ECE-700 Digital Signal Processing Winter 2007
Homework #6 Feb. 21, 2007

HOMEWORK SOLUTIONS #6

1. (a) The two discrete-time STFTs are related by
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(b) If we evaluate the first STFT definition at w = 2%k for k = 0...N — 1, we see

R-1
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and thus this STFT can be implemented by a bank of LTI filters {hy[m|} with impulse
responses indicated above. If we try this for the second STFT definition, the the results of
part (a) imply
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which means that the input is split into N different paths and modulated before the filtering.
Thus, this STFT cannot be implemented as a bank of LTI filters.

(c¢) Taking an N-DFT of X[k,n] across frequency (so that p =0..N — 1),
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Note that e =4 F#P=m) = N when p—m = gN for q € Z, and zero otherwise. Recall that the
range of p and m implies 1 — R <p—m < N — 1, where R < N. Thus, the only chance for
p —m = ¢N is when m = p. Since m € {0...R — 1},

N—

—

X[k,n]eij%ﬂkp = Nz[n—plwlp], p=0..R-1
k=0

Since we know that w[p] > 0 when p € {0...R — 1},
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Note that DFT of {X[0,n],...,X[N — 1,n]} for fixed n yields {z[n — R + 1],...,z[n]}.
This implies that it is possible to reconstruct x[n] for all n given a sequence of vectors
{X[0,mR],...,X[N — 1,mR]|} for m € Z; it is not necessary to employ X[k, n] for all k
and n.

(d) Combining the results of parts (a) and (c),
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2. (a) The first figure below shows the discrete STFT magnitude as a function of time (horizontal
axis) and instantaneous frequency (vertical axis). Since z[n] = e=7“»" one might first expect
that the STFT indicates an instantaneous frequency of w, = 47 at time n. Instead, the STFT
plot has a pronounced ridge corresponding to an instantaneous frequency of 257 = 2w,,. This

is consistent with the phase-derivative interpretation: a—an(wnn) = %(%n) =257 = 2wp.

(b) The second figure below verifies the phase-derivative interpretation of instantaneous frequency.
During time n = 0..M/2—1, the phase derivative equals 257, while during time n = M /2..M —
1, the phase derivative is zero. Note that w,, is a continuous with respect to n but the derivative

is not!

(¢) The third plot below uses the STFT to analyze a speech signal. With a relatively short time
duration (R = 32) we get good temporal resolution (as can be seen by comparing the STFT
magnitudes to the time-domain signal). With a longer window (R = 256), we get much better
spectral resolution: we can begin to see the individual resonants of the vocal tract (called
“vocal formats”). Note that the resonances change frequency (slightly) over time.
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