling equation implies that, when φ(t)
is compactly supported on [0, N −1] and g[n] is length N , ψ(t) will also be compactly
supported on the interval [0, N−1].

Daubechies constructed a family of H(z) with impulse response lengths N = 4, 6, 8, 10, . . .
which satisfy the regularity conditions. Moreover, her filters have the maximum possible
number of zeros at ω = π, and thus are maximally regular (i.e., they yield the smoothest
possible φ(t) for a given support interval). It turns out that these filters are the “maximally
flat” filters derived by Herrmann [3] long before filterbanks and wavelets were in vogue.
Below we show φ(t),Φ(Ω), ψ(t), and Ψ(Ω) for various members of the Daubechies’ wavelet
system.

See [1] for a more complete discussion of these matters.
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• Computation of φ(t) and ψ(t)—The Cascade Algorithm: Given coefficients {h[n]} that
satisfy the regularity conditions, we can iteratively calculate samples of φ(t) on a fine grid
of points {t} using the “cascade algorithm.” Once we have obtained φ(t), the wavelet
scaling equation can be used to construct ψ(t).

In this module we assume that H(z) is causal with impulse response length N . Recall,
from our discussion of the regularity conditions, that this implies φ(t) will have compact
support on the interval [0, N − 1]. The cascade algorithm is described below.

0. Consider the scaling function at integer times t = m ∈ {0...N − 1}:

φ(m) =
√

2

N−1∑

n=0

h[n]φ(2m− n).

Knowing that φ(t) = 0 for t /∈ [0, N − 1], the previous equation can be written using
an N ×N matrix. In the case N = 4, we have







φ(0)
φ(1)
φ(2)
φ(3)







=
√

2







h[0] 0 0 0
h[2] h[1] h[0] 0
0 h[3] h[2] h[1]
0 0 0 h[3]







︸ ︷︷ ︸

H







φ(0)
φ(1)
φ(2)
φ(3)






.

The matrix H is structured as a “row-decimated convolution matrix.” From the ma-
trix equation above, we see that [φ(0), φ(1), φ(2), φ(3)]t must be (some scaled version
of) the eigenvector of H corresponding to eigenvalue (

√
2)−1.

In general, the nonzero values of {φ(n) : n ∈ Z}, i.e., [φ(0), φ(1), . . . , φ(N − 1)], can
be calculated by appropriately scaling the eigenvector of the N × N row-decimated
convolution matrix H corresponding to the eigenvalue (

√
2)−1. It can be shown that

this eigenvector must be scaled so that
∑N−1

n=0 φ(n) = 1.

1. Given {φ(n) : n ∈ Z}, we can use the scaling equation to determine {φ(n2 ) : n ∈ Z}:

φ(m2 ) =
√

2
N−1∑

n=0

h[n]φ(m− n).

This produces the 2N−1 non-zero samples {φ(0), φ(1
2 ), φ(1), φ(3

2 ) . . . , φ(N − 1)}.
2. Given {φ(n2 ) : n ∈ Z}, the scaling equation can be used to find {φ(n4 ) : n ∈ Z}:

φ(m4 ) =
√

2

N−1∑

n=0

h[n]φ(m2 − n)

=
√

2
∑

p even

h[p2 ]φ(m−p
2 )

=
√

2
∑

p

h↑2[p]φ 1
2
[m− p]

where h↑2[n] denotes the impulse response of H(z2), i.e., a 2-upsampled version of
h[n], and where φ 1

2
[m] = φ(m2 ). Note that {φ(n4 ) : n ∈ Z} is the result of convolving

h↑2[n] with {φ 1
2
[n]}.
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3. Given {φ(n4 ) : n ∈ Z}, another convolution yields {φ(n8 ) : n ∈ Z}:

φ(m8 ) =
√

2

N−1∑

n=0

h[n]φ(m4 − n)

=
√

2
∑

p

h↑4[p]φ 1
4
[m− p]

where h↑4[n] is a 4-upsampled version of h[n] and where φ 1
4
[m] = φ(m4 ).

