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PRACTICE MIDTERM SOLUTIONS

1. There are two approaches to this problem. First, we have the frequency-domain approach:
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Next, we have the time-domain approach:

w[l] = x[lD]

v[l] = w[l − L] = x[lD − LD]

y[m] =

{

v[m/U ] if m is a multiple of U

0 else
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∑
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= 1 when n is a multiple of D, else = 0
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where we used the substitution n = lD − LD, i.e., l = n
D

+ L. Continuing,
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2. The design of each filter is based on the desired-signal-bandwidth at the input to that stage and the

decimation factor of that stage. Recall that the desired-signal-bandwidth in Y (ejω) is ωo radians,

and that the total decimation factor is 2× 2× 3 = 12. Without loss of generality, we consider only

positive frequencies below.

↓ 2 ↓ 2 ↓ 3H0(z) H1(z) H2(z)x[n] y[m]

x1[p] x2[q]

The signal {x[n]} will be decimated by 12 to generate the output {y[n]}. Hence, the desired-signal-

bandwidth of X(ejω) is ωo

12 , and the passband edge of H0(z) should be ωo

12 . Since the first stage

decimates by 2, we can choose the transition band to extend symmetrically around π
2 in order to

prevent aliasing into the desired-signal region. Hence, the stopband edge should start at π − ωo

12 .

(See figure below, which is unfortunately not drawn to scale!).
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The signal {x1[p]} will be decimated by 6 to generate the output {y[n]}. Hence, the desired-signal-

bandwidth of X1(e
jω) is ωo

6 , and the passband edge of H1(z) should be ωo

6 . Since the second stage

decimates by 2, we can choose the transition band to extend symmetrically around π
2 in order to

prevent aliasing into the desired-signal region. Hence, the stopband edge should start at π − ωo

6 .

(See figure below, which is unfortunately not drawn to scale!).
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The signal {x2[q]} will be decimated by 3 to generate the output {y[n]}. Hence, the desired-signal-

bandwidth of X2(e
jω) is ωo

3 , and the passband edge of H2(z) should be ωo

3 . Since the last stage

decimates by 3, we can choose the first transition band to extend symmetrically around π
3 in order

to prevent aliasing into the desired-signal region. Hence, the first stopband edge should start at
2π
3 − ωo

6 . But, after decimation, the region [2π
3 + ωo

3 , π) will also avoid the desired-signal region,

and so we can apply a stopband edge at 2π
3 + ωo

3 . (See figure below.).
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To summarize:

passband edge stopband edge(s)
H0(z) ωo/12 π − ωo

12

H1(z) ωo/6 π − ωo

6

H2(z) ωo/3 2π
3 − ωo

3 , 2π
3 + ωo

3
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3. (a) If we define x̃c(t) := xc(t + T + ∆), then it is clear that

X̃c(Ω) =

∫ ∞

−∞

x̃c(t)e
−jΩtdt

=

∫ ∞

−∞

xc(t + T + ∆)e−jΩtdt

=

∫ ∞

−∞

xc(τ)e−jΩ(τ−T−∆)dt

= ejΩ(T+∆)Xc(Ω)

The top sampler generates x0[m], which is a sampling of xc(t) at rate 1
2T

, and the bottom

sampler generates x1[m], which is a sampling of x̃c(t) at rate 1
2T

. Then
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T
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T
)−jω

=
1
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∑

k

Xc

(ω − πk

T

)

ej(ω−πk)∆

T (−1)k

Y (ejω) = Y0(e
jω) + Y1(e

jω)

=
1

2T
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T

)(

1 + ej(ω−πk) ∆

T (−1)k
)

(b) When ∆ = 0, the previous expression reduces to

Y (ejω) =
1

2T

∑

k

Xc

(ω − πk

T

)(

1 + (−1)k
)

=
1

T

∑

k even

Xc

(ω − πk

T

)

=
1

T

∑

l

Xc

(ω − 2πl

T

)

which is the DTFT that corresponds to sampling xc(t) at rate 1
T

, i.e., y[n] = xc(nT ).
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(c) The block diagram can be simplified if we realize that the cascade of upsampling and down-

sampling with a one-sample delay/advance in the middle yields zero.

t=2mT

t=(2m+1)T+∆
xc(t)

x0[m]

x1[m]

v0[m]

v1[m]

w[n]
+

↓ 2 ↓ 2

↑ 2

↑ 2

↑ 2 ↑ 2

z−1

z−1 z

F (z)

G(z)

since
these cascades

yield zero

(d) Now we consider the simplified block diagram with F (z) = 1 and G(z) such that

G(ejω) = e−jω ∆

2T for ω ∈ [−π, π).

Then, for ω ∈ [−π, π):
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If this signal is upsampled by two and delayed by one sample, we get, for ω ∈ [−π, π):

1

2T

∑

k

Xc

(2ω − 2πk

2T

)

ej( 2ω−2πk
2T

)(T+∆)e−jω ∆

T e−jω

=
1

2T

∑

k

Xc

(ω − πk

T

)

ej(ω−πk)(1+ ∆

T
)e−jω(1+∆

T
)

=
1

2T

∑

k

Xc

(ω − πk

T

)

e−jπk(1+ ∆

T
)

Since F (z) = 1, we have V0(e
jω) = X0(e

jω). Upsampling this by two gives
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.

Adding the last two signals to form w[m], we get
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(unless ∆ is a multiple of 2T ) and so

w[n] 6= wc(nT ).

In other words, the broken sampler cannot be fixed this way!
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