ℓ. At the ℓth stage, {φ( n
2ℓ )} is calculated by convolving the result of the (ℓ−1)th stage

with a 2ℓ−1-upsampled version of h[n]:

φ 1

2ℓ
[m] =

√
2
∑

p

h↑2ℓ−1 [p]φ 1

2ℓ−1
[m− p]

For ℓ ≈ 10, this gives a very good approximation of φ(t). At this point, you could verify the
key properties of φ(t), such as orthonormality and the satisfaction of the scaling equation.

Below we show steps 0 through 4 of the cascade algorithm, as well as step 10, using
Daubechies’ db2 coefficients (for which N = 4).
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• Finite-length Sequences and the DWT Matrix: The wavelet transform, viewed from a fil-
terbank perspective, consists of iterated 2-channel analysis stages like the one below.

H(z−1)

G(z−1)

ck[m]

ck+1[n]

dk+1[n]↓2

↓2

First consider a very long (i.e., practically infinite-length) sequence {ck[m] : m ∈ Z}.
For every pair of input samples {ck[2n], ck[2n − 1]} that enter the kth filterbank stage,
exactly one pair of output samples {ck+1[n], dk+1[n]} are generated. In other words, the
number of outputs equal the number of inputs during a fixed time interval. This property
is convenient from a real-time processing perspective.

For a short sequence {ck[m], m = 0...M−1}, however, linear convolution requires that we
make an assumption about the values of ck[m] for m /∈ {0...M−1}. One assumption could
be

ck[m] = 0 for m /∈ {0...M−1}.
If we assume that both H(z−1) and G(z−1) have impulse response lengths of N , and that
both M and N are even, then linear convolution implies that M nonzero inputs yield M+N

2
outputs from each branch, for a total of M+N > M outputs. The fact that each filterbank
stage produces more outputs than inputs could be inconvenient for many applications.

A more convenient assumption regarding the tails of {ck[m], m = 0...M−1} is that the
data outside of the time window {0...M−1} is a cyclic extension of data inside the time
window:

ck[m] = ck[〈m〉M ] for m /∈ {0...M−1}.
Recall that a linear convolution with an M -cyclic signal is equivalent to a circular convo-
lution with one M -sample segment of the signal. Furthermore, the output of this circular
convolution is itself M -cyclic, implying our 2-downsampled branch outputs will be cyclic
with period M/2. Thus, given an M -length input sequence, the filterbank output consists
of exactly M unique values.

It is instructive to write the circular-convolution analysis filterbank operation in matrix
form. Below we give an example for filter length N = 4, sequence length M = 8, and
causal synthesis filters H(z) and G(z).















ck+1[0]
ck+1[1]
ck+1[2]
ck+1[3]

dk+1[0]
dk+1[1]
dk+1[2]
dk+1[3]















︸ ︷︷ ︸
[
ck+1

dk+1

]

=















h[0] h[1] h[2] h[3] 0 0 0 0
0 0 h[0] h[1] h[2] h[3] 0 0
0 0 0 0 h[0] h[1] h[2] h[3]
h[2] h[3] 0 0 0 0 h[0] h[1]

g[0] g[1] g[2] g[3] 0 0 0 0
0 0 g[0] g[1] g[2] g[3] 0 0
0 0 0 0 g[0] g[1] g[2] g[3]
g[2] g[3] 0 0 0 0 g[0] g[1]















︸ ︷︷ ︸
[
HM

GM

]















ck[0]
ck[1]
ck[2]
ck[3]
ck[4]
ck[5]
ck[6]
ck[7]















︸ ︷︷ ︸

ck
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The matrices HM and GM have interesting properties. For example, the conditions

δ[m] =
∑

n

h[n]h[n− 2m]

g[n] = (−1)nh[N − 1− n]

imply that
[
HM

GM

]t [
HM

GM

]

=

[
HM

GM

] [
HM

GM

]t

= IM ,

where IM denotes the M ×M identity matrix. Thus, it makes sense to define the M ×M
“DWT matrix” as

TM =

[
HM

GM

]

whose transpose constitutes the M ×M “inverse DWT matrix”:

T−1
M = Tt

M .

Since the synthesis filterbank

H(z)

G(z)

+ ck[m]

ck+1[n]

dk+1[n] ↑2

↑2

gives perfect reconstruction, and since the cascade of matrix operations Tt
MTM also cor-

responds to perfect reconstruction, we expect that the matrix operation Tt
M describes the

action of the synthesis filterbank. This is readily confirmed by writing the upsampled
circular convolutions in matrix form:















ck[0]
ck[1]
ck[2]
ck[3]
ck[4]
ck[5]
ck[6]
ck[7]















=















h[0] 0 0 h[2] g[0] 0 0 g[2]
h[1] 0 0 h[3] g[1] 0 0 g[3]
h[2] h[0] 0 0 g[2] g[0] 0 0
h[3] h[1] 0 0 g[3] g[1] 0 0
0 h[2] h[0] 0 0 g[2] g[0] 0
0 h[3] h[1] 0 0 g[3] g[1] 0
0 0 h[2] h[0] 0 0 g[2] g[0]
0 0 h[3] h[1] 0 0 g[3] g[1]















︸ ︷︷ ︸
[
Ht
M Gt

M

]
= Tt

M















ck+1[0]
ck+1[1]
ck+1[2]
ck+1[3]

dk+1[0]
dk+1[1]
dk+1[2]
dk+1[3]















.

So far we have concentrated on one stage in the wavelet decomposition; a two-stage de-
composition is illustrated below.

H(z−1)

H(z−1) G(z−1)

G(z−1)c0[ℓ]

c1[m] c2[n]

d2[n]

d1[m]

↓2

↓2

↓2

↓2
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The two-stage analysis operation (assuming circular convolution) can be expressed in ma-
trix form as







ck+2

dk+2

dk+1







=







TM
2

IM
2













ck+1

dk+1







=







TM
2

IM
2













TM












ck






.

Similarly, a three-stage analysis could be implemented via















ck+3

dk+3

dk+2

dk+1
















=
















TM
4

IM
4

IM
2































TM
2

IM
2































TM































ck
















.

It should now be evident how to extend this procedure to > 3 stages. As noted earlier, the
corresponding synthesis operations are accomplished by transposing the matrix products
used in the analysis.

• DWT Implementation using FFTs: Finally, we say a few words about DWT implemen-
tation. Here we focus on a single DWT stage and assume circular convolution, yielding
an M ×M DWT matrix TM . In the general case, M ×M matrix multiplication requires
M2 multiplications. The DWT matrices, however, have a circular-convolution structure
which allows us to implement them using significantly less multiplies. Below we present
some simple and reasonably efficient approaches for the implementation of TM and Tt

M .

We treat the inverse DWT first. Recall that in the lowpass synthesis branch, we upsample
the input before circularly convolving with H(z). Denoting the upsampled coefficient
sequence by a[n], fast circular convolution a[n] ⊛ h[n] can be described as follows (using
Matlab notation)

ifft( fft(a).*fft(h,length(a)) )

where we have assumed11 that length(a) ≥ length(h). The highpass branch is handled
similarly using G(z), after which the two branch outputs are summed.

Next we treat the forward DWT. Recall that in the lowpass analysis branch, we circu-
larly convolve the input with H(z−1) and then downsample the result. The fast circular
convolution a[n] ⊛ h[−n] can be implemented using

wshift(’1’, ifft(fft(a).*fft(flipud(h),length(a))), length(h)-1 )

where wshift accomplishes a circular shift of the ifft output that makes up for the
unwanted delay of length(h)-1 samples imposed by the flipud operation. The highpass
branch is handled similarly but with filter G(z−1). Finally, each branch is downsampled
by factor two.

11When implementing the multi-level wavelet transform, you must ensure that the data length does not become
shorter than the filter length!
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We note that the proposed approach is not totally efficient because downsampling is per-
formed after circular convolution (and upsampling before circular convolution). Still, we
have outlined this approach because it easy to understand and still results in major savings
when M is large: it converts the O(M2) matrix multiply into an O(M log2M) operation.

• DWT Applications—Choice of φ(t): Transforms are signal processing tools that are used
to give a clear view of essential signal characteristics. Fourier transforms are ideal for
infinite-duration signals that contain a relatively small number of sinusoids: one can com-
pletely describe the signal using only a few coefficients. Fourier transforms, however, are
not well-suited to signals of a non-sinusoidal nature (as discussed earlier in the context of
time-frequency analysis). The multi-resolution DWT is a more general transform that is
well-suited to a larger class of signals. For the DWT to give an efficient description of the
signal, however, we must choose a wavelet ψ(t) from which the signal can be constructed
(to a good approximation) using only a few stretched and shifted copies.

We illustrate this concept below using two examples. On the left, we analyze a step-like
waveform, while on the right we analyze a chirp-like waveform. In both cases, we try
DWTs based on the Haar and Daubechies db10 wavelets and plot the log magnitudes of
the transform coefficients [ctk,d

t
k,d

t
k−1,d

t
k−2, . . . ,d

t
1].
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Observe that the Haar DWT yields an extremely efficient representation of the step-
waveform: only a few of the transform coefficients are nonzero. The db10 DWT does
not give an efficient representation: many coefficients are sizable. This makes sense be-
cause the Haar scaling function is well matched to the step-like nature of the time-domain
signal. In contrast, the Haar DWT does not give an efficient representation of the chirp-like
waveform, while the db10 DWT does better. This makes sense because the sharp edges of
the Haar scaling function do not match the smooth chirp signal, while the smoothness of
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the db10 wavelet yields a better match.

• DWT Application—De-noising: Say that the DWT for a particular choice of wavelet yields
an efficient representation of a particular signal class. In other words, signals in the class
are well-described using a few large transform coefficients.

Now consider unstructured “noise”, which cannot be efficiently represented by any trans-
form, including the DWT. Due to the orthonormality of the DWT basis, such noise se-
quences make, on average, equal contributions to all transform coefficients. Any given
noise sequence is expected to yield many small-valued transform coefficients.

Together, these two ideas suggest a means of “de-noising” a signal. Say that we perform
a DWT on a signal from our “well-matched” signal class that has been corrupted by
additive noise. We expect that large transform coefficients are composed mostly of signal
content, while small transform coefficients should be composed mostly of noise content.
Hence, throwing away the transform coefficients whose magnitude is less than some small
threshold should improve the signal-to-noise ratio. The de-noising procedure is illustrated
below.

DWT IDWTthresholdnoisy signal de-noised signal

Now we give an example of denoising a step-like waveform using the Haar DWT. In the
figure below, the top right subplot shows the noisy signal and the top left shows its DWT
coefficients. Note the presence of a few large DWT coefficients, expected to contain mostly
signal components, as well as the presence of many small-valued coefficients, expected to
contain noise. (The bottom left subplot shows the DWT for the original signal before
any noise was added, which confirms that all signal energy is contained within a few large
coefficients.) If we throw away all DWT coefficients whose magnitude is less than 0.1, we
are left with only the large coefficients (shown in the middle left plot) which correspond to
the de-noised time-domain signal shown in the middle right plot. The difference between
the de-noised signal and the original noiseless signal is shown in the bottom right. Non-
zero error results from noise contributions to the large wavelet coefficients; there is no way
of distinguishing these noise components from signal components.
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[1] M. Vetterli and J. Kovacević, Wavlets and Subband Coding. Englewood Cliffs, NJ: Prentice
Hall, 1995.

[2] I. Daubechies, “Orthonormal bases of compactly supported wavelets,” Commun. on Pure
and Applied Math, vol. 41, pp. 909–996, Nov. 1988.

[3] O. Herrmann, “On the approximation problem in nonrecursive digital filter design,” IEEE
Trans. on Circuit Theory, vol. 18, pp. 411–413, 1971.

c©P. Schniter, 2002 40